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Possibility for direct experimental determination of
two-dimensional electron density of states
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The de Haas-van Alphen effect in strong magnetic fields in a two-dimensional electron system allows the

direct determination of its density of states.

The nature of the density of states (DOS) in a strong
magnetic field 8 is very relevant to the electronic properties
of a two-dimensional electron system (2DES), in particular,
for the quantized Hall effect. The latter, according to von
Klitzing, ' suggests a weak constant DOS "background"
between Landau levels. A natural way to determine the
DOS at the Fermi level is from measurements of a thermo-
dynamic quantity, such as the magnetization or heat capaci-
ty. ' (Another measure of the density of states is the inver-
sion layer capacitance. ') de Haas-van Alphen (dHvA) mea-
surements indicate, even in high-mobility single-quantum
wells, a substantial DOS between Landau levels (in agree-
ment with heat-capacity measurements') when compared to
theoretical calculations. The latter were performed for
Gaussian Landau levels with the half-width I ~ 8' '. Such I
is consistent with short-range scatterers. ' However, the cal-
culated amplitude is about four times smaller than experi-
mental results. 4 These authors conclude4 that there is no
existing theoretical explanation for the DOS they observe.
By virtue of the great importance of such a conclusion, one
should eliminate an a priori assumption of Gaussian Landau
levels.

It seems almost obvious that this may be done. Any
thermodynanmic quantity A is related, in the end, only to
the DOS D(e). Therefore, the dependence of A(8) on
magnetic field 8 shouM, in principle, allow one to determine
the dependence of D(e) on energy e

Explicitly, thermodynamic properties depend both on
D(e) and on the Fermi energy e~. The Fermi energy is it-
self related to D(e) and 8 by the equation for the number
of particles. Furthermore, D(e) depends on e and 8 via
the Schrodinger equation (in a magnetic field) with an im-
purity potential. As a result, the relation between A(B)
and D(e) reduces in a general case to extraordinarily com-
plicated functional equations. No ~onder that no attempts
were made to solve this problem without specific assump-
tions about D(e) (e.g. , its Gaussian form). To find an ex-
plicit solution, which ~ould be unique, stable, and accurate,
probably seemed hopeless. Ho~ever, this is exactly what is
done in this paper: I present an algorithm for a direct
"mapping" of the magnetic susceptibility X(8) on D(e).
This becomes possible due to several observations.

When scatterers are long ranged (compared to the mag-
netic length), the center of the Fermi-energy quantum cy-
clotron orbit moves along an equipotential line, U= Uo, and
DOS reduces to the magnetic-field-independent area inside
this line. This eliminates the task of solving the
Schrodinger equation, but still reduces the problem to two
functional equations. Ho~ever, in magnetic fields ~here

only the lowest Landau level (more specifically, the Landau
subband) is occupied, one obtains the DOS together with

other valuable information. Then I demonstrate that

Up(B) —U' (Mi+ p, ') dB

where Mi(8) = M/N is the magnetic moment per electron,
N is the total number of electrons, U' is the minimal value
of the impurity potential in a system, and p.

' is the Bohr
magneton. Thus, Up is the area in the plot Mi -Mi(8).

The Fermi energy eF(8) and the DOS D(8) equal
eF(8)- Up+~hQ; D(8) = —N /BX, where Xi -—X/N is

the magnetic susceptibility per particle; 0 is the cyclotron
frequency. These equations map D(eF)/N onto the plot of
1/BXi against the renormalized area in Mi -Mi(8). Final-
ly, the area S( Up) inside U- Up is provided by the plot of

S(8) chN/2eB

against Up= Up(8). Thus, one directly (and obviously
uniquely) determined DOS D(e), the Fermi energy eF(8),
and S( Up) in the interval of magnetic fields where only the
lowest Landau level is occupied. In ~eaker magnetic fields,
where the next Landau level appears, D(eq) may be deter-
mined in the next interval of ~F, and so on. %hen DOS is
determined in the whole (finite) range of potential energies
in the system, then Mi(B) can be calculated (with no adju-
stable parameters) in weaker fields and compared to the ex-
perimental Mi(8). This allows one to determine the accu-
racy of the approach and the region of its validity. The cal-
culations are done for the Landau diamagnetism when the
number of particles N is preserved. However, they are
readily generalized to, e.g. , the calculation of heat capacity
when N is not conserved. The real limitation to the whole
approach is a one-particle DOS, i.e., relatively weak
electron-electron interaction.

Now put these considerations into explicit formulas.
Consider sufficiently strong magnetic fields (unfortunately
either somewhat stronger than in Ref. 4 or applied to sam-
ples with lower electron density). When scatterers are long
ranged compared to the magnetic length ip= (c|r/eB)'~', the
center of a quantum cyclotron orbit moves along an equipo-
tential line U=const, and an electron energy ~ at the jth
Landau level is e= (j+~)ffA+ U, where 0-eB/m'c is

the cyclotron frequency. (The small spin splitting is ig-
nored. )

The area per flux quanta is hc/eB. Suppose S(U) is the
total area inside all potential lines U; then the area change
ES- (8$/8U)AU yields 25S/(hc/eB) states, where 2 ac-
counts for the spin degeneracy. The corresponding DOS
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D(eF) - XD(Ui);
J

U, (B)=e,(8) (J+—~i)itQ . (3)

The summation is related to all U'~
U&

~ U", where U' is
a minimal and U" is a maximal value of U, both of which
are finite in a finite sample. Naturally, S(U) has its
minimum S(U') -0 and its maximum S(U")-S, where S
is the total area of a sample. When U= U', then

S(U) = ~a(U —U')2

In the approximation of Eqs. (1)-(3), two functions, S( U)
and eF(8), determine ail thermodynamic quantities, e.g. ,
the magnetic moment M(8). In principle, if the total
number of electrons N is preserved, N(8) -N(0) deter-
mines eF(B) via S(U). Then M(8) depends only on
$(U) and determines it. This is the idea and the goal of the
paper. In fact, $(U&)-$[eF(B)—(j+~)tQ] is an un-

known function of an unknown function eF(8). In gen-
eral, two functional equations for eq(8) and S( U) are
hardly solvable. But a strong magnetic field 8 leads to an
easy solution. Just for simplicity, consider zero temperature
and no inelastic scattering.

In strong magnetic fields 8&8', when only the first
Landau subband is occupied, DOS D( U) in the correspond-
ing interval of U (where U'( U( U') as well as 8' and
U', is directly related to the experimentally measured mag-
netic moment M(8). When 8(8', the second Landau
subband begins filling up. Its DOS starts with D(U')-0
and in a certain interval of 8 is related to the already deter-
mined D(U). The unknown D(U) may again be deter-
mined experimentally in the next interval of U. In still
weaker 8, the third Landau subband switches in, etc. As a
result, D(U) may be determined in the whole interval
U'» U» U". Therefore, M(8) may be calculated (with
no adjustable parameters) and compared to the experimen-
tal M(8), determining the accuracy of the approach and
the region of its validity.

When 8 ~, then DOS ~, and all electrons gather in
the lowest-energy state: eF(8) +Q+ U'. In strong

enough 8, only the j=0 Landau subband is occupied. This
happens when

(per unit U) D(U),

D(U) = (2eB/ch)(8$/flU)

is the same for all Landau subbands. The Fermi energy
eF = eF(B) yields DOS ( per unit e)

U, (8)—U'= —N-' 8'X(8') dB'
4 B

—N ' 8'd(M'+p'N)
4

te ce
= N '

~
(M'+ p, 'N) dB'

while Eq. (3b) provides eF(8). By Eq. (1),

(8)

D (8) (2eB/ch )S'( Up) - (2eB/ch )S'(8)/Uii (8)
By Eq. (4), S'(8)- (chN/2eB), and by Eq. (7),
Up(8) BX/N. So,

D(B) —Nt82X (9)

Since D(8) «0, Eq. (9) may be valid only when X (0.
Equations (8) and (9) determine (in a parametric form)
D(U) directly from experimental data. Equations (4) and
(8) determine S(U). By Eqs. (3c) and (8), they are valid
when 8 & 8', where 8' is determined by

$(8') —N '„,8'dM' itQ' (10)

IftQ') U" —U', then D(U), $(U) are completely deter-
mined. Otherwise, when 8&8', the next j-1 Landau
subband is populated. Consider

U, -U'&Xn . (10a)

Then, eF-+Q+Up((+Q+U'), and other (j«2)
Landau subbands are empty. A simple calculation (see also
later) replaces Eqs. (4) and (6) by

N- (2eB/ch)(Sp+Si)

ie Uo te Ui
M (2e/ch), SdU+, SdU —2p, 'BSi —p, 'N, (12)4 U J U'

Accounting for Eq. (4),
ta Uo

E-Ner —(2eB/ch ), S ( U) dU4 U

The magnetic moment M = —dE/dB and magnetic suscepti-
bility X dM/dB, by Eqs. (3b), (4), and (5), are

M = (2e/ch), SdU —p, 'N (6)
UI

X NUii (8)/8 (7)

where ii, '- eir/2m'c S. ince 8 ~ yields Up U', and
M —p, 'N, so, by Eq. (7),

er(8) = ~itQ+ Up

is less than ~A 0+ U', i.e., when

(3b)
where Sp= S( Up), Si = S( Ui), arid by Eq. (3),
Ui- Uo —AQ. As long as Ui —U'&kA' the function
S(Ui) is known from Eqs. (4) and (8). So Eqs. (11) and
(12) are similar to Eqs. (4) and (6):

tQ ) Up(8) —U' .

Then the total number of e1ectrons

p Uo
D( U) dU= (2eB/ch)S( Up)

UI

(3c)

(4)

Ni ——N 2eBSi /ch = (2eB/—ch) S( Up)

t Ui
Mi = M —(2e/ch ), SdU —2p'BSiiJ U

t Uo= (2e/ch), SdU —p. 'NJ

(12a)

(12b)

where Up=eF —+Q. The total electron energy

tp UoE=(2eB/ch), (~Q+ U)(8$/aU)dU . Xi(8) —dMi/dB= Up (8)Ni/8 (13)

where Ni and Mi are now known. Accounting for Eq. (11),
one obtains, similar to Eq. (7),
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where N) = N)(8). So, similar to Eq. (8),

Up(8) —U'=qh)(8) = — 8'dM)'/N)(B') . (l4)
4 g

Now, by Eq. (11), D(8) = (2eB/ch)S'(8)/Up (8). So,
accounting for Eq. (12a) [with nonconserved N)(8)] and
Eq. (13), one obtains

D(8)=(N)/X))(N)/8)'; $(8)=chN)/2eB . (15)

Equations (14) and (15) determine D(U) in the new inter-
val of U, where U) —U' (t Q' (thus, Up —U' (t Q'
+tQ), and, by Eq. (10a), Up —U'(2tQ. By Eq. (14),
corresponding magnetic fields 8 & Bi',Bi are determined by

$)(8)') t(Q'+ Q)); $)(8)) 2tQ) . (15a)

If 8)' & 8), then for 8 & 8)' one proceeds with Eqs. (14)
and (15), where S) is now determined in a broader interval,
and repeats this procedure until one reaches Bi. If
8) & 8)', then one accounts for N, M, X for the (j-2) Lan-
dau sub-band. General formulas which follow from Eqs.
(2) and (3) read

ip=(ch/eB))i2 is small compared to the characteristic po-
tential range IU. If this region covers the whole interval
U"—U'=hO i.e., if hU & n2t2/m'lg, then M calculated
from Eqs. (16) and (17) and experimental M agree until
8 —Bu, where lu lp(Bu).

The best magnetic fields to start the determination of
D(U) are those when Up= O'. Then, by Eqs. (3a), (4),
and (6),

M/N = —p, '+ 78 (chN/2eaS ) ' 2 (18)

Above I consider only zero temperature. To account for a
finite but low temperature is little problem.

Similar calculations may be performed for heat capacity,
or when the total number of electrons N is not exactly con-
served (e.g. , as suggested by Barraff and Tsuis). Suppose,
for instance, that the reservoir of electrons preserves ~~. If,
e.g, , only the j-0 Landau subband is occupied, then 8
determines Up e~ —+Q and E(Up). Since

ra Up

E(U))) =„, (+Q+ U)D(U)dU

], p ri J2 P Uj
N X „, D(U)dU+ X J, D(U)dU;

J~p4 U J~J U
1 so

(eF Up+ —U')D(U)dU

So,

J —1 II

E= g, [(j+~)tQ+ U]D(U)dU
J~i~ U

J2 iI U

+ X, [(j+T)tQ+U]D(U)dU
J J U

J2
N-(2eB/ch) j)S+XS&

Ji

J2

(ch/2e)M —p, '8[2jf'S+ X (2j+ l)Sj]
J Ji

(16)

J2 ) P UII
+ x, Sd U+j),Sd U+ eFS —U"S

1
)4 U

(17)

where Si —S( Uj) = $[eF—(j+~)t Q]. The subbands with

j 0, 1, . . . , ji —1 are completely filled, while those with

j & j2 are completely empty; ji ~j~ j2 corresponds to par-
tially occupied subbands. 7

By Eqs. (16) and (17), step by step one determines
D( U) in the whole interval (O', U"). Then one may calcu-
late M(8) from Eqs. (16) and (17) in weaker fields and
compare it to the experimental M, thus verifying the ap-
proach.

Clearly, the main point in the approach is the same 8-
independent S( U) in all Landau subbands. Then the popu-
lation of every j«1 subband starts with U= U' and covers
the region of U which has already been determined in
higher magnetic fields. The approach is valid when

E"( Up) eFD'( Up) —D ( Up)

This equation determines D ( U).
The suggested determination of the DOS is related to two

main assumptions. First, that a one-particle DOS is ap-
propriate, i.e., that the electron-electron interaction is small,
i.e., e n' / ee((tQ, where ez is the dielectric constant and
n is the electron density. ~ The second assumption is
lp&& al, where a& is the impurity Bohr radius. When
Ip && aI, the center of cyclotron orbit moves along an equi-
potential line U-const, and Eq. (1) for DOS is valid.
Then, whatever U is, ' the presented calculation is valid.

All approximations may make the apparent DOS more
uniform than it really is.

To summarize: (i) Suppose magnetic moment per elec-
tron saturates in experiment to (M/N) + (et/m"c)a: 8
Then determine 8' from Eq. (10) and consider 8 & 8'.
There simple Eqs. (8) and (9) determine DOS D( U), while
Eqs. (4) and (8) yield S(U). (ii) Determine N), M) by Eqs.
(12a) and (12b). Find D(U), S(U) from Eqs. (14) and
(15), and (12a) and (12b) in the region of (U —U') from
Eq. (15a). If 8)' & 8), proceed further by Eqs. (14) and
(15). If 8) & 8)', proceed according to Eqs. (16) and (17).
(iii) When D( U) and S( U) are determined in the whole
interval (O', U"), compare theoretical M(8) from Eq. (17)
with the experimental one. If they deviate at 8 —8„, then
the characteristic potential range is l„—(ch/eB„)' '.
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