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Quantum-interference contribution to the thermoelectric coefficient of degenerate
and nondegenerate electron gases
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%e discuss a quantum-interference (Cooper propagator) contribution to the thermoelectric coefficient of
a two-dimensional electron gas. %e are particularly interested in such a contribution for pure conductors
(with no structural disorder) where it is a high-temperature effect due to quasielastic electron-phonon col-

lisions. The magnetic field dependence is considered, and the case of Boltzmann statistics is discussed in

some detail.

The purpose of the present paper is to discuss the in-
terference (Cooper propagator} contribution hq to the ther-
moelectric coefficient q of two-dimensional conductors. %e
shall consider the maximally crossed diagrams whose special
role has been discovered by Gor'kov, Larkin, and Khmel'-
nitskii' and by Abrahams and Ramakrishnan. ' The influ-
ence of magnetic field 0 will also be considered, %e sup-
pose the electron-electron interaction to be negligibly small

(see below).
The transport coefficients cr and q are determined by the

relation for the current density j:
j o.E—q'7 T

where E is the electric field and T is the temperature. The
coefficient 4q has been calculated by Ting, Houghton, and
Senna' for degenerate electrons. They came to the con-
clusion that the relative quantum-interference contribution
57i/q is equal to the one for the conductivity, b, o/o. In
such a case there would be no contribution to the Seebeck
coefficient S=q/o and thus measurements of hq would

give no new information.
The results of our calculation do not, in general, confirm

this conclusion. On the contrary, we believe thai experi-
mental investigation of thermoelectric coefficient rial, espe-
cially its magnetic field dependence, can provide an in-
dependent way to determine, for example, such an impor-
tant parameter as the phase relaxation time, v~, . Indeed, for
the case of Fermi statistics which we have considered re-
cently4' we have come to the conclusion that the functions
hq(H) and ha (H) have entirely different forms.

Here we wish to emphasize that it might be interesting to
measure the contribution hq for nondegenerate electron gas
in semiconductors. As is sho~n by Al'tshuler and Aronov, 6

in degenerate gas one-particle interference contribution to
Ao- manifests itself along with the contribution of electron-
electron interaction. The expression for the last contribu-
tion contains neither the electron concentration no nor the
electron charge e. This is a sequence of the condition
T && 4mo-. For the nondegeneraie electrons the inequality
can be reversed provided no is small enough. In this case
the electron-electron contribution has a factor no and can be
discarded. Thus the interference effects are present in a
pure form.

Another point especially important for nondegenerate
electron gas is that no structural disorder is necessary in this
case for quantum contribution to be present. As is well

known, the electron-acoustical phonon collisions may be al-
most elastic. Each collisional event results in essential
change of electron momentum while the change of its ener-

gy ao is small. Thus the electron can perform its motion in
almost static chaotic phonon field during relatively big time
without destruction of the phase coherence. Indeed, the
variation q of the electron quasimomentum due to an
electron-acoustical phonon collision is for the nondegenerate
electron gas of the order of p - (mT)'~'. The corresponding
variation of the electron energy a is of the order of
co = wq = w(mT)' 2, where w is the sound velocity. Thus,
co/T = (mw2/T)'~'. This ratio is small at all temperatures of
interest.

Therefore one may expect that at least in some cases the
almost stationary random phonon field can be considered in
the zeroth approximation as a pure stationary one. In this
approximation our problem is equivalent to that of impurity
scattering. As is well known (see Refs. 1 and 2) the latter
can bring about the quantum-interference effects.

In the next approximation one should take into account
the phonon-field nonstationarity. This leads to the electron
phase relaxation; it determines the time v~ during which an
electron state remains coherent with the time-reversed one.

If this time is sufficiently big so that 7~/r, q )) 1, and

p/»1, (pI) 'ln(~, /r») «. I,
one can take into account only one set of maximally crossed
diagrams with the phonon lines instead of the impurity ones
(see Ref. 9).

There are two distinct temperature intervals where the
quantum-interference effects may be observed. At low tem-
peratures they are due to the impurity scattering while at
high temperatures they are due to the quasielastic eleciron-
phonon scattering. At intermediate temperatures no such
effects exist.

Now, the higher is the temperature and the smaller is the
relative contribution of the phonon drag (which we do not
take into account}. Moreover, the coefficient q itself is
much bigger for nondegenerate than for degenerate elec-
trons. Thus, although observation of the effect discussed
here, in fact, is possible at low temperatures for degenerate
electrons, the conditions for its observation may be more
favorable at relatively high temperatures.

Let us consider a semiconductor sample, its thickness d
being much larger than the de Broglie wavelength a'/p and,
at the same time, much smaller than the diffusion length
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(Drv )' '. (D is the diffusion coefficient. ) Our calculations
give for this case (cf. Refs. 3-5),

dvt = (2e/mt T) de(8n/Ba)(s —g)D(a)C(&) . (2)

This equation differs from that for do (cf. Ref. I) by the
factor (a —t.')/eT in the integrand. Here n is the equilibrium
electron distribution function and $ is the chemical poten-
tial. The Cooper propagator C is the sum of maximally
crossed diagrams which is usually written in the form

C(s)-, d'q(2ir) '[D(s)q'+I/r~] 0)
%e shall give the result of our calculation of this function

for quasielastic electron scattering. The corresponding con-
dition for the case of Boltzmann statistics has the form
Ace && T.

The result of our calculation depends on the relation
between cu and Tph the characteristic time of quasielastic
collisions with phonons. One can discriminate between the
two cases:

(i) The case of phase jumps takes place provided
coT»&& 1. In this case the Cooper propagator can exist
only if elastic impurity scattering is present along with the
quasielastic phonon scattering, the characteristic time of im-

purity scattering T being much smaller than Tph It means
that the Cooper propagator is formed by elastic scattering,
and the only role of quasielastic phonon scattering is to de-
stroy coherence. Our calculations for this case give T = T»
(which confirms the result pointed out by Al'tshuler, Aro-
nov, Larkin, and Khmel'nitskii') while time r determines
the diffusivity D(s).

(ii) The case of phase wandering takes place provided
coTph && 1, irrespective of whether the Cooper propagator is
formed by quasielastic collisions alone or the elastic impuri-
ty scattering is also essential.

Let us begin with visualizing the phonon random poten-
tial U as a pure static one. In this approximation the phase

y of the electron wave function ~ould be a linear function
of time t, so that p E t, E being the electron energy. A
slow variation of the potential U will bring about a mechan-
ism of the phase wandering so that the difference (qi')
—(qr') will not vanish (the ( )'s denote the phonon en-
semble averaging). For small values of t the difference can
be expanded in powers of t. It is natural to suppose that the
expansion begins with t':

(P ) (P) =ot

The coefficient a should be proportional to the square of
the time derivative V=AU of the random potential U:
o.~ cu'U . As a measure of the random potential intensity
one can take I/TphcL U', and as a result, one can get the fol-
lowing order-of-magnitude estimate:

A —QJ / Tph
2

Hence, the characteristic time of phase destruction,

2/3/& 1)3

The interference is possible provided T~ O'O'Tph. For what
follows, it is extremely important that this condition is
equivalent to the inequality AT ph && 1. The physical mean-
ing of the last inequality is very simple: The variation of
the phase of the electron wave function during the
electron-phonon mean free time T» is small. This is the

C (s,H) = @&(s,H)/2nD(s),
hOO

$a(&,H) - (H/H, )„,t, dx exp( —x")[2sinh(Hx/2H, )]

(6)

H, -«/41e ID(e)r, (s) . (8)

Equation (7) is valid in the main order in the large
parameter log (r~/r ) If H .((H, @k—I (rn~, /r ); if
H» H, @,—ln(H, /H) —In(r/r, ).

For the case where at H-0 we have Eq. (5) we get at
H&0, using the same methods as in Ref. 10, Eq. (6) with
k 3 instead of k=1. qadi and d3 depend on H in a dif-
ferent way. In particular, if 0 && 0, both functions have
the form

qhk (In~/rr ) —ak (H/H, )',
but the factors e~ are different: a~ -0.042, while n3

0.019.
Now we shall give the result of the calculation of 4q for

nondegenerate electrons. Inserting (3) or (5) in (2) we get

hq = e '[ln(2vT/no) + 1]/ter

where

b, o - —(eno/4rt3vtt T) ln[r~ ( T)/7 ( T) ]

(10)

v is the electron density of states averaged over the Boltz-
mann distribution. Thus Eq. (10), within the accepted accu-
racy, is insensitive to the exact form of the Cooper prop-
agator.

The first term in the brackets in (10) is equal to I(I/T
&& 1. Taking into account this term only we get
hyle-ho/o. which means that in this approximation there
is no contribution to the Seebeck coefficient S (such a result
was given by Ting eI; al. , but for the Fermi statistics rather
than for the Boltzmann one). In the next approximation in

so-called regime of phase wandering.
To give the analytical solution of the problem we have

summed the sequence of the maximally crossed diagrams
(see Ref. 9) with the phonon lines instead of the impurity
ones. For this sum we have obtained an integral equation
which can be solved. As a result we have

ro

C (s) = d'q/(2ir )' dt exp( —Dq't —t'/7 e'), (5)

where r~ is determined by Eq. (4). One can see that this
equation corresponds to the described physical picture.

Expression (4) coincides with the estimate given in Ref. 8
on the basis of physical arguments for the case where coT»
&( 1, and elastic scattering is predominant while the

quasielastic one is taken into account as the mechanism of
destruction of the phase coherence. Further discussion of
these arguments is given by the authors in Ref. 9.

Let us now analyze the magnetic field dependence. For
the case where H =0 [Eq. (3)] is valid we should insert at
H&0 in (2) the following expression obtained by Al'tshu-
ler, Khmel'nitskii, Larkin, and Lee. '

C(a,H) = (2b/rr )X[4Db (k + &) + r ']

Here b - eH/ch, c is the velocity of light, and summation is
taken over non-negative integers up to the value of the or-
der of I/2bl3, I being the electron mean free path. One can
rewrite this equation as
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/Jq- —eno(4m ts T) '„dx e 4k(Tx, H)(Tx —()
(13)

Again 4q differs from the corresponding equation for ho.
by the factor (s —g)/eT in the integrand.

Let us give estimates of the range of applicability of these
results for the case where only quasielastic scattering of the
electrons by acoustical phonons is present. The small
parameter I/pl of the perturbation theory can be written for
this case as 8/Tr(T). The quantum interference can take
place if 7~ && ~ which, as we have seen, is possible only if
4t) Tph &C 1 . Thus we come to the following chain of in-
equalities

(T mw')" (( T &( T, (14)

where the characteristic temperature T, is determined by the
equation T,r(T, ) t.

A further condition emerges from the fact that we have
taken into account only one set of maximally crossed dia-
grams. It amounts to the requirement of smallness of the
quantum contribution as compared to the classical value, or

(T/T )&&2 lnT(nt~2T ) (15)

Thus it is seen that in this case the quantum contribution
increases with the temperature.

However, if the temperature is high enough one should
take into account the optical-phonon scattering. If
T && ta)p, cop being the optical-phanon frequency, this
scattering leads to phase jumps only. At higher tempera-
tures (T » taos) the scattering may become a quasielastic
one. In this temperature region T~~ T' ', and inequality
(15) is satisfied provided the electron-phonon coupling is
small.

It might be very interesting to investigate experimentally
if the quantum contribution still exists at even higher tem-
peratures, i.e., above the melting point, both in semicon-
ducting and in metallic state. Atoms in a liquid acquire ad-
ditional modes of motion (as compared to a solid) which in-
teracting with electrons should contribute to the phase de-
struction time v~. Ho~ever, the conditions in some liquids
may still prove favorable for existence of the Cooper propa-
gator.

Let us now discuss when it is possible to observe the

T/I)l such a contribution appears, and we get

AS/S-Pt(2mT) 'i'[l(T)] 'In[r~(T)/r(T)], (12)

the dimensionless numerical factor P being dependent on
the mechanism of the momentum relaxation.

For 0& Q we have

dependence on magnetic field H. Along with 0-dependent
quantum contribution there exists a classical one caused by
distortion of electron trajectories in magnetic field. For a
weak field it is proportional to (H/H„)', where H„= e/p,- cT/eD (p, being the mobility). The quantum contribution
is of the order of ir/(2mT)'~2i as compared to the classical
one. Thus in order to observe the quantum contribution
against the background of the classical effect one requires
the condition

H, /H =Jr/4T. «J /I"'(2mT) "4

Finally, let us briefly discuss some aspects of the quantum
contribution for Fermi statistics. ' To make estimates of the
quantum contributions in semimetals and metals let us in-
troduce a dimensionless parameter g =pa/h, a being of the
order of the lattice constant. In a typical metal (=1; in a
semimetal g « l.

The characteristic phonon frequency m is of the order of
8/Jr (where 8 is the Debye temperature). Thus if T « (8
we have leo && T, and the phonon scattering is inelastic. In
the opposite case of quasielastic scattering T » $8, the
phonon scattering rate re~is of the order of gT/Ji Thus.
the condition of phase wandering QJ'Tph CC 1 can be met at
T )&e. In this region the Cooper propagator has the form
(5) with r~ =t/gT''8~'. In the intermediate region of
temperature, $8 &( T « 8, which is actual if (« 1, the
phase jumps take place. Consequently, the Cooper propaga-
tor has the form (3) with r =Jr/gT. One can see that the
quantum interference in Fermi gas can take place at T & 0
if the impurity scattering is strong enough and the inequality
T' && Tph holds. At T && 8 such a contribution can exist
due to phonon scattering only. 2

Generally speaking, the case of the Fermi gas is more
complicated than the case of the Boltzmann one because the
conditions of whether it is possible to neglect electron-
electron interaction, even considering the magnetic field
dependence, should be analyzed carefully:

(1) Kaveh and Mott" were, as far as we know, the first
to discuss the high-temperature quantum contribution to the
conductivity. They considered three-dimensional metals
and used for the Cooper propagator Eq. (3) with the time

mph for v~. %e believe that in three-dimensional metals too
not only the case of phase jumps but also the case of phase
~andering where the Cooper propagator is described by Eqs.
(4) and (5) may be of importance, especiaily at high tem-
peratures (T & 8).

(2) One should keep in mind that the order-of-magnitude
estimates of this sort are of approximate nature. They can
be made much more accurate for any definite substance
provided its parameters (effective mass of the carriers, rates
of their phonon scattering, etc.) are known.
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