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Langreth and Mehl (LM) and co-workers have developed a useful spin-density functional for the correla-

tion energy of an electronic system. Here the LM functional is improved in two ways: (1} The natural

separation between exchange and correlation is made, so that the density-gradient expansion of each is

recovered in the slowly varying limit. (2) Uniform-gas and inhomogeneity effects beyond the random-

phase approximation are built in. Numerical results for atoms, positive ions, and surfaces are close to the
exact correlation energies, with moor improvements over the original LM approximation for the ions and

surfaces.

The major obstacle toward an accurate self-consistent-field theory for atoms, molecules, and solids is the electron correla-
tion problem, since everything else may be treated more or less exactly (as in the spin-unrestricted Hartree-Pock approxima-
tion). Ground-state density-functional approximations, starting from the limit of the electron gas of slowly varying densi-

ty, have traditionally made serious errors in the correlation energy E, for realistically inhomogeneous systems. For example,
the local-spin-density (LSD) approximation2 s

E, [nt, nt]= d r n(r)a, (nt(r), nt(r)) (1)

predicts correlation energies for atoms that are about twice the exact values, and the gradient-expansion approximation'
predicts correlation energies of the ~rong sign. ~ Self-interaction corrections to the LSD approximation have been useful,
but not entirely satisfactory. Recently, Langreth and Mehl (LM) and co-workersa " have developed a generalized gradient
approximation which predicts rather accurate correlation energies for atoms ' and molecules

E, [nt, nt] „d r nac~"(nt, nt)+0004287) dsr [d 'e tVnt2/n +9f 2 ' (itVnt t /nf + iVnt t /nfl )] (2)

' 5/3' ],/2

(5)

(in atomic units), where

F= 1 745f i V n i/ n. l (3)
I

~ 5/3

d-2i/3 1+~ + (4)
2 2

n nt+nt, ( (nt —nt)/n, and f 0.15. When applied
in concert with the LM approximation for exchange, ~ Eq.
(2) has also improved the LSD description of the density
and energy of solids. '3 There is good fundamental physics
in the LM approximation, which may be the most signifi-
cant development in the field since the advent of the LSD
approximation, but there are also a few theoretical and prac-
tical drawbacks which it is the aim of this communication to
point out and correct.

First, the fundamental physics of the LM approximation
will be briefly reviewed. The gradient-expansion approxi-
mation (GEA) for the correlation energy is analyzeda into
contributions from dynamic density fluctuations of various
wave vectors k, and a strong exponential peak is found to
lie around k =0. More precisely, the coefficient of the gra-
dient term in the correlation energy in the random-phase
approximation (RPA) is roughly

C" "(n) = de (n)eJp
Since the GEA is valid only when the inhomogeneity wave
vector itV nt/6n is small compared to k, Eq. (5) contains a
spurious contribution from the region k (fi%n t/n which
Langreth and Meh19 replace by zero. Transparently, the

I

spatial extent of a dynamic density fluctuation must be rela™
tively small before this fluctuation can effectively sample
the local density n (r) and its gradient V n (r).

There are, however, at least two drawbacks of the LM ap-
proximation for the correlation energy. The first is the 9f
term in Eq. (2), which is really a piece of the gradient ex-
pansion for the exchange energy, incorporated via a some-
what artificial separations of exchange and correlation. As a
result, the LM approximation in the slowly varying limit re-
covers the LSD, as it should, but not the GEA. The second
drawback is that the LM approximation does not go beyond
the random-phase approximation for the correlation energy.
The RPA may be adequate for atoms, "' but is not really
good enough for the valence electrons in simple metals. (A
possible third drawback, the simplification'p made in the
spin dependence of the gradient term, will not be addressed
here. Perhaps this is no more serious than a similar inter-
polation between g 0 and 1 made in the LSD term. )

Thus, two modifications of the LM functional are pro-
posed here. The first is simply to make the natural separa-
tion between exchange and correlation. The second is more
speculative, since the wave-vector decomposition of the gra-
dient expansion has not been carried beyond RPA. Here
the simplest reasonable assumption will be made, that this
decomposition would still be dominated by the exponential
peak around k=0 [as in Eq. (5)], but with B(n) altered to
yield the beyond-RPA gradient coefficient for the correla-
tion energy C(n) (The expec. tationa" is that the RPA be-
comes exact for k 0, as in the uniform gas. ) This coeffi-
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TABLE I. Correlation energies of atoms and ions, in a.u.

Atom LSD GEA Eq. {8) Experiment

H
He+'
Li+2

—0.022
—0.030
—0.034

0.033
0.092
0.154

—0.008
0.002
0.012

—0.003
0.002
0.004

He
Li+1
Be+2

Be
Ne+6

—0.112
—0.134
—0.150

—0.224
—0.333

0.088
0.201
0.320

0.233
0.965

—0.050
-0.039
—0.025

—0.099
—0.026

—0.044
—0.045
—0.049

—0.094
—0.136

—0.042'b
—0 044'
—0 044'

-0.094'b
—0.18'

Ne
Ar
Kr
Xe

—0.74
—1.42
—3.27
—5.18

0.56
1.11
2.12
3.26

—0.41
—0.80
—1.92
—3.07

—0.39
—0.80
—2.01
—3.31

—0.39'b
—0.79'b

'Re ference 18. bReference 19. 'Reference 21.

cient is known, ""and has been parametrized by Rasolt
and Geldart

where

n = (4n r,'/3)

(0.002 568+ ar, + pr,2)

(1+yr, + Sr,2+ 104pr,3) (6)

(7)

4-1.745f[C(~)/C(n)] IVnl/n"' (9)

The correlation energy per particle of the uniform electron
gas, e, (nl, nt), is taken from a parametrization6 of the
Ceperley-Alder" results, and the cutoff parameter f -O.ll
is chosen to fit the exact correlation energy of the neon
atom. 'a''9 Equation (8) recovers the beyond-RPA gradient
expansion in the unpolarized slowly varying limit.

Table I presents numerical results for the correlation en-
ergies of atoms and ions. The theoretical values were calcu-
lated from Hartree-Fock densities, 20 awhile the experimental
values come from Veillard and Clementi's' ' analysis of
measured total energies, but with the sign of the Lamb-shift
correction reversed. '9 For the neutral atoms, Eq. (8) is

a 0.023 266, p 7.389 & 10 6, y 8.723, and 8 0.472.
[Note that' C"~"(n) = C(~).]

The proposed correlation-energy functional is therefore

E, [n tn ]td r ne, (nt, nt )

+ d r d 'e eC(n) IV n [ /n, (8)4
where

slightly more accurate than the LM approximation, but
some of the difference ~ould be removed by choosing
f 0.179 in Eq. (2). More significant is the error of the LM
result which occurs within the one-, two-, and four-electron
isoelectronic series of Table I. The LM approximation
predicts that the correlation energy within an isoelectronic
series becomes less negative as the nuclear charge Z in-
creases. This misbehavior is also evident in Table III of
Ref. 22. It results from the 9f term in Eq. (2), which is
absent from Eq. (8). Note also the rather precise cancella-
tion of the self-interaction in the one-electron ions which
Eq. (8) achieves.

Of course, no simple density functional can be even quali-
tatively correct for an isoelectronic series in the limit

Z ~, ' since the exact correlation energy must ultimately
vary as Z' or Z, depending upon whether or not another
orbital configuration of the same symmetry becomes degen-
erate with the ground-state configuration in this limit. As
Z ~, Eq. (8) reduces to the LSD approximation, which
compromises with a lnZ limiting behavior.

Table II presents numerical results for the correlation
contribution to the jellium surface energy in the infinite-
barrier model. This model is some~hat unfair to the GEA
and LM approximations, which contain spurious contribu-
tions from an integrable singularity (at the barrier) which is
absent in the LSD approximation and in Eq. (8). Since the
exact correlation energy is not known, comparison is made
in Table II with the RPA results24 for the infinite barrier
model, and satisfactory agreement with the results of Eq.
(8) is observed. Equation (8) should indeed lead to some

TABLE II. Jellium surface correlation energy for the irdnite barrier model, in erg/cm . The bulk density
is characterized by r, .

LSD GEA LM Eq. (8) RPA

2.07
4
6

118
27
10

2604
323
90

1319
215

71

535
84
26

688'
103a

33~

'Reference 24.
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underestimation of the surface correlation energy, since Eq.
(8) contains no contribution from k=0, while the exact
surface correlation energy should include a contribution
from a small (compared to what the GEA predicts) positive
limitz5 as k 0. (Unfortunately, the RPA must be regard-
ed with a measure of skepticism, in view of a recent sugges-
tion'~ of large beyond-RPA contributions to the jellium sur-
face energy. )

In summary, Eq. (8) predicts correlation energies of use-
ful accuracy for the electron gas of slowly varying density,
atoms, iona, and (perhaps) metal surfaces. For general ap-
phcations (including the calculation of densities and binding
energies for molecules and solids), Eq. (8) might be used in
concert with spin-unrestricted Hartree-Fock or other exact-
exchange methods. ~7 ~~ In principle, Hartree-Fock theory

I

with a nonlocal exchange potential is different from exact
exchange-only density-functional theory with a local ex-
change potential; in practice, the numerical difference
between the two differently defined exchange energies is
slight. 3o3t Alternatively, Eq. (8) might be applied along
with the new generation of accurate generalized gradient ap-
proximations ~ " for the exchange energy as a functional of
the density. (Note, however, that when exchange and
correlation are approximated separately, the usual "cancella-
tion of errors" between the two cannot always be relied
upon. )

The spin-dependent correlation potential, for use in self-
consistent calculations, is the functional derivative SE,/
Sn (r) N. eglecting the small derivatives of C(n), this may
be transcribed rather directly from Ref. 10:

SE
( )

=p, nt, nt — e n n( ) d t eC( ) t/3 (2 —4)'7 n IIC 7a' [Vnl' C(C 3)V-n VIVnl
3 6 n~ n IP'n [

5n»3 (ng" —n"' ) [(1+4—4~)n [Vn i~ —(2+24 —4~) nV n Vn]6d' n4

where p, (nl, , nl ) is the LSD correlation potential.
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