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Henry's law of adsorption on a fracta1 surface
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The problem of adsorption at low coverage N on a fractal surface is addressed. General, but approxi-

mate, arguments are presented to sho~ how the fractal dimension D is related to the Henry' s-law coeffi-
cient of proportionality between N and the pressure. A semiclassical analysis validates this relation at high

temperature. An evaluation for a regular fractal surface demonstrates this behavior explicitly. Relation is

made to a fractal Brunauer-Emmett-Teller theory of multilayer adsorption.

The concept of fractals represents a paradigm which has
remarkably diverse manifestations in the world of physics. '

The field of adsorption provides a natural application be-
cause it involves precisely the phenomenon of covering a
surface. Ffeifer, Avnir, and Farin have shown that, indeed,
many adsorption systems exhibit fractal behavior. 3 That
is, adsorbate particles of linear dimension r overlay a surface
completely at monolayer coverage

N - (y/r)D .

Here D is the fractal dimension, nonintegral in general, and

y is a constant which may be determined experimentally by
varying r. While a smooth surface satisfies D 2, rough or
porous surface geometries exhibit D as large as —3."
Questions of interest about these observations include (a)
whether these values of D coincide with the results of tech-
niques other than adsorption~7 (e.g. , x-ray scattering) and
(b) whether other adsorption phenomena can be used to
determine D and hence further characterize the topography.
The present work aims at the second goal. %e will show
how low-coverage thermodynamic data reveal D, in princi-
ple. Issues of energetic and geometric nonuniformity are
discussed. %e hope to stimulate further systematic experi-
ments which characterize the fractal character over a range
of adsorbate size.

The quantity of interest is the adsorption isotherm, given
by the relation~

In(pP/N) -—tl InZQ

, TVA

where p is the pressure, P '-ksT, and Zg is the surface
configuration integral for N atoms. At low coverage, in-
teractions among adsorbate particles may be neglected, 1eav-

ing

Then we relate the result to a multilayer theory which in-
cludes interactions. Note that the adsorption volume near
the surface 0, satisfies

O,~r N~3

O, , ~(Dr' D,

according to Eq. (1). Here l is a length, proportional to y,
which does not depend on the adsorbate. Our estimate of
Eq. (3b) is based on the approximation that V(r) = V, a
constant, within the domain 0, . Thus

Z& =D,e s

N/(pP) = ID" "s"-- (8)

That this probability coincides with the Fermi-Dirac distri-
bution is a consequence of the restriction of occupation
numbers. From Eq. (9), we obtain the total coverage

Equation (8) is the generalization to a fractal surface of
Henry's law of proportionality between p and N.I In the
smooth-surface limit the right-hand side becomes the gas-
surface viria1 coefficient, proportional to the surface area.
For a fractal surface, the "area" is ambiguous, or even
meaningless. Then, Eq. (8) can be used fruitfully; a mea-
surement of the P dependence of the left-hand side of Eq.
(&) for fixed r wiII yield V and the product 1Dr3 D If the.
latter is evaluated for variable r, D can be determined.

%e address next an alternative approach to evaluating the
adsorption isotherm. Assume that the accessible adsorption
volume is partitioned into "sites" having a variable binding
energy s . Let N be the number of such sites. ' Then the
set of site occupation numbers jn } may be determined easi-
ly if we neglect interactions among the particles, apart from
excluding the possibility of multiple occupation of the sites.
The result of this analysis is a fractional occupation'

n /N -[e +1]

Z[ - dre s"',
Jg Ob) N-XN /[e +1]

N/( P)p- Z]

The integration domain in Eq. (3b) is the adsorption region,
over which V(r), the substrate potential, is non-neghgible.

We first evaluate Eq. (4) in three ways, starting with the
most heuristic and general, and finishing with the least.

N el "X

X~XN e

(10a)

(10b)

At low coverage, p, is sufficiently small that P(e —p, ) » 1

for all sites. Then
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We may write this in terms of the fractions f of the total
number of sites Ãsites.

N =ee"/tj'„ t,eXf e

} t=(2~p/m)"' (12)

Equation (11) may be evaluated for any particular distribu-
tion of site energies.

It is useful to relate Eq. (11) to the result, Eq. (8), ob-
tained with the continuous space description mentioned
above. To do this, we note that a "site" in the semiclassi-
cal sense occupies volume X3, ~here

Adsorption on this surface may now be treated with a
variety of assumptions. Here we employ an overly simplis-
tic model in which the adsorbate particle is assumed to gain
energy ~ from each face in contact with it. Since gas-surface
interactions scale with the polarizability, "' we assume
that ~ is proportional to the linear size of the particle,
~-re.p. The evaluation of the partition function reduces
then to a geometric problem of finding the total number of
sites having a given coordination. Suppose that we have a
particle of size r = Lo/b", where n is the number of itera-
tions necessary to generate the surface to the point where
the smallest cavity is of size r. The total number of faces
with which the particle may interact is

is the thermal wavelength. Then

(13)
W, = (b'+4)"

Ng = Si + 2S2+ 3S3+SS5

(17)

(18)
W=PpQ, g f e (14)

where we have equated the film's chemical potential to that
of the vapor; the latter satisfies 38p, In(Ppd) for an ideal
gas. If we then make the plausible identification

e
—PV (15)

Eq. (14) is found to coincide with Eq. (8), and provides an
alternative interpretation of the averaging process.

%e present next a solution of the problem of adsorption
on an explicit, tunable model of a regular fractal surface,
generated as follows. Consider a square of side Lp. Subdi-
vide it into b' squares of side Lo/b, where b is odd and at
least 3. The central square is then depressed a distance
Lo/b, creating a cubic depression of that dimension (see
Fig. I). A second iteration applies this procedure to each of
the b +4 squares. Repetition of this constructs a fractal
surface. Its dimension D may be determined by comparing
the relative coverages obtainable with particles of size L and
L/b, respectively, chosen so that the latter will just manage
to fit into a cavity created at a certain level of the preceding
iteration. It can come in contact with a factor b'+4 more
faces than the former; thus

where $&(r) is the number of sites which each have i neigh-
boring faces. Clearly S5=(b'+4)" '. After some calcula-

tions (presented in the Appendix) we find the other values

S3= [(b'+4)" ' —1](b'+3)

8b[(b'+4)" ' —b" ']
S2= —353

b —b+4 (20)

Then the partition function is

X(r) = X S;(r)exp( —pieor) (21)

%e consider next a particle smaller by a factor 2; denoting
its number of sites by S&, we find S5 = 0 and

S3= [4(b +4)"- I]
b +3

(22)

S — [(b +4)" ' —b" '] —3S +4(b2+4)"-'
b' —b+4

(23)

S =4(b +4)"—20(b +4}" '+3S3
X (L,/b)

N (L)

from Eq. (I). This impiies that

32b [(b2+4)& —] b~ —]]
b —b+4

(24)

ln(b2+ 4}
lnb

(16)
These expressions allow us to evaluate X for particle sizes
which are members of either of 2 geometrical series: r; = rp,
bro, b ro, . . . , . . . , and r =r;/2. The results for X are
sho~n in Fig. 2. There we observe that the fractal predic-
tion is obeyed at infinite T; i.e., following Eqs. (10)—(13),

/ / /
/ /

/ /.

X =N/(p/3}').
dl X
d lnr

(25)

(26)

FIG. 1. The result of one step in the generation of the model
fractal surface is sho~n (b =5). An initial square (L xL) yields
b2 —1 smaller squares in the plane and five square faces of the cubic
depression, each L/b on a side.

"fhe disagreement with Eq. (8) arises from the absence in
this site model of the r3 factor in Eq. (5). At lower T, the
model deviates from this relation o~ing to preferential ad-
sorption in the strong bonding sites.

Finally, we consider the case of multilayer adsorption, to
which we apply the venerable Brunauer-Emmett- Teller
(BET) model. ' This yields the equilibrium number of parti-
cles in a pore of radius 8 = mr as a function of an adsorp-
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xl sorption isotherms are sensitive to the fractal dimension
even if the adsorption domain is inhomogeneous. This has
been shown to involve a very simple dependence, Eq. (8),
at high T. The determination of fractal dimension is
straightforward if there exist such data, but is model depen-
dent when the variability of binding energy becomes com-
parable to T. To our knowledge, there is not yet available
systematic data for various adsorbates which can utilize the
procedure discussed here; we invite experimentalists to ex-
plore this approach.

tion coefficient c and the ratio x of p to the saturated vapor
pressure po.

I

N„(R)-N, yes(R) h~ (x)1-x
i

~f (N„„,(R),m,x), (27)

h (x) ~ [1—(m + 1)x + mr™+1]/[1+(c —1)x —cx +']

Since pores in a fractal geometry are isotropic (e.g. , cube in
Fig. 1), the number of possible sites N„, (R) sR2/r',
where s is a geometric factor. It is known that the distribu-
tion of pore sizes is v(R) vsRD, „R D ', where vo is a
constant. '" Then the net coverage is

N-J f i,—,x v(R) dR

cx gr (x)
""'1-xgD(0)

max~
D(x) m' Dh (x)dm

(29)

g

(31)

Equations (29)-(31) constitute the fractal BET isotherm. '

For low coverage, Eq. (29) reduces to N-N. ;„.cx. This
agrees with the preceding result, Eq. (8), if we replace N„„,
with N and set c popr e a". The latter correspondence
arises from the definition of c as the ratio of a first layer
site's partition function to that of bulk saturated vapor. In
a cell model this is (r/d) e ~ where d', the volume per
particle of the vapor, satisfies d =poP (if ideal).

%'e summarize the results as fol}ows. Lour coverage ad-

2
Pn rl'/nb

FIG. 2. Computed partition function X for adsorption on the
model fractal surface (b 5, n -7), as a function of adsorbate ra-
dius r (in units of ro). Results are shown for the cases Pea 0
(solid curve), 0.005 (dashes), 0.05 (dots), and 0.5 (& ). The solid
curve is consistent with Eq. (26), where D is given by Eq. (16).
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National Science Foundation through Grant No. DMR-
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APPENDIX

We here derive Eqs. (19), (20), and (22)-(24). To
evaluate S3, note that the first iteration in the fractal con-
struction gives a fivefold coordination site and b —1 single-
fold coordination sites (these will be denoted 5-sites and 1-
sites here). The second iteration converts the 4 corners of
the 5-site into 3-sites and creates (b'+4) new 5-sites. The
latter produce 4(b2+4) 3-sites in the next iteration. Re-
peating the argument throughout the evolution of the fractal
yields the number of 3-sites

S3 4 x (b2+4)"
l~2

(Al)

n

S -4 X (2b'-' —3)(b'+4)"-'
I~2

(A2)

which simplifies to give Eq. (20). The number of 1-sites,
Si, is determined from Eqs. (17) and (18) and confirmed by
a direct calculation similar to the preceding one.

The numbers S& are calculated as follows. If half-sized
particles are considered, each site which contributed to Si
becomes instead 4 sites contributing to Si. Similarly, each
site which contributed to S2 becomes 2 sites in the set $2
and 4 in the set Si, etc. The equations are

S, -4S, +4S, +353

S2 2S2+ 3S3+4S5

S3 S3+4S5

Substitution and simplification yields Eqs. (22)—(24).

(A3)

(AS)

which is equivalent to Eq. (19).
The calculation of S2 is similar. After two iterations, the

number of 2-sites is 4(2b —3); of these, (b —2) are on
each of the four edges bounding the base of the depression
made in the first iteration and (b —1) are on each of its 4
side edges. After a third iteration there are (b'+4) sets of
4(2b —3) 2-sites like the original, but the original one be-
comes 4(2b' —3) sites. When this is repeated at every
stage of the process the result is
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