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The electronic exchange energy as a functional of the density may be approximated as E„[n]

f d rn F(s}, where s IVnI/2krn, kF (3vt2n}', and F(s)-(1+1.296s +14s4+02s )'t's.

The basis for this approximation is the gradient expansion of the exchange hole, with real-space cutoffs
chosen to guarantee that the hole is negative everywhere and represents a deficit of one electron. Unlike

the previously published version of it, this functional is simple enough to be applied routinely in self-

consistent calculations for atoms, mo)ecules, and solids. Calculated exchange energies for atoms fall within

1% of Hartree-Fock values. Significiant improvements over other simple functionals are also found in the
exchange contributions to the valence-shell removal energy of an atom and to the surface energy of jellium
within the infinite barrier model.

Kohn-Sham density-functional theory' provides an exact-
in-principle self-consistent-field description of electronic
ground-state energies and densities. In practical applications
to atoms, molecules, and solids, the theory is simple,
universal, and moderately accurate. Accuracy is currently
limited2 4 by approximations made for the exchange energy
as a functional of the density. A simple but accurate ap-
proximation for exchange, which might be applied in con-
cert with (for example) the Langreth-Mehl' approximation
for correlation, will be introduced here.

The exchange energy for a system of electrons with densi-
ty n(r) is'

E„[n] „d'r ~n(r) J~ dsR n (r, r+R)/8

where n„(r, r+R) is the density at position r+R of the ex-
change hole about an electron at position r. The exact hole
satisfies the conditions

tt oE"(r, r+ R) = —T n (r)y (r, R) (6)

where

y J+Lkt: R VkFi+MkF (R V kg. ) +Nkvd= (Vky)

+zLkF (R V) kF'/6 —z Jk V2k2/48

Here, R- R/Jf, kF - [3n' (rn) ]'i', z - 2kFR, and

J 72[4+z' —(4 —z') cosz —4z sinz ]/z6

L -9(2—2cosz —z sinz)/z3,

most practical applications; in particular, the functional
derivative, needed for self-consistent calculations, could not
be evaluated. In this Rapid Communication, the new func-
tional will be simplified, so that it may be used routinely in
self-consistent calculations for atoms, molecules, and solids.

In Ref. 4, it was shown that

n„(r, r) —n (r)/2

n„(r, r+R) ~0,
(2) M 9( —z cosz+ sinz)/(162)

(3) N -3[8- (8 —4z') cosz —(Sz —zs) sinz]/(16z )

dsR n„(r, r+R) = —1

For densities n (r) which vary slowly over space, the
ground-state exchange energy constructed from Kohn-Sham
orbitals has a gradient expansion~'

E„[n ]-A„d r n + C„„dr IV n I /n +
U

where A„—7(3/st)' 3 and C, —7/[432sr(3n')' '] a u

It is well known5 that the local density approximation
(LDA), which retains only the first term on the right in Eq.
(5), satisfies the exact conditions (2)-(4). In Ref. 4, it was
discovered that the gradient expansion approximation
(GEA), which retains both the first and second terms,
violates conditions (3) and (4). This observation explains
the failure of GEA to provide the accurate correction to
LDA that might have been expected in atomic calculations.
It was also found in Ref. 4 that a cut-off GEA exchange
hole, with the cutoffs chosen to satisfy Eqs. (3) and (4),
yields an accurate new density functional for the exchange
energy. However, this functional was too complicated for

In Ref. 4, the cutoffs were done directly on y of Eq. (7),
which involves first and second derivatives of n(r). Note,
however, that the integration over r in Eq. (I) may be done
by parts, ' yielding a new expression like Eq. (1), but with
n,os"(r, r+ R) replaced by

n os"(r, r+ R) = —
Tn (r)y(r, R),

y J+4LR s/3 —16M(R s)'/27 —16Ns'/3

where

s- V n/(2kFn )

(12)

(13)

(14)

The quantity n„" is a representation of the exchange hole
density in terms of n(r) and its first derivative. Equation
(5) is recovered if y is multiplied by a convergence factor'
e "and if the limit o. 0+ is taken after the evaluation of
Eq. (I).

In the generalized gradient approximation (GGA) pro-
posed here, the hole is represented by

n "(r, r+R) = — ~(nr)y8(y)8(R, (r) —8 ) . (15)
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The first step function in this equation enforces Eq. (3),
and the second involves a cut-off radius R, chosen to en-
force Eq. (4). The GGA clearly takes account of the fact,
neglected in the LDA, that the exchange hole in an inho-
mogeneous system is "off center" with respect to the elec-
tron it surrounds. Now Eq. (1) becomes

Eoo"[n] A„) d3r n4r3F o"(s) (16)

where

2)l/3 t &~
&

dk
4m

The parameter z, - 2kFR, is determined by the condition

—1 '~
2 'dR

dz z ye(y) = —1
12~ +0 4~

F"M (s )- 1+ 1.521(0.0864s ) (23)

Recently, Becke' and Macdonald and Vosko" have pro-
posed versions of F(s) fitted to exact-exchange results for
atoms. An interesting approximation to the exchange func-
tional, which does nor have the form of Eq. (16), has been
presented recently by Ghosh and Parr. '

The exchange potential, for use in self-consistent calcula-
tions, is the functional derivative

r

~EX ]/3 4 —) dE 4 3 d ] dF-A„n ~ ~F-rs —(u —~s')—s-'
gn (r) ds ds ds

where n„(r)-y'n (yr) is a scaled density. The local densi-
ty approximation is F "(s) = 1. The Langreth-Mehl'
f-0.15 (LM) approximation for exchange, based upon a
cutoff of the GEA in ~ave-vector space, is

The angular integration' dR.
y 8 (y ) -~ d p, (A p,'+ 8 p, + C )

XO(A p 2+8 p, +C)

~here

r-(2kF) 'n 'V'n

and

(24)

F "(s) (1+0.0864s /rn+bs +cs ) (20)

where m ~, b 14, and c 0.2. Although the step func-

tion cutoffs are too crude to recover

is performed analytically, and then the z integrations are
performed numerically.

Figure 1 displays F~A as a function of s. A useful ana-
lytic fit to the numerical results is

E„[nt, n t ] ~E„[2n t ] + ~E„[2n ) ] (25)

u (2kr) 'n '&Un V )'7n (

The functional derivative diverges as ~r~ -~ in the GEA
and LM approximations, but tends to zero in this limit in
the GGA.

From a density functional E„[n], one constructs a spin-
density functional

F s"(s) 1+0.0864s (21)

E„[n„]- y E„[n ] (22)

F(s)

l.8

in the limit s &(1, the parametrization of Eq. (20) has
been designed to recover this limit. For plots of s(r) in
atoms and at metal surfaces see Ref. 8.

The functional form of Eq. (16) is the simplest one which
scales~ as an exchange energy:

8E„[n t, n t ] SE„[n]
Sn~(r) Sn(r) n(r)~2m (r)

(26)

It is the spin-density functionals which will be tested in this
Rapid Communication.

Table I displays LDA, GEA, LM, GGA, and exact-
exchange energies of spherically symmetric atoms.
Hartree-Fock densities" have been used in each case. The
greatest relative errors are 14'k for LDA, 6% for GEA, 3%
for LM, and 1'k for GGA. The absolute error for the GGA
exchange energy is several times smaller than the correla-
tion energy (except in H, where the correlation energy is
zero).

Table II displays the exchange-energy contribution (hE, )
to the valence-shell removal energy, a quantity of greater
chemical and physical relevance than the total exchange en-

TABLE I. Exchange energies E„(in a.u.} of neutral atoms with

nonrelativistic Hartree-Fock densities.

l.O

FIG. 1. The LDA, GEA, and GGA versions of the function
F(s} of Eq. (16}. The dots indicate the numerical GGA of Eqs.
(17}-(19},while the solid c~rve is the analytic fit of Eq. (20}.

Atom

H
He
Li
Be
Ne
Ar
Zn
Kr
Xe

LSD

—0.268
—0.884
—1.538
—2.31

—11.03
-27.86
-65.63
—88.6

—170.6

GEA

—0.294
—0.970
-1.675
—2.50

-11.55
—28.86
—67.36
—90.7

-173.9

LM

—0.308
-1.015
-1.747
—2.60

-11.82
—29.39
—68.25
—91.8

—175.6

—0.311
—1.033
-1.789
—2.68

-12.22
—30.29
—69.93
—93.8

—178.6

Exact

—0.3125
-1.026
-1.781
—2.67

-12.11
-30.18
—69.7
-93.9

-179.1
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TABLE II. Exchange contributions AE„(in a.u.) to the val-

ence-shell removal energies of atoms with nonrelativistic Hartree-
Fock densities.

A tom Shell LSD GEA LM GGA Exact

Li
Be
Ne
Zn
Zn'+

(2s ) ' 0.117
(2s)' 036
(2p)' 4.40
(4s)' 0.35
(3d) io 10 85

0.116
0.35
4 40
0.33

10.79

0.116
0.35
4.40
0.31

10.76

0.133
0.40
4.57
0.39

10.90

0.129
0.39
4.51
0,39

10.89

ergy. For this property, the GEA and LM approximations
are somewhat less accurate than LDA, while GQA is ap-
parently more accurate.

Table III presents the exchange contribution to the sur-
face energy of jellium within the infinite barrier model.
For the extremely inhornogeneous density of this rather un-
physical model, no simple density functional is very accu-
rate, but GGA is more accurate than the others.

In future work, GGA will be applied to nonspherical

TABLE III. Exchange contribution cr„(in units of kFX10
a.u. ) to the surface energy of jellium (bulk density kF3/3a2) in the
infinite barrier model. (Strictly, the Langreth-Mehl approximation
for exchangeshould not be applied to such an extended system. }

LDA GEA

—0.316

LM

—0.946

GGA

0.322

Exact

0.576
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atoms, molecules, and more realistic metal surfaces. The
results of self-consistent calculations for atoms will also be
reported then. For now, it may be said that GGA leads to a
significant improvement over LDA in the density moment
(r t), but the improvement over LDA in the moment (r2)
is small and perhaps not significant: The self-consistent
valence electron density in an atom is still somewhat too
diffuse.
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