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Electronic structure of a GaAs quantum well in an electric field
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e apply the stabilization method of quantum chemistry and calculate the energies and widths of reso-
nances of an isolated quantum well in an electric field. %'e calculate the Stark shifts and tunneling times
across the barrier for a single GaAs quantum well. %'e also test the theories under discussion for the
band-edge discontinuities. Our results show a better agreement with recent experimental measurements
when we use 57'II0-43% of the band gap for the band-edge discontinuities of electrons and holes, respec-

tively.

I. INTRODUCTION

Electric fields applied to semiconductor quantum ~elis in-
duce pronounced effects on the electronic properties of
these novel devices. ' In particular, Mendez and co-
workers ~ in a series of articles demonstrated that the appli-
cation of an external electric field, in the range 10-50
kV/cm perpendicular to the layers defining the quantum
wells, perceptibly decreases or even completely quenches
the luminescence of GaAs-Gal „Al„As quantum wells.
Moreover, the substantial decrease of the lifetime of the
photoluminescence decay led them to conclude that the
Fowler-Nordhein tunneling of the holes or electrons out of
the quantum well (QW) is the mechanism capable of ex-
plaining the magnitude of the quenching. 4 A more recent
experiment5 demonstrated that the behavior of the photo-
luminescence lifetime depends on the width of the well:
For sufficiently wide wells ( ~ 100 A) the lifetime increases
with the field as a consequence of the decrease of the
electron;hole wave-function overlap; in narrow ~elis
( —50 A) the lifetime decreases and even quenches because
of the tunneling of electrons or holes through the barriers.
The energy-level shifts produced in a single QW has also
been measured by electroreflectance technique6 in a broader
range of electric fields (up to 260 kV/cm).

Theoretical attempts to model such systems must include
the fact that the bound states for electrons and holes at zero
field become resonant states, with certain width, when the
field is switched on. The most popular method to calculate
the Stark effect is the variational method of Bastard, Men-
dez, Chang, and Esaki3 which is a simple bound-state calcu-
lation suitable at weak electric fields. Other models have
been proposed that are applicable at higher fields. In par-
ticular, Austin and Jaros solved exactly the Hamiltonian for
the envelope functions of electrons or holes within the
effective-mass approximation. Nevertheless, some discrep-
ancies exist between the experimental results and the corre-
sponding theoretical predictions. In particular, the disagree-
ment in the energy shifts and the field at which the
luminescence peak quenches remains to be explained. In
this paper we evaluate those magnitudes by means of the
energies and widths of the resonant states of the QW calcu-
lated using the stabilization method of quantum chemistry.

The outline of the paper is as follows. In Sec. II we brief-
ly describe the procedure of the stabilization method as ap-

plied to this problem. In Sec. III we present the result of
our numerical calculation and general conclusions.

II. THE STASII.IZATION METHOD

The calculation of the eigenstates of a finite QW subjec&
to a constant electric field is, in principle, an exactly solv-
able problem. However, in this section we present a con-
ceptually different approach which, from our point of view,
gives more physical insight into the process involved.

Similar to previous studies, we reduce the problem to the
one-dimensional effective-mass equation. We place the QW
of width I and depth Vo between two infinite barriers
separated by a distance L, so in the envelope-function ap-
proximation the wave function of a particle confined in the
QW is

P - f„o(r)ii (z),
where f~o is a Bloch state of zero wave vector and band-
index n and i'�(z) is the envelope function which obeys the
following Schrodinger equation (in a.u.):

1 dziit —( Vo+ Fz)P Eijt, —L/2 ~ z ~ I/22m' dz2

—Fzy-Eq, lzl-f/2,1 d2$
2m' dz2

1 d2iit —( Vo+ Fz)f = Eight, l/2 ~ z ~ L/22m' dz2

w'here F is the electric field applied along the direction of
the well z.

The system described by (1) has strictly bound states and
can be solved exactly by means of the usual coordinate
transformation giving wave functions which are linear com-
binations of the Airy functions, AI and 8&. The stabilization
method~'0 exploits the fact that one or several of the
eigenenergies of (1) are related to the position of the reso-
nances of the quantum well, and that these resonant
eigenenergies are stable with respect to variations of a suit-
able parameter of (1). In this particular case the parameter
which keeps the energy of the resonance stable is the
separation L between the infinite barriers. Figure 1 is a plot
of the energies of (1) as function of L for fixed values of F
and I. As is sho~n in that figure the plateaus line up at one
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particular energy level, the resonance of the quantum well.
The features of Fig. 1 can be explained in terms of wave

functions. The resonant level has a corresponding wave
function which is mainly concentrated inside the well.
Then, as we increase the length L between barriers we can
in fact describe the tails of that function better, without
causing any appreciable change in the energy level. Figure 2
shows a plot of the resonant function for two lengths L
which are in different plateaus. For the larger length, the
function has the same exponential decay on the left and a
longer tail with oscillations on the right; these oscillations
indicate the presence of many k-plane ~aves in the exact
wave function.

The continuum states of the QW behave quite differently;
these appear in Fig. 1 as straight lines crossing the resonant
level. The wave function associated with one of these states
has a definite number of oscillations, and their correspond-
ing energies decrease along the line because the wave func-
tion is contained in a box of longer length L The plotted
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FIG. 2. Comparison of the resonant wave function @„,for holes
in the 37-A wide quantum well at two different len ths L. Sol-
id line P«, for L -150k; dashed line P«, for L -340 . The posi-
tion of the Q%' is denoted by the two vertical lines separated by I,

FIG. 1. Stabilization of one eigenvalue, E„„ofthe Hamiltonian

Eq. (1) with F- 100 kV/cm and 1 37 A. We plot the eigenvalues
vs the scaling parameter L defined in (1) as the separation between

infinite barriers. I'-2n p, l V I', (3)

where p, is the density of continuum states in the well at
L L,.

III. RESULTS AND DISCUSSION

ith the simple model so established we do not consider
the many-band structure of electrons and holes and its
dependence in k space. This means that we ignore
throughout the calculations of the possible admixture of the
higher- (lower- ) lying states of electrons (holes). This
band mixing can appear as a consequence of the spreading
in energy of the wave function, and can produce some
modification in the lifetimes calculated at high fields. To
our knowledge, this fundamental problem has not been
solved in the literature and it is under current research.

%e have applied the method described in Sec. II to calcu-
late the Stark shifts and lifetime of resonances in isolated
QW's of widths 37, 50, and 70 A, respectively. The dif-
ferent widths studied allowed us to obtain a trend for the
lifetime and shifts for electrons and holes and to make a
direct comparison with the heavy-hole-electron energy tran-
sition recently performed by Alibert et aI.6

The values of Vo and m' for electrons and heavy holes
used in the calculations are, respectively,

m'-0. 067me, Ve- 572 meV (electrons)

m'-0. 45me, Ve-100 meV (holes)
(4)

where mo is the free-electron mass. These parameters
represent a single QW clad in Gae4sAie54As barriers, and
they have been obtained using the 85%-15k rule' ' for the
conduction- and valence-band discontinuities. In Table I we
compare the results obtained with our method with the ex-
act ones (see Ref. 8).

With the parameters chosen in (4), the electrons are prac-
tically bound states and accordingly the quenching of the
photoluminescence signal should only be determined by the
tunnehng of the holes. In Fig. 3 (solid lines) we have plot-
ted the tunneling time for holes in ~elis of width 3'7 and 70
A. These results show that for a given field the tunneling
time is smaller for a hole in a ~ider well; this is a natural
result because the corresponding energy level is deeper.

lines of energies corresponding to different kinds of states
never cross because of the interaction between them.

The energy values and lifetime of the resonant states can
be obtained in similar form as has been shown by Simons"
and I.owdin. i2 The starting points are the curves E-E(L)
representing functions of the real scale parameter L Let us
select two specific curves E~ and E2 which have an avoided
crossing. They can be thought of as solutions from a 2X2
secular problem, whose diagonal elements are (E,(L ),
E,(L)), the two "uncoupled" states, and V(L) their in-
teraction. This interaction has a peak at the crossing point
L L„so there the energies are

E~e g V,

where a is half the sum of Ei and E2 at L, and V, - V(L,).
In a first approximation we can use (2) to determine the

energy of the resonance E, -~, and the lifetime can be
evaluated with the usual formula r-lf/I', where I is given
by the Fermi golden rule
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F (kV/cm) Exact (eV) Approx. (eV)

TABLE I. Comparison of the exact and approximate resonance
parameters at different electric fields E. The values in col. 2 a&ere

calculated usitut the phase shift analysis (see Ref. 8). The values in
col. 3 were determined by the stabilization method (see Sec. H).

theory modifies the parameters (4) to

m'-0. 0665ms, Vs-383 meV (electrons)

m =0.34mp, Vo= 289 meV (holes)
(5)

150

E,
I
E„
I
E,
r

0.025 167
1.9x 10
0.024 210 5

3.6 x 10-5
0.021 381 6
6.4x10 ~

0.025 167
8.6x10-'
0.024206
4.1x10-'
0.021 170
6.5x10 4

Moreover, it is also shown in the figure that the difference
in lifetime for wells of different width decreases and even
vanishes as the applied field is increased. This fact is easily
understood if we consider that as the slope in the potential
caused by the field becomes larger, the maximum of the
wave function for the hole is closer to one side of the QW,
and from a certain value of the field onwards, the problem
reduces to a hole in a sawtooth potential, the lifetime being
independent of the width of the QW.

If we compare the results presented in Fig. 3 with the ex-
perimental measurements when a single QW is clearly
separated (see Fig. 3 of Ref. 5) they fail to predict the mag-
nitude of the electric field at which the photoluminescence
is quenched ( —85 kV/cm in our calculation).

Very recently, some authors have questioned the validity
of the 85%-15o/o rule for the band-edge discontinuities. For
example, Miller, Kleinman, and Gossard'5 have proposed,
as more realistic, one corresponding to 579o-43%. This

Slight variations of this rule have been proposed by several
groups; for example, see the work of Okamura, Misawa,
Yoshida, and Gonda. '6 The calculated tunneling times with
(5) show that in this case the electrons and not the holes
would be responsible for the tunneling. In Fig. 3 the
dashed line describes the behavior of the tunneling timey
for electrons as a function of the electric field in the 37 A
QW. It is apparent that the new theory predicts a substan-
tial increase in the field, which would produce the quench-
ing of the photoluminescence peak. Moreover, that field
should be higher due to the band-mixing effect and the
spreading of the wave function in k space. These effects are
not considered in our calculation, and their inclusion will

produce an increased tunneling time. s

With respect to the Stark shifts of the energy levels, our
results as compared with the variational method3 deviated
slightly as we increased the field. Similar behavior has been
obtained by other authors using different methods.

The heavy-hole-electron energy transition as a function
of the applied electric field can be studied from the energy
shifts of electrons and holes. A comparison between the
energy shifts for the heavy-hole-electron transition calculat-
ed for the two theories that model band-edge discontinuities
is sho~ed in Fig. 4. It is possible to appreciate that the new
theory predicts lower shifts. This result is closer to the re-
cent measurements done with electroreflectance. The final
discrepancy between theory and experiment, about 109o, can
be due to the normal incertitude in the adjusted parameters,
and experimental errors have to be considered as well.
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FIG. 3. Calculated tunneling lifetimes as a function of the applied
field for 37 and 70 A &&elis; the solid lines are the results for the
85%-15% ruly; the dashed line is the corresponding one for the QW
of width 37 A using the 57'3')-43% rule.
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FIG. 4. Theoretically predicted shifts of the heavy-hole-electron
transition vs the longitudinal electric field. The solid lines are
theoretical values obtained ~ith the 579o-43% rule for the band-edge
discontinuities. Dotted, dashed-dotted, and dashed liney are,
respectively, the corresponding values for 70-, 50-, and 37-A-thick
single-quantum ~elis, respectively, obtained ~ith the 850k-19o rule.
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In conclusion, we have presented a method based on the
stabilization method used in quantum chemistry which is
suitable to calculate energy levels and widths of resonances
in isolated quantum wells under the influence of electric
fields. This method has been applied to study lifetimes of
resonances and energy shifts of the heavy-hole-electron
transition in order to compare them with recent measure-
ments of those magnitudes done with luminescence and
electroreflectance. The two theories currently under discus-
sion about band-edge discontinuities have been used in the
calculations. The theory based on the 57'Yo-43% rule for the
conduction and valence band discontinuities predicts that

the electrons, and not the holes, would be responsible for
the quenching; also it predicts a greater magnitude in the
field at which the photoluminescence peak is quenched.
With respect to the observed shifts for the heavy-
hole-electron energy transitions, this theory produces
results which are in better agreement with electroreflectance
experiments.

%e are indebted to C. Tejedor for helpful discussions and
a critical reading of the manuscript. This work has been
supported in part by a contract with the Comision Asesora
de Investigacion Cientifica y Tecnica of Spain.
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