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Calculation of anharinonic phonon couplings in C, Si, and Ge
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Frozen-phonon total-energy calculations are used to extract anharmonic phonon couplings for the
tetrahedral elements C, Si, and Ge. The local-density approximation is employed, with a localized-
orbital basis used for C and a plane-wave expansion used for Si and Ge. The bare interactions be-

tween optical phonons are completely determined through fourth order at the Brillouin-zone center.
These are used to compute renormalized couphngs, in which a vertex is screened by virtual phonons.
The renormalized couplings are found to have the wrong sign to allow formation of a proposed two-

phonon bound state in diamond.

I. INTRODUCTION

The application of the frozen-phonon total-energy ap-
proach has emerged as a powerful tool for the calculation
of phonon frequencies. ' In this approach, the total en-

ergy is calculated self-consistently within the local-density
approximation for a series of frozen-phonon geometries,
in which the displacements of the atoms correspond to a
single normal mode of interest. The dependence of total
energy on normal-mode amplitude is calculated, and the
spring constant and phonon frequency are obtained from
the second derivative of the energy curve.

It has not been widely appreciated that the same ap-
proach can be used to extract third' s and higher deriva-
tives of the energy vs amplitude curve, and hence to ob-
tain anharmonic coupling constants in the phonon Hamil-
tonian. Here, we report the first systematic calculation of
this kind, in which we determine a set of third- and
fourth-order anhannonic coupling constants for optical
phonons in C, Si, and Ge. The calculations are camed
out using a localized-orbital approachs' for C and a
plane-wave expansions for Si and Ge. The results for C
have previously appeared in abbreviated form.

Information on such anhannonic terms in the phonon
Hamiltonian is of interest for at least two reasons. First,
they determine the amplitudes for phonon-phonon in-
teractions. For example, phonon-phonon scattering cross
sections and phonon decay lifetimes are determined by the
anhannonic couplings. Second, the anharmonic terms are
useful constraints upon attempts to develop classical
models of the elastic energies in solids. Attempts have
previously been made' " to develop force-field models
which go beyond the harmonic approximation. It is
hoped that such models would give more accurate esti-
mates of the strain energies when bonds are stretched or
bent severely enough to exceed the range of applicabihty
of the harmonic approximation However. , the previous
models have suffered from the lack of reliable input on
the values of these anharmonic terms.

In principle, anharmonic couplings connecting phonons
throughout the Brillouin zone could be calculated using
supercell techniques. In the present work, however, we
have concentrated on the anharmonic couplings for opti-
cal phonons at the Brillouin zone center. To date, no reli-
able experimental or theoretical information has been
available on these optical anharmonic terms. Measure-
ments of anharmonic elastic moduli, thermal expansion
and thermal conductivity, phonon linewidths, and pres-
sure or stress dependencies of phonon frequencies
(Griineisen parameters) can only give information about
purely acoustical or mixed acoustical-optical interactions.
Theoretically, empirical force-field models of the Born or
Keating type are inadequate, since there is little reason to
expect their range of validity to extend beyond the har-
monic approximation.

These zone-center optical anharmonic terms are of par-
ticular interest in relation to a controversial ~proposal
made some years ago by Cohen and Ruvalds. They
pointed out that a sufficiently strong positive fourth-order
coupling could cause a pair of optical phonons in the vi-

cinity of the zone center to bind to one another. Such a
two-phonon bound state, it was suggested, might explain
an anomalous peak in the two-phonon Raman spectrum
of diamond. ' Alternative explanations have been pro-
posed, ' and the bound-phonon model has remained con-
troversial. The calculations presented here demonstrate
that the phonon coupling is actually negative, in which
case the two-phonon bound state cannot form in dia-
mond. 9

The plan of the paper is as follows. In Sec. II, we re-
view the derivation and quantization of the phonon Ham-
iltonian, identify all the anharmonic couplings allowed by
symmetry through fourth order, and establish the connec-
tion between these couplings and the derivatives of the
energy-vs-amplitude curves for frozen phonons along the
principle symmetry directions. Section HI contains a dis-
cussion of the method of the total energy calculations, and
a presentation of the results for the anharmonic couplings.
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In Sec. IV, these bare couplings serve as the basis for a
many-phonon perturbation-theoretic treatment in which
the couplings are renormalized by the inclusion of pro-
cesses involving the exchange of virtual phonons. A
screened two-phonon scattering amplitude and an approx-
imate screened phonon frequency are obtained. Finally,
we present a summary of the work in Sec. V.

II. PHONON HAMILTONIAN

The phonon Hamiltonian of a crystal may be expanded
as"

1 ~ mnp k k' k

2N
HlnP
ijk

Xexp[i(k m+k 'n+k "p)],
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Making use of Eqs. (3) and (4) and orthogonality relations,
the harmonic constant can be rewritten
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and the harmonic part of the Hamiltonian becomes
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The ijkl are composite indices labeling both the atom in
the cell and the Cartesian direction of displacement, and
mnpq are real-space lattice vectors.

We now specialize to the diamond crystal structure,
choosing periodic boundary conditions on a volume con-
taining N cells and 2N atoms. The solutions of the secu-
lar equation

g @mnQn;k ~~2 Qm~ir.

nJ

(3)

The normal mode coordinates a~ are defined by

g Q';i akA,
kA,

The elastic energy may be rewritten in terms of the nor-
rnal mode coordinates as

1
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where

(6c)

are labeled by discrete wave vector k and a band and po-
larization index A, . The eigenvectors Q are related to the
polarization vectors e by

1Qmj" = e;".i exp(ik. m) .

So far, the analysis has been entirely classical. The nor-
mal mode coordinates may now be quantized as

' 1/2

a~= I (b~+b' io ),

Q~ = —l CO~
2M'~

' 1/2

(bu, —b-u. ) . (lob)

The phonon creation and annihilation operators b and b
so defined have the usual boson commutation relations.
Equation (9) becomes

Hz= g~ii(bibb+, + i ) .1

kA.

The bare phonon self-energy is fico~ The an. harmonic
terms V3 and V4 can be expanded in the creation and an-
nihilation operators by inserting (10a) in (6), determining
the bare three-phonon and four-phonon interaction ampli-
tudes.

As we shall see in Sec. IV, the physical phonon self-
energies and phonon-phonon scattering amplitudes corre-
spond not to these bare quantities, but rather to screened
couplings which are renormalized by the inclusion of vir-
tual phonon processes. If the bare couplings are known,
the screened couplings can be calculated from many-body
phonon perturbation theory. This will be illustrated in
Sec. IV.

Ideally, one could proceed as follows. First, the bare
harmonic and anharmonic elastic constants N~~, 4~~k~-,
etc. could be calculated from frozen-phonon calculations.
Compared with the calculation of the harmonic terms, the
calculation of the anharmonic terms will have to be more
systematic, in order to determine the larger number of
anharmonic couplings, and more precise, in order to
determine the higher derivatives of the energy surface reli-
ably. As is the case with all frozen-phonon calculations in
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x;m=xmi =(—1)'ui (12)

where the composite index i has bixn broken into site (r
= 1, 2} and Cartesian Q, = x, y, z) indices. The normal
mode coordinates corresponding to (12) are

a supereell geometry, the couplings can really only be
determined at k points which are simple rational fractions
of reciprocal lattice vectors. However, the couphngs are
generally smooth functions of k, at least for nonmetals,
and it is possible that some kind of interpolation scheme
could be used to approximate the couplings throughout
the Brillouin zone. Second, the information obtained in
this way could be used as input to a many-body theory,
which in turn could be used to calculate a wide variety of
physical quantities of interest. These include
temperature-dependent phonon self-energies and lifetimes,
thermal conductivity, lattice thermal expansion, and
phonon-phonon scattering cross se:tions.

Our goal here is more modest than the ambitious sys-
tematic treatment suggested above. Instead, we will illus-
trate the ideas by calculating an interesting subset of the
couplings, namely, those of the optical phonons at the
Brillouin zone center. We will also illustrate how these
can be used as input to a perturbative many-phonon cal-
culation by calculating the screened two-phonon scatter-
ing amplitude, and an estimate of the optical phonon
self-energy shift, at zero temperature.

Specializing to the zone center, we consider displace-
ments

2 2 28) =Q~+Qy+Qg

2=QxQyQs ~

4 4 403=Q~+Qy +Qg

That is, any nth order invariant must be a simple polyno-
mial in the elementary invariants 8„8z, and 8&. The only
invariants at order 2 and 3 are Hi and Hi, respectively,
while two invariants 83 and Hi occur at order 4. Thus we
can expand 4 E(u) to fourth arder as

dE =KHi+6y82+a83+3p(82i —Hp), (18)

where
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These four constants are the only independent couplings
that occur through fourth order, and our task is reduced
to determining these.

The second-order coupling K is just the spring constant,
related to the zone-center frequency by

&2N ui, k =0
0, otherwise. (13) coo ——&K/M . (20)

2 0000+ @'u.~-~-Q~Q~ Qv Q~- . (14)

Symmetry greatly reduces the number of independent
couplings 4 that occur at each order in Eq. (14). &&(u)
is symmetric under the operations of the full tetrahedral
group T&, i.e., ~&(u)=~&(9F u) for 9FET~. Therefore
the number of independent couplings c„at order n is
given by the number of times the identical representation
appears in the representation of T~ formed by the fully
symmetric nth rank tensors. The value of c„ is most easi-

ly obtained' from the Molien generating function for T~,

(15)

and the corresponding invariants can be inferred from the
expression of &&(u) in terms of the elementary invariants

b, E(u) =f(Hi„Hz, 83)

where

(16)

(For the zone center phanons, it is convenient to use
Cartesian displacement directions x, y„z for the polariza-
tion index A, .) Then the potential energy of distortion per
cell is

~E= —,g~'u, ui, + —, g C'ui. -u~ui;uv00 2 2 000

&l ux-

The third-order coupling has been discussed by Keating'
(K), Wendel and Martin' (WM}, Harmon, Weber and
Hamanns (HWH), and Yin and Cohen (YC). These au-
thors introduce parameters y, k„~, k,„, , and k,~,
respectively, which are related to our y by

K 2 wM 4 HwH 4 vcyK k M kH H kYc (21)

The values of y reported by these authors for Si (Refs. 1,
2, 5, and 10) and Ge (Refs. 2 and 10) will be compared
with our results in the next section. The fourth-order
constants have nat previously been reported in the litera-
ture, to our knowledge.

In terms of our parameters, it is easy to verify from Eq.
(18) that for displacements in the [100], [110],and [111]
directions, respectively, the energy is, to faurth order,

+E[]oo]=KQ +CXQ2 4

3 4
AE[iio] =Ku +( 2 tz+ Tp)u (22)

DE[ill] =Ku + u +( 3 tz+2p}u2 23 3

3

The frozen-phonon calculations are carried out by making
a series of displacements along these symmetry directions;
the four parameters are then obtained by fitting the re-
sults to these expressions, as described in the next section.
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E,„, (Ry)

7
10
14
20

E h (eV)

2.70
3.56
4.40
4.74
4.81

a (eVA )

24.84
23.92
26.53
27.17
26.38

a (eUA }

—31.90
—32.39
—44.81
—52.14
—46.76

TABLE I. Convergence tests of plane-wave-basis cutoff for
Si.

[111]

222

22.0
/UJ

21.80 't 0
uz (10 z a.u.~)

0-
0 0.5 1.0

u (a.u. )

III. CALCULATIONS

A. Method

For carbon, a localized-orbital approach, described pre-
viously, ' was used. Three decay constants were utilized
for each s- or p-type Gaussian orbital in the basis. A
Hamann-Schluter-Chiang (HSC) pseudopotential" was
used in conjunction with Hedin-Lundqvist exchange-
correlation. 's The G-space total energy sums were carried
out to a cutoff of 8 a.u. '. For each displacement direc-
tion of the atoms ([100],[110],or [111]),a k-point set was
chosen which would map back to the 10-point special k-

point set' of the undistorted diamond crystal.
For Si and Ge, the calculations w'ere done in a plane-

wave basis. s A modified versions of the HSC scheme
was used to generate the pseudopotentials. Wig ner
exchange-correlation ' was employed here. The k-point
sets were chosen to map back to the 2-point set's of the
diamond crystal, after tests which indicated that the re-
sults were virtually identical to those of the 10-point set
used for C. Table I shows the results of tests of the con-
vergence with respect to plane-wave cutoff for Si. The re-
sults for the phonon frequency, given by x, are consistent
with those reported previously by Yin and Cohen. 2 The
higher order anharmonic couplings, such as a, were found
to require a higher level of convergence than the harmonic
constant. A cutoff of 14 Ry was adopted for both Si and
Ge. The calculations were iterated until the total energy
was converged to & 10 eV. Such a fine level of conver-
gence is needed to determine the higher order derivatives
with adequate precision. Lowdin perturbation theory
was not used, because in the absence of a variational prin-
ciple the total energy converges too slowly.

The results tabulated below were based upon a set of
displacements of u = 0.00, 0.04, 0.08, and 0.12 a.u. of
each atom from its equihbrium position for C, and of
0.00, 0.04, 0.08, and 0.12 A for Si and Ge. (Scaled to the
lattice constant, these are all similar. ) The displacements
were either in the [100], [110],or [111]directions. For a

FIG. 1. Energy of distortion hE vs displacement u for opti-
cal frozen phonon at Brillouin zone center in diamond. (a) Even
part of energy change, hE, plotted on rescaled axes (see text) for
small displacements in several directions. {1)Energy change b E
for large displacements u along the [100] direction. Dots
represent the calculated points; the energy curve is symmetric
about the dashed line.

given direction, the terms of the Taylor expansion of
b,&(u } up to fourth order are determined from a fit of the
data points. That this can be done reliably is illustrated
for the even derivatives in Fig. 1(a). To eliminate the odd
term in bE(ii)], we define bE—=[bE(u)+DE( —u)]/2.
Then we plot bE/u vs u . The intercept at u =0 gives
the second derivative, and the slope gives the fourth
derivative. As can be seen from Eq. (22), only one direc-
tion is sufficient in principle to determine a, and any two
directions are sufficient to determine a and p. The results
for all three directions are shown in Fig. 1(a), where it can
be seen that all the intercepts coincide. Moreover, the
values of a and p determined from any two of the three
slopes are in close agreement. This has been checked for
both the localized-orbital and plane-wave calculations.
The fact that the curves are nearly linear in Fig. 1(a} indi-

cates that sixth-order terms are not yet important, al-

though they were included in the fit. The results given
below were obtained primarily from displacements along
[100] and [111]alone; the latter are used to determine the
odd term y, as well as helping to determine a and p.

B. Results and discussion

The central results are given in Table II. In addition to
the couplings ~, y, a, and p, we give the values for the re-
normalized couplings P' and P" defined in Sec. IV. The
values of the spring constant a are in close agreement with
those given previously. ' The bare phonon frequencies
calculated from Eq. (20) are already within —1% of the
experimental frequencies, as can be seen in Table III.

The sign of the third-order coupling y indicates that it

Element

TABLE II. Calculated coupling constants for optical phonons at Brillouin zone center.

v (eVA ) y (eVA ) a (eVA. ) P (eVA ) P' (eVA ) P" (eVA )

79.85
27.17
24.34

—165.2
—48.4
—39.9

—370
—52
—42

27
17
13

—144
—26
—19

—486
—112
—85
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TABLE IlI. Phonon frequencies of optical modes at I . du is the self-energy shift; ~o and co,h, are
the bare and renormahzed theoretical values respectively. co,„~, is the experimental frequency.

Element

C
Si
Ge

mo (cm ')

1344
513
302

ha) (cm ')

—17.3
—3.5
—1.2

~theor ( m I)

1327
509
301

~~„, (cm ')

1332
518
304

is harder to compress the [111]bond than to stretch it.
For Si, previous values of —60.6, —46.4, and —43.7
eV A were obtained from frozen-phonon calculations by
WM, ' HWH, ' and YC,2 respectively. YC (Ref. 2) ob-
tained a value of —36.9 eVA for Ge. The present re-
sults are expected to be the most accurate, given the high
degree of convergence used. To our knowledge, the cou-
plings y have never been measured experimentally.
Within the Keating model, '

y is directly related to the
third-order elastic constants cii2 and ci2q by

3C112+&123y= (23)

The measured values of cii2 and cizq give y = —47.1

and —39.4 eVA for Si and Ge, respectively. In Ref.
10, y is fitted to other data as well; then y = —46.7 and
—36.2 eVA for Si and Ge, respectively. The agree-
ment with the ab initio frozen-phonon calculations is
surprisingly good.

To our knowledge, no experimental or theoretical re-
ports of the fourth-order constants a and P have previous-
ly appeared for any tetrahedral material. Perhaps the
most surprising feature of the results presented here is
that the coupling a is strongly negative. This means that
as the atoms are displaced along the [100] direction, the
restoring force is weaker than expected from the harmon-
ic approximation. If the atoms were "bumping into" one
another, to the extent that the steeply repulsive part of the
two-body interaction were coming into play, the restoring
force would be expected to be stronger. In fact, for a dis-
placement along [100], the atoms are "missing" one
another. A displacement of u =a/2 maps the crystal
back into itself, and the energy curve is symmetric about
the point u =a/4 of closest approach between atoms.
The energy curve is actually periodic, and is plotted over
one-half of its period in Fig. 1(b). The calculated curve

I

y =yd~-', a =ad'a-', (24}

etc. The results are given in dimensionless form in Table
IV. The similarity between the couplings of C and those
of Si and Ge is remarkable, given the differences in the
shape of the phonon dispersion relations. Not so surpris-
ingly, the couplings of Si and Ge are found to be almost
identical when presented in this dimensionless form.

IV. RENORMALIZATION BY PHONON SCREENING

The anharmonic couplings calculated in the previous
section determine the bare phonon —phonon interaction
amplitudes. For example, inserting Eq. (10a) in (6c) we
obtain for the two-phonon scattering amplitude

has, plausibly, a cosine-like form; we then expect alternat-
ing signs (~~0, a&0, . . . ) for the second, fourth, etc.
derivatives. This is what we find.

Several empirical force-field models which attempt to
go beyond the harmonic approximation have been pro-
posed. ' " However, models of this type contain a bond-
stretching term and generally give the wrong sign for a,
because they cannot reproduce the periodic nature of
&&(u} without introducing unphysical cusps where the
bonds are redefined at u =a/4. Recently, a model free of
this kind of approximation has been proposed for Si;
however, it has not been optimized for phonon properties.
The optical phonon parameters presented here should
prove useful in constraining future attempts at such
models.

In order to make comparisons between the results for
C, Si, and Ge, it is useful to scale the calculated coupling
constants to dimensionless form. We do this using the
bond length d and spring constant a as the references for
length and energy. Thus we define

(3,41 V4 1
1,2) =—

& g@tjkt(cditojcokcdt )
4f SNM2 gJN

J ' J

X &01b3b4(bi+ b I )(bj +b j)(bk+—b k)(bl—+b l )b lb—2 10&—
—in

8%M, (~iioi~~o4)
1 3~4 (25)

TABLE IV. Calculated coupling constants in dimensionless form.

C
Si
Ge

—3.20
—4.19
—4.01

—11.1
—10.6
—10.3

0.8
3.5
3.3

—4.3
—5.3
—4.8

—14.5
—22.9
—20.8
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The eontracttxl notation 11)= I ki, A, , ) has been introduced. As long as we are only interested in scattering of phonons

ln the vicinity of the Brillouin zone center, we may set k=0 and co =coa for all phonons appearing in (25). Then

& k3x, k4x I
V, I k,x,k x & = e...5(k, +k,—k, —ks) = 5(k, +k, —k, —k4)aaaa 3' o,

8NM a)o 2NM o)
(26)

3A' P
&k3x k y1~41kix k2y) =&k3y key I I'41kix k2x)= 5(ki+k2 k3 k4) ~

2NM a)o
(27)

Alternatively, the scattering may take place via a virtual intermediate state. In particular, a virtual process involving
two three-phonon interactions turns out to contribute to the same order as the single four-phonon interaction above. We
use perturbation theory to calculate the amplitude for the virtual process

&» ll I'411»&= g &»&
I I'31') g E &+j I

I'311 2& .
12 j

(28)

0j can be a 1-, 3-, or 5-phonon state; it must differ from both the initial and final state by the creation or annihilation of
three phonons. For example, %j ——12,4,5) contributes, provided k conservation is satisfied.

We again consider the case where the external k vectors are nearly zero. Then by k conservation, so are any internal k
vectors such as ks. Then

E&2 Ej =A—cuba(2 nj ),— (29)

where nj is the number of phonons in the intermediate state.
The allowed polarization of the intermediate phonon is heavily constrained by the symmetry expressed in Eq. (19).

Only three-phonon processes which involve one x-, one y-, and one z-polarized phonon contribute. The contributions for
the scattering of two phonons of unlike polarization, i.e., xy ~xy, are shown in Fig. 2. Thus

& k3x k4y I
I'41kix k2y & = ~ g ( —&kix key I

I'31kzy k4y k & &k2y, k4y»s I
I'i Ik~»key &+ ' ' ' }

1

a ks

16%M aiba

(4' ) ( —1 —1+ 1 ——,
' )5(ki+kz —k3 k4)

—3fPy2

4NM uo
5(ki+ kz —k3 —ks), (30a)

where the four terms appearing on the right correspond to Figs. 2(c)—2(f), respectively. Similarly,

& kiy k4y I
I'41k~»k2x & =

16%M a)a
(4 s) ( —1 —1 —1 —1)5(k, +k2 —ki —k4)

r2

5(ki+k2 —k3 —k4),
4NM mo

(30b)

following Figs. 3(c)—3(f), for scattering of the type
xx~yy. Thus while the bare interaction amplitudes for
xx~yy and xy~xy are the same, Eq. (27}, the screening
for these two processes is different. The bare interaction
for scattering of type xx ~xx, Eq. (26), is not screened at
this order, because the only nonzero three-phonon vertex,
xyz, cannot occur.

These results may be summarized by defining renor-
malized couplings P' and P" which replace the bare cou-
pling P for screened interactions of type xy —+xy and
xx~yy respectively. Comparing Eqs. (27} and (30}, and
using (20), we find

X X

X

(b)

y x

(c)

y x y X y X y

(e)

FIG. 2. Diagrammatic representation of screened vertex for
scattering of zone-center phonons of unlike polarization, (a), in

terms of bare vertex {b) and processes involving virtual phonon

exchange, (c}—(f}. Labels x,y, z indicate polarization; time runs

in the vertical direction.
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X,J, Z

+ + + v z +

(d) (o) (b) (c) (e)

FIG. 3. Diagrammatic representation of screened vertex for
scattering of phonons of like polarization, {a), in terms of bare
vertex (b) and virtual phonon processes (c)—(fl. Labels indicate
polarization; time runs in the vertical direction.

FIG. 4. Diagrammatic representation of renormalized propa-
gator (a) in terms of bare propagator (b) and virtual phonon pro-
cesses {c)—(e). Labels indicate polarization; time runs in the
vertical direction.

P'=P —y /2a,
P"=P—3y2/2a .

(31a)

(31b)

The coupling a remains unrenormalized. The values af
the renormalized couplings P' and P" are included in
Tables II and IV. It is noteworthy that all three relevant
fourth-order couplings a, P', and P" are negative for all
three materials. For diamond, this wauld appear to rule

I

out the possibility that zone-center optical phonons could
form a two-phonon bound state. '2

We can also attempt to calculate the renormalization of
the phanon self-energy. The relevant virtual processes are
shown in Fig. 4. Again a single four-phonon process
enters at the same order as a pair of three-phonan process-
es with a virtual intermediate state. The four-phonon
contribution is

(1
I

V4
I
1)=—, z g@pg(a)icojeisnig} ' (0I bi(b;+b g}(b&+b J)(bk+b k)(bi+b i)b) I 0) .4! (32)

We only keep terms which do not enter the vacuum ex-
pectation energy, since we really want to calculate

(4) ~ @1' 1' 2' 216'' ~ Ar t y Ay J y k2 y X2

(33)

Terms like b2b2b3b3 in V& contribute equally to both
terms on the right-hand side of (33), and hence do not
enter hcoi. Therefore the terms which do enter are those
of the form bib, b, b2, or any permutation of these in
which bz remains to the right of b2. By (33), the contri-
bution is the same whether b i is to the right or left of bi,
sint:e

Now kz must be summed over the entire Brillouin zone,
even if kt-0, so it is no longer appropriate to make the
approximation 4-+4~. However, in the absence of
further information on the k dependence of the faurth-
order elastic constants, we make this approximation any-
way in order to obtain an order-of-magnitude estimate of
the self-energy shift. With this approximation, the N
terms in the sum over k2 contribute equally. For A. i

——x,
we may have A2 x, y, or z, and

So

—&0 I bib, I
o)

pro',"=,, (a+2P) .
M2~0

(35)

This contribution is illustrated in Fig. 4(c).
Finally, we also take into account the virtual contribu-

tion of the third-arder couplings, Figs. 4(d}—4(e), at the
same rough level of approximation:

&k,x I
v,'Ik,x)= — ' g I &kix

I
V3 Ik2~2ki~3) I' — g I &k,x I v, lk,x,k,x,k2~2, k@3) I

ruuo „~ 3~o ), g
k3A, 3 k3A, 3

—3Ay'

4M mow'

(36)

b,co)-
z 2(a+2p')3A

4M mo
(37)

In the sum over k212 and k313, there are 2N nonzero
terms, since a given k2 fixes k3 and (Az, k,i} = (yz) or
(zy).

Combining (35) and (36), and using (31a), we find

I

for the estimate of the renormalization of the phonon
self-energy by phonon screening. The resulting frequency
shifts are given in Table III. The correction to the fre-
quency is an the order of 1%, and becomes relatively less
important for the heavier elements. Since the typical er-
rors in local-density calculations of bare phonon frequen-
cies are on the order of 1—2 %, inclusion of the screening
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does not significantly improve the agrmnent with experi-
ment. However, we emphasize that in principle it is the
screened frequency, and not the bare frequency that
emerges directly from a frozen-phonon calculation, that
should be compared with the experimental value.

The analysis given here is strictly applicable only at
zero temperature. More sophisticated techniques, such as
a Green's function approach, could be applied to obtain
information about the temperature dependence of the re-
normalized couplings and phonon frequencies. However,
this would take us beyond the scope of the present work.

V. SUMMARY

We have shown that frozen-phonon calculations can be
used to determine bare phonon —phonon scattering ampli-
tudes, and that consideration of virtual processes allows
renormalized multiphonon vertices and phonon self-

energies to be calculated as well. We have identified and
calculated all of the third- and fourth-order coupling con-
stants allowed by symmetry for zone-center optical pho-
nons in the diamond-structure elements C, Si, and Ge, and
we have calculated the renormalized couplings where ap-
propriate. The renormalized four-phonon vertices are
found to be negative, which appears to rule out the forma-
tion of a two-phonon bound state proposed for diamond.

We see no impediment to the application of these tech-
niques to the calculation of anharmonic coupling con-
stants at other points in the Brillouin zone, using supercell
geometries. Such information could eventually serve as
input to realistic calculations of thermodynamic quanti-
ties such as the thermal conductivity, and of phonon self-
energy shifts and lifetimes.
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