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Results of self-consistent first-principles calculations of the electronic band structures of the three
cesium halides within the local-density functional formalism are presented. The calculations were

done with the linear muffin-tin orbital (LMTO) method and relativistic effects were taken into ac-
count. The general features of the electron bands in the three compounds are very similar. In all

eases the isotropic I f state forms the conduction-band bottom as has been speculated earlier.
Effective-mass parameters for the valence and conduction bands are obtained by fitting our bands

with the results of k p perturbation theory. The nature of cohesion in the three compounds is dis-

cussed within the LMTO framework. The calculated total energy fits very well with the total ener-

gy as given by the Born-Mayer model for ionic compounds over a large range of crystal volume,

I. INTRODUCTION

The three cesium halides, viz. , CsC1, CsBr, and CsI,
crystallize in the B2 (CsC1) structure and show very simi-
lar properties. They are all insulators under normal con-
ditions and exhibit almost identical optical spectra. ' The
magnetoresistivity of CsBr has been measured to be iso-
tropic indicating an s-like nature of the bottom of the
conduction band. Such is also believed ' to be the case
for CsC1 and CsI as evidenced from their optical spectra.

Another interesting feature of these compounds is the
s-d transition of the conduction-band bottom under pres-
sure. At zero pressure the fundamental gap is between
halogen p and cesium s states at the I point with the cesi-
um d state occurring immediately above the cesium s con-
duction state. ' ' It has been observed ' that under a few
kbar pressure there is an s dflip of the -conduction-band
bottom in CsI. It seems likely that in the other two cesi-
um halides such an s-d transition would also take place.
This has interesting consequences for the nature of exci-
tons, as the d-like conduction-band bottom implies that
both the electron as well as the hole wave function are de-
rived from degenerate bands.

Under high pressure all of the three compounds under-
go a phase transition from the simple cubic to the tetrago-
nal structure indicating a similarity of chemical binding.
This transition has been the subject of extensive theoreti-
cal ' as well as experimental" investigations in the re-
cent past.

The focus of the present paper is on the electronic band
structures and the cohesive properties of the three com-
pounds. Several early calculations of the band structure
of CsI have been reported in the literature. Onodera and
Rossler both obtained the electronic bands for CsI from a
non-self-consistent Korringa-Kohn-Rostoker Green's-
function method. ' However, they obtained conflicting
ordering of the s and d conduction bands. A self-
consistent nonrelativistic symmetrized-augmented-plane-
wave calculation of electron bands in CsI was recently
performed by Aidun, Bukowinski, and Ross. ' Saks' has

obtained valence bands for these compounds from an
empirical Slater-Koster scheme. A model pseudopotential
calculation of the conduction bands in CsC1 has been re-
ported by Donato et al. " The latter results, however, are
in direct conflict with the optical experiments of Nosenzo
and Reguzzoni. i These experiments tend to suggest that
electron bands in the three cesium halides should be essen-
tially similar. To the author's knowledge, detailed band-
structure calculations for CsC1 and CsBr have not been
performed until now.

In a recent work we have already examined the electron
bands in CsI from a first-principles relativistic calcula-
tion and have emphasized that relativistic effects are
indeed important. In this paper we present some further
results for electron bands in CsI and compare them with
the electron bands in CsCl and CsBr. The organization of
the paper is as follows. In Sec. II we discuss some conse-
quences of symmetry where we show in particular how
the symmetry label of a Bloch state may be obtained by an
examination of the atomic characters of the wave func-
tion. In Sec. III we present the so-called "canonical
bands" in the LMTO theory' ' for the simple-cubic lat-
tice with one atom per unit cell. These canonical bands
provide useful guidance also for simple-cubic solids with
many atoms in the unit cell such as the cesium halides.
Section IV deals with the scalar relativistic band structure
in one of the compounds, viz. , CsC1. In Sec. V the relativ-
istic bands of the three cesium halides are discussed and
calculated values of the deformation potentials and the
effective-mass parameters are given. Section VI is devot-
ed to the cohesive properties and the main results are
summarized in Sec. VII.

II. SYMMETRY CONSIDERATION

The B2 (CsCI) structure with which we are concerned
here, consists of a simple-cubic lattice with two atoms in
the unit cell at the (0,0,0) and the (a/2) (1,1,1) positions, a
being the lattice constant. The crystal structure and the
associated Brillouin zone (BZ) are shown in Fig. 1. The
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wave function and from a knowledge of the dimensionali-

ty of various representations; an analysis of the transfor-
mation properties of the wave function under various
operations of the group is not necessary. As an illustra-
tion, the conduction-band bottom at the I point, as we
shall see later, has contributions from Cs s and halogen s
orbitals and not from the p, 1, or f atomic orbitals; there-
fore, according to Table I this Bloch state has the symme-
try I+6. However, with the information presented in
Table I, one cannot differentiate between M6 and M7, as
both of them contain exactly the same, Cs p+ Cl p,
atomic characters. This differentiation is made from the
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FIG. 1. (a) CsC1 structure and (b) the Brillouin zone of the
simple-cubic lattice.
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point symmetry of the crystal is Oq. Because the point
symmetry is the same about either the Cs or the Cl atom,
the Bloch functions may be classified according to their
symmetry properties about either of the atoms. In this
paper we classify them according to the symmetry about
the Cs atom. As is well known"s' the symmetry of a
Bloch function about either of the atoms is the same ex-
cept when the Bloch momentuin k lies on the surface of
the BZ. In the latter case once the symmetry about the Cs
atom is known, the symmetry about the Cl atom {and vice
versa) may be obtained with the use of tables given by
Bell' and by Onodera. We follow the stan-
dard Buckaert-Smolukowski-Signer-E11iot notations
throughout to denote the irreducible representations.

The irreducible double-group representations spmmed
by atomic functions of different angular momenta are
shown in Table I. Similar information about single-group
representations can be read off from the symmetries of
simple-cubic canonical bands shown in Fig. 2 and which
are discussed in the next section. For example, according
to Fig. 2, Cs d orbitals span the X&+X,+Xq+X3 ali'd

the C1 1 orbitals the X3+X4+X&+X&irreducible repre-
sentations at the X point. These tables contain sufficient
information that the symmetry of a Bloch function may
be obtained by inspecting the atomic character of the
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FIG. 2. Canonical bands in the simple-cubic lattice originat-
ing from the atom-centered s, p, 1, and f orbitals. For the
simple-cubic lattice with one atom per unit cell, an unbracketed
symmetry label denotes the Bloch function symmetry about an
atom. The corresponding bracketed label denotes the symmetry
of the same 81och function, but now we discuss the empty site in
the unit cell with O~ point symmetry. In the 82 (CsC1) struc-
ture, there are two sets of canonical bands associated with either
the Cs or the Cl sublattice. These two sets of bands are identical
except for the symmetries. VA'th our convention of labeling the
symmetry of a Bloch state according to its symmetry about the
cesium atom, the unbracketed {bracketed) labels refer to sym-
metries of the canonical bands associated with the Cs (Cl) sub-
lattice in the 82 structure.
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TABLE I. Irreducible double-group representations of the OI, point group spanned by atom-centered
orbitals in the CsC1 (82) structure. A similar table for single-group representations may be obtained

from information contained in Fig. 2.

X

Cs s
Cs p
Cs d
Cs f
Cl s
Cl p
Cl 1
C1 f

r+
I6+Is
I 7 +2I 8

r;+zr;+zr-,
r+

r6+rs
r7 +2I 8

r;+zr;+zr-,

X6
2X6 +X7
2X6 +3X7
3X6 +4Xp

X6
2X6 +X7
2X6 +3X7
3X6 +4X7

M6
2M6 +M7
2M +3M
3M6 +4M7

Mp
M6 +2M7

3M6 +2M
3M' +4M6

R6
R6 +R8
R7 +Rs

R6 +2R7 +2Rs

Rp
R7 +Ra
R6 +Ra

R7 +2R6 +2R8

fact that the (zt,zl) atomic function based on the Cs
atom transforms according to the M6 irreducible repre-
sentation, while the same function based on the Cl atom
transforms according to M7. Similarly, for the single-
group representations, one can differentiate between Xz
and X'i from the fact that the Cs y -z orbital contributes
to the former and Cl y -z to the latter Bloch function.
Table I, furthermore, shows whether interaction between
two atomic orbitals is forbidden by symmetry or not and
which atomic orbitals are allowed to contribute to a Bloch
state of a certain symmetry. We recall that with spin-
orbit coupling included a Bloch state at any k point in the
BZ is at least twofold degenerate in a crystal that contains
the inversion symmetry. This is the case for the 82 struc-
ture under consideration here.

III. SIMPLE-CUBIC CANONICAL BANDS

The calculations reported in this paper were performed
with the well-documented' ' linear muffin-tin orbital in
the atomic spheres approximation (I.MTO-ASA) method.
We solved the scalar-relativistic Dirac equation self-
consistently. The Hamiltonian containing this self-
consistent potential and the spin-orbit coupling term was
diagonalized only once in the space and spin coordinates
to obtain the relativistic bands. About 100 k points in the
irreducible BZ were used in the self-consistency loop and
all Brillouin-zone integrations were performed with the
tetrahedron integration scheme. ' %'e used two energy
panels, the lower panel to obtain the Cs p valence bands,
and the upper one to obtain the halogen p valence bands
as well as the conduction bands.

In the LMTO-ASA theory, the scalar-relativistic Ham-
iltonian is given by

H„=C+a'" Sg
g 1 /2

1 —ySg

where C, 4, and y are potential parameter matrices diago-
nal in the angular momentum and atom indices. These
three parameter matrices are, respectively, the band
center, the bandwidth, and the distortion parameters
linearized about an energy E„chosen in the energy range
of interest. An energy eigenvalue E obtained from the di-
agonalization of the Hamiltonian, Eq. (1), is correct to the
second order (E E„) . For the sake of comp—leteness, we

might mention that the fourth potential parameter that
enters in the fourth-order correction to the energy is

'2

(~ i) y ~p BP(E)
BE

where P(E) is the solution of the radial Schrodinger equa-
tion inside the atomic sphere with the energy E. The nu-
merical value of (P „)'~ is a measure of the energy range
within which the linearization is valid. The structure con-
stant matrix Si, entering into the Hamiltonian, Eq. (1), de-

pends only on the type of lattice and is independent of the
type of atoms making the crystal. Diagonalization of Sq
with neglect of the nondiagonal part between different an-
gular momenta produces the so-called canonical bands'6'7
which contain many general features of the band structure
for a particular lattice type. The canonical bands have
been tabulated for the fcc, bcc, and the hcp structures. '

Here we present results for the canonical bands in the
simple-cubic structure.

In Fig. 2 the canonical bands for the simple-cubic
structure have been shown and the values at four symme-
try points are listed in Table II. As is well known, ' ' the
s canonical band diverges at the I point as 1/k but this
divergence does not enter into the Hamiltonian as is clear
from the form of Eq. (1). Following previous authors we
have plotted the s canonical bands using a free-electron-
like scale, S, =[1—(4/ir )S,] '. The p canonical bands
have a discontinuity at the I point which disappears as a
result of hybridization with bands of other angular mo-
menta. Even though we do not use the f atomic orbitals
in our calculation, we nevertheless show the f canonical
bands as well, which may be useful for other simple-cubic
compounds where f bands play a role.

As has been mentioned already, in the simple-cubic lat-
tice there are two sites of Oq symmetry in the unit cell.
In Fig. 2 the unbracketed symmetry labels refer to the
symmetry of the Bloch function about the site on which
the atomic orbitals constituting the Bloch function are
centered. Bracketed labels refer to the symmetry of the
same Bloch function about the other site with Oi, symme-
try but on which the atomic orbitals in question are not
centered. In the case of the 82 structure, which may be
viewed to be inade up of two interpenetrating simple-
cubic sublattices, each sublattice has the same canonical
bands as shown in Fig. 2 except that the symmetry labels
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TABLE II. Canonical bands S~; at points of high symmetry in the simple-cubic structure ~ith one

atom in unit cell. The symmetry point coordinates are in units of m. /a.
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15
15

12
12
25'
2S'
25'

2S
25
25
15
15
15
2I

I (0,0,0)

6.000
( —12.000)

—17.134

11.422

—10.216

5.676
13.622

4I

St

St

4I

3I

5t

Sl

2'
St

5I
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0.961

—13.876

6.938

—13.502
—3.931

2.621
12.192

—32.994
—26.S69
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28.982

Sl
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5I
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4t
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1.837

—3.834
7.668

—21.386
—6.403

4.268
19.252

—27.238
—3.193

1.113
22.787
32.657
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15
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25'
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2'

15
15
15
25
25
25

R (1,1,1)

2.168

0.000

—13.151

19.726

—23.510

—9.796

17.632

are different. As is indicated from the above discussions,
unbracketed or bracketed labels in Fig. 2 are symmetries
in the CsC1 structure of Bloch functions made up of Cs or
Cl orbitals, respectively. This is consistent with our con-
vention of classifying the Bloch states according to the
symmetry about the Cs atom.

The canonical bands contain valuable information as re-

gards hybridization between various orbitals. The X2
state, as seen from Fig. 2, for instance, is a pure Cs d state
(omitting the Cl f contribution). An Mi state on the oth-
er hand can be a combination of Cs s, Cs d, and Cl d
states. This information is similar to what is already
presented for double-group representations in Table I.
The amount of hybridization between different atomic or-
bitals depends, of course, on the type of atoms constitut-
ing the crystal, i.e., through the band-center and the band-
width parameters in Eq. (1).

As seen from Fig. 2, a general feature of the d bands in
a simple-cubic solid with one atom in the unit cell is that
the I ~q state is always below the I 25 state. The interac-
tion of s, p, and f orbitals with these two states is forbid-
den by symmetry. In the B2 structure the d orbitals of
the two different species of atoms span the same I ~2+1 i5
irreducible representations and therefore interact. As a re-

sult, the ordering of the I iz and I 25 states can, in princi-
ple, be reversed. As we shall see, in the case of the cesium
halides, the hybridization between the d orbitals of the
two atoms is sufficiently small that l, z is still below I i&.
When both atoms in the CsC1 structure are the same, one
obtains the bcc structure. In this case the I"&2 and I z&

states belonging to the Cs sublattice may be expected to
interact rather strongly with the states of the same sym-
metry belonging to the Cl sublattice. One sees from
canonical bands in the bcc structure' that this interaction
is so strong that now in fact I ~q is abooe I 25. Incidental-
ly, this is also the case for the fcc structure as well. Gen-
erally speaking, these features of the canonical bands are
retained in the electron band structure except for shifting

and rescaling of energy as seen from Eq. (1).
We now wish to estimate the magnitude of I i2-I'zs

splitting in the sc, bcc, and fcc crystals with the same
volume per atom (i.e., the same Wigner-Seitz sphere ra-
dius). From the canonical bands (Table II and Ref. 17)
one sees that this splitting should be in the ratio 6.875
(fcc): 8.992 (bcc}: —28.556 (sc) with the assumption that
the bandwidth parameter 5& is the same for the three
structures. Because of interaction between d orbitals
based on the Cs or the Cl atoms„ in the CsCl structure the
I iz-I'zs separation might be different from the above-

mentioned value of —28.556 units, depending on the
strength of the interaction. In our calculation this separa-
tion turns out to be about —25 units for the cesium
halides. Rossler has performed band calculations for CsI
both in the fcc (rocksalt) as well as in the sc (82) struc-
ture. His result that the I 25

—I iq separation is large (2.0
eV) in the sc structure and is quite small (0.2 eV} in the
fcc structure is consistent with our results from the
canonical bands as discussed above. Rossler eorrwtly at-
tributed this to differences in the crystal structure from a
tight-binding analysis of interaction between the d orbi-
tals.

IV. SCALAR-RELATIVISTIC CsCl BANDS

The scalar-relativistic bands in CsC1 shown in Fig. 3,
indicate the general features of the electronic band struc-
ture in the cesium halides with the spin-orbit coupling ex-
cluded. The Cl 3p bands constitute the highest valence
bands with the Cs Sp bands occurring immediately below
in energy. The lowest conduction bands are primarily of
Cs s and Cs d atomic characters.

The valence Cl 3p bands generally resemble the canoni-
cal p bands, Fig. 2, in shape. Of course, as discussed be-
fore, the I i5 state is triply degenerate unlike the canonical
I,5 state derived from the p orbitals. In the canonical p
bands, Mz forms the top of the band, with I is occurring
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FIG. 3. Scalar-relativistic electron bands in CsCl.

even below the Xq state, i.e., the ordering is
M'i &Xs & I i5. In the electron bands this ordering could
be modified as a result of interaction of the p orbitals with
other orbitals as follows. The X5 state is pushed down in
energy a a result of interaction with Cs d orbitals. Omit-
ting contributions from I & 3 orbitals, in the 82 structure
M2 is a pure Cl p state, while the Cl-p-derived I &5 state is
pushed up in energy through the interaction with the
lower-lying Cs p orbitals. Thus, depending on the
strength of interaction between the valence cation p and
anion p orbitals, either M2 or I i5 forms the valence-band
top. This might, of course, be modified through spin-
orbit coupling. In the CsC1 scalar-relativistic bands, M2
occurs just below I i5 so that the direct band gap at I is
the fundamental gap.

The I'is state consists of antibonding Cl p orbitals
(97%) with about 3% admixture from the Cs p orbitals.
Along the b, line, the highest valence state with h5 sym-
metry has increasing admixture from the Cs d orbitals at
the expense of the Cs p orbitals. The X5 state which is
the highest valence state at the X point has about 96% Cl
p and the rest Cs d character. Along the X line starting
from I', the Cl p character of the Xi valence-band top
first decreases slightly before increasing so that the Mi
state is a pure Cl p state. The Xi state constituting the
bottom of the Cl p valence bands consists of bonding Cl p
orbitals pointed along the direction of the Bloch vector.

The lowest conduction bands are primarily of Cs s and
Cs d characters. From the canonical simple-cubic d
bands, Mi should be the lowest of the Cs d bands lying
below I iz. In spite of hybridization with other orbitals,
this feature is still retained in the CsC1 scalar-relativistic
bands. The conduction-band bottom has I'i symmetry
and has about 51% Cs s and the rest Cl-s character. It
may be mentioned here that if relativistic effects are total-
ly omitted, then I'i lies above I'i2 in energy, s'i an order-
ing that is inconsistent with experiments. The importance
of the relativistic effects for the conduction-band struc-

ture for CsI was observed by Onodera quite early. As we
have discussed earlier in connection with canonical bands,
the occurrence of the I 25 state above the I iz state is a
consequence of the simple-cubic crystal structure.

V. RELATIVISTIC ELECTRON STATES
IN THE CESIUM HALIDES

A. Electron band structure

The calculated electron bands for the three cesium
halides, with inclusion of the spin-orbit coupling, are
shown in Fig. 4. The major effect of the spin-orbit cou-
pling, as is indicated by a comparison of Figs. 3 and 4(a),
is to split the Cs 5p and halogen p valence bands. The
splitting of the Cs 5p valence bands at the I point is more
or less the same for all three compounds, about 0.135 Ry.
As might be expected, the spin-orbit splitting of the halo-
gen p valence bands increases as the halogen atom be-
comes heavier. At the I' point this splitting is 0.014 Ry
for CsC1, 0.043 Ry for CsBr, and 0.088 Ry for CsI. The
corresponding splittings, as obtained from the experi-
ments of Ref. 2, are, respectively, 0.017, 0.038, and 0.076
Ry. These values are roughly the same as the spin-orbit
splitting in the atom. The low-lying conduction bands,
being of s and d atomic characters in general, are not af-
fected appreciably by the spin-orbit coupling term.

The calculated bands for the three compounds are very
similar. Contrary to the early results of Donato et al. , 's

we find that the band gap is direct and occurs at the I
point in each case. As in all local-density calculations, the
magnitudes of the band gaps are underestimated, but the
experimental trend (gaps of CsCl&CsBr&CsI) is repro-
duced from our calculation.

The conduction-band bottom has the I 6 symmetry in
all cases with the d-like I s state occurring immediately
above in energy. The interband edge at the M point
occurs close in energy to the fundamental gap at the I
point and may be relevant to the interpretation of the op-
tical spectra. ' At the M point the valence-band top has
the M7 symmetry in all three cases, while the symmetry
of the lowest conduction state changes from M7+ for CsC1
to M6+ for CsI. For CsBr the M7+ and M+6 states lie very
close to each other in energy. The topology of bands
around the Xand R points also show some differences.

S. Deformation potential

The calculated deformation potentials dE/d ln V for the
two interband transitions I 8 ~I 6 and I 8 ~I 8 are
given in Table III. The calculated deformation potentials
for CsI are in reasonable agreement with the correspond-
ing experimental values as is discussed in Ref. 8. To the
author's knowledge similar experiments for CsC1 and
CsBr have not been performed.

The increase in energy of the s-like I 6 conduction state
under volume compression can be understood in terms of
the kinetic energy increase due to confinement. In con-
trast, the energy of the I s conduction state decreases be-
cause the shorter lattice constant increases the magnitude
of the bonding interaction between the d orbitals. The
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FIG. 4. Relativistic electron bands in the cesium halides: (a) CsCl, (b) CsBr, and (c) CsI.

TABLE III. Calculated deformation potentials dE/d ln V for
interband transitions. Energies are in units of eV.

Transition

I 8 ~F'6+

Is Is

CsCl

—5.28
0.79

—4.16
1.31

CsI

—3.51
2.25

opposite shifts indicate that under pressure the I f and
I +8 states should cross and beyond a critical pressure the
d-like I"+8 state should become the conduction-band bot-
tom. Such an s-d transition has indeed been observed for
CsI. Similar experiments for CsCl and CsBr would be of
interest.

From our calculated I 8
—I 6 separation and the calcu-

lated deformation potentials, we estimate that the s-d
transition should occur at a volume compression of about
0.12 for CsC1 and CsI and about 0.18 for CsBr. The cor-
responding pressures, using the experimental values of the
bulk moduli, are about 20, 26, and 14 kbar for CsCI,
CsBr, and CsI, respectively. However, as is indicated
from the experiments on CsI where the s-d transition
occurs around 5 kbar, our results seem to overestimate the
transition pressures by a factor of 2 to 3. It is further-
more clear from what has just been said concerning the
s-d transition of the conduction-band bottom and the
signs of the deformation potentials shown in Table III
that under pressure the fundamental band gaps of all
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TABLE IV. Calculated effective-mass parameters for the cesium halides. The parameters are de-

fined in the text.

Valence r6 ..
Valence rs ..

Parameter

(2m, /R )A

(2m, /R )A'

(2m, /fP) ~8 ~

(2m, /fi PC

CsC1

—0.76
—0.92

0.60
—0.17

CsBr

—0.87
—1.16

0.85
—0.97

CsI

—0.98
—1.54

1.24
—3.12

Conduction 1 6+: (2m, /R )A"
Conduction I's . (2m, /A )(J +K)

(2m, /ttt') iJ —E
i

3.25
1.62
1.16

3.70
1.70
1.22

4.02
1.95
1.40

three cesium halides should at first increase before finally
decreasing in magnitude.

C. Effective-mass parameters

From k p perturbation theory the electron energy in
the neighborhood of the I point for various bands is
given by

goes down the series from CsC1 to CsI. We expect this
trend in the effective masses to be correct; however, we do
not believe that the absolute values of the effective masses,
especially for the conduction bands, can be reproduced
from the local-density calculations. Unfortunately, ex-
perimental values of the effective masses for the cesium
halides do not yet exist in the literature.

E(k)=E(I s )+Ak (2a} VI. COHESIVE PROPERTIES

E(k}=E(I,)+A'k'+[8'k'+C'(k, 'k,'

+k2k2+kik2)]l/2

E ( It) =E(l s )+2 "k
(2b)

(2c)

E(k}=E(I+s)+k' +J+K
~me

+(J K)[k 3(k ky+kyks+kzk )]i/2 (2d)

We found that our calculated bands can be fitted very well
with the above expressions in the neighborhood of the I
point and the effective-mass parameters obtained this way
are tabulated in Table IV. The calculated effective masses
for the isotropic valence band and the conduction band,
viz. , (2m, A/fi ) ' and (2m, A "/tri ) ', decrease as one

As might be expected from the atomic sizes (for exam-
ple, covalent radii are r~ =2.35 A, rc) ——0.99 A,
rz, 1.14 A——, and ri ——1.33 A), the lattice constant down
the series from CsC1 to CsI increases in magnitude experi-
mentally. The calculated lattice constants also repro-
duce this trend, as may be seen from Table V. The
cohesive energy per ion pair —defined here as the total en-

ergy of the ion pair in the solid minus, that of the free,
neutral atoms is a quantity easily measured from ther-
mochemical experiments. The calculated cohesive ener-
gies in agreement with the experimental values show
that the cohesive energy decreases down the series, i.e.,
CsCl& CsBr&CsI.

The cohesive natures in the three compounds are very
similar to one another, as one might expect. The calculat-
ed partial pressures and the partial bulk moduli are shown

TABLE V. Theoretical and experimental equilibrium lattice properties of the cesium halides.
(Theoretical results are as obtained from scalar-relativistic calculations. )

Parameter

Lattice constant (A)
Theoretical
Experimental

Bulk modulus' B (kbar)
Theoretical
Experimental

Pressure derivative dB/dI'
Theoretical
Experimental

Cohesive energy '
(Ry/atom pair)

Theoretical
Experimental

Cscl

4.085
4.120

206
167

5.84
5.98

—0.42
—0.49

CsBr

4.241
4.295

169
143

5.99
5.95

—0.39
—0.46

CsI

4.475
4.567

ill
119

640
5.93

—0.28
—0.41

'The theoretical B and dB/dP reported here are calculated at the experimental lattice constant.
The cohesive energies are with respect to the energy of the neutral atoms.

'Experimental cohesive energy is at T=298 K evaluated from Ref. 26.
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in Fig. 5. The principal contribution to the repulsive pres-
sure comes from the Cs and the halogen p orbitals which
may be interpreted to be caused by the increase of the
electron kinetic energy due to confinement. The repulsive
term is balanced by an attractive pressure coming from
the Madelung term as well as from the Cs d and halogen
d orbitals. The d bands are unoccupied in the cesium
halides; however, admixture of the bonding d orbitals

with the valence states, which increases with compression,
produces an attractive pressure .The partial pressures of
the s orbitals are comparatively far lower

Traditionally, cohesive properties of the ionic solids are
understood in terms of the Born-Mayer model. In this
model the total energy consists of an attractive Madelung
energy plus a repulsive energy term:

E = ——+Bexp( —d/p) . (3)

& -20-

CsBr
)

CsI

Here d is the bond length, A is the Madelung constant,
and 8 and p are repulsive parameters. The Madelung
constant referred to the bond length is A =1.865534
Ry A for the 82 structure. The repulsive term of the type
b/d" (b is a constant) is sometimes used instead of the
exponential form exp( —d/p), but the latter form is
favored from quantum-mechanical considerations. It
turns out that within this model the cohesive energy com-
ing from the Madelung term is reduced by only about
10' because of the repulsive term. Within this model the
trend in the cohesive energy (Table V) can be understood
in terms of the increasing bond length down the series
CsC1 ~ CsBr g CsI. The increasing separation between the
two ions results in a diminishing value of the Coulomb in-
teraction. This indicates a decreasing trend in the
cohesive energy consistent with the experimental as well
as with our calculated results.

The Born-Mayer model, although oversimplified, is
physically appealing and describes cohesive properties of
ionic solids remarkably well. In this model no attempt is
made to evaluate the repulsive energy parameters from a
quantum-mechanical calculation, rather these parameters
are calculated from the experimental lattice data. With
the aim of seeing if the Born-Mayer model total energy
fits with our calculated total energy, we subtracted the
classical Madelung term (i.e., with unit charge transfer)
from the calculated total energy. The remaining energy
defines the repulsive term Ez (d) which is plotted in Fig. 6
as a function of the bond length d. We find that we can
fit the calculated "repulsive energy" extreinely well with
either of the two forms:

~ ~
U
D 40

or

Ez(d) =2.2X10 exp[ —d/(0. 291 A)] Ry

E~(d)=1.9X10 Ry/d"

0 ——

.& -40-
L X-d
U

Cs-d

0

Here, d is the bond length in A. The Born-Mayer total
energy with these repulsive terms, by construction, repro-
duces the theoretical lattice constant as well as the bulk
modulus. For comparison, the empirical, Born-Mayer
repulsive term fitted to reproduce correctly the experi-
mental data is

CsCl CsBr
(b)

CsI
OI

Ea(d)=1.2X 10 exp[ —d/(0. 312 A)] Ry

FIG. 5. (a) Partial pressures and (b) partial bulk moduli at
the equilibrium lattice volume for the cesium halides. Straight
lines are drawn to help the eye. The attractive Madelung and d
pressures counterbalance the repulsive pressure originating from
the p orbitals.

2.4&10 Ry/d"

The Born-Mayer model has the ad hoc assumption that
there is a unit charge transfer in CsI. Charge transfer in a
solid is, of course, an ill-defined quantity since charge
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FIG. 6. Calculated total energy of CsI and its partition into a
Coulomb term and a "repulsive" term. The repulsive part can
be fitted very well with an exponential Born-Mayer repulsive en-

ergy over the entire range of the lattice constants for which cal-
culation was performed.

cannot be partitioned among the atoms in an unambigu-
ous way. With the definition that the charge belonging to
an atom in the solid is that contained within the atomic
muffin-tin sphere, at equilibrium about 0.6 electrons are
transferred from the Cs to the I atom, assuming equal
atomic sphere radii for the two atoms. s Any other
reasonable choice of the sphere radii does not drastically
change this number. The corresponding calculated charge
transfers for CsBr and CsC1 are about 0.7 and 0.8, respec-
tively. The calculated charge-transfer trend is consistent
with Pauling's rule o connecting the amount of ionic char-
acter in a single bond to the electronegativities of the two
atoms, according to which CsCl should be the most ionic

and CsI the least. Apart from incomplete charge transfer
{i.e., less than unit charge transfer between the two ions},
its magnitude varies as the crystal volume is changed.
Considering this, it is not physically apparent why the
Born-Mayer total-energy expression should fit the first-
principles calculated total energy so well.

VII. SUMMARY

The calculations presented here deinonstrate that the
electron bands in CsCl, CsBr, and CsI in the 82 structure
are essentially similar, in agreement with the speculations
of Nosenzo and Reguzzoni based on an analysis of opti-
cal experiments. The band gap is direct and occurs at the
I point between the I 8 valence state and the I +6 conduc-
tion state, in all cases. From the similarity of the bands in
the three compounds, we speculate that as in the case of
CsI, crossover between the conduction I 6 and I +s states
would also occur in CsBr and CsCl as pressure is applied.
Consequently, the fundamental gap at the I point for all
thrtx: compounds should first increase before finally de-
creasing as pressure is applied.

The calculated lattice constants, bulk moduli, cohesive
energies, etc., show a clear trend in agreement with experi-
ments. Equilibrium in the solid is determined through the
competition between p orbitals which generate repulsive
forces and the d orbitals, as well as the Madelung term
which give rise to the counterbalancing attractive force.
We find that for CsI the calculated total energies (over the
entire range of lattice constants a =3.1 to 4.2 A for which
calculation was performed) can be fitted very well to the
total-energy expression, a classical Madelung term plus a
repulsive term, of the Born-Mayer model. Our quantum-
mechanical results are, however, equally compatible with
an exponential or a power-law form for the Born-Mayer
repulsive energy.

Apart from the above results for the cesiuin halides, we
also presented the simple-cubic canonical bands as well as
some symmetry properties of the Bloch states which are
applicable to the entire class of compounds in the 82
structure. These canonical bands are, furthermore,
relevant for crystals in which a simple-cubic sublattice of
identical atoms is present.
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