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A parameter-free model is presented for the elastic constants and high-pressure behavior of the
alkaline-earth oxides MgO, CaO, SrO, and BaO. The model is based on a Gordon-Kim-type calcu-
lation for the short-range energy of a crystal. Spherically symmetric relaxation of ion charge densi-

ty in response to the Madelung potential, termed potential-induced breathing (PIB), is incorporated
into the model as a function of strain. This charge relaxation is accomplished by the use of a
%'atson-sphere calculation to obtain the interaction energy of pairs of ions as a function of both in-

teratomic distance and Coulomb potential. By this technique many-body effects, which are particu-

larly important for the prediction of crystal elasticity, are included. The model successfully repro-
duces both the sign and magnitude of the deviation (E=Cl2 —C~) from the Cauchy relation mea-

sured at zero pressure for the cubic alkaline-earth oxides. Static compression curves calculated in

both the 81 and 82 phases of these compounds are found to be within S%%uo of the available room-

temperature data. From a calculation of the pressure dependence of the elastic moduli, the role of
many-body effects at high pressure is determined. The 81-K phase transition pressures are calcu-

lated within the PIB model to be 251 GPa (MgO), 55 GPa (CaO), 36 GPa (SrO), and 21 GPa (BaO),
in very good agreement with available experimental data for these compounds.

I. INTRODUCTION

The elastic moduli of crystalline solids have often been

used to characterize their static and dynamical proper-
ties. As prototype ionic crystals, the alkali halides have
received considerable attention in this regard. A number
of calculations of their 'elastic moduli have been per-
formed based largely on the ianic model. i For the
alkaline-earth oxides, which have the Bl (NaCl-type)
structure, the question of ionicity and the proper charac-
terization of the charge density has required more exten-
sive studies. The earliest attempts to calculate proper-
ties of the alkahne-earth axides from first principles, i.e.,
without adjustable parameters, were based on the assump-
tion of two-body, central forces between rigid ions. s'4 Ex-
tensions of these calculations to include many-body
contributions were faund ta give good predictions of the
binding energies, lattice parameters, and equations of state
of these solids.

For the calculation of the elastic moduli, models based
on two-body central forces necessarily fail to reproduce
the measured deviation from the Cauchy equality
(C,2 ——C~ for cubic crystals). This equality must hold for
an unstressed lattice at its minimum energy configuration
(P =0) if the lattice energy is determined by strictly pair-
wise interactions between the component ions. Vibration-
al pressure produces a violation of the Cauchy relation,
but this is generally small compared to that observed ex-
perimentally. Thus, the degree of departure from the
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Cauchy condition is a measure of the noncentral or
many-body terms in the crystal potential. The deviation
from the Cauchy condition (b, =Ci2 —C~) is particularly
large and negative for MgO, and decreases through the
series of alkaline-earth oxides, becoming positive for
BaO. ' Semi-empirical models achieve a Cauchy viola-
tion by removing the constraint of rigid ions to give an ef-
fective many-body interaction, or by directly including
many body terms in some parametrized form, or both.
These models have not been implemented at the first-
principles (parameter-free) level, however, nor have they
included, even in parametrized form, the particular non-
rigid-ion effect which we obtain from first-principles cal-
culations.

The presure dependence of the elastic moduli can pro-
vide useful information of the nature of the many-body
forces producing the Cauchy violation. The extent to
which the Cauchy violation affects the pressure depen-
dence of the elastic moduli has not yet been examined
from first principles. On intuitive grounds it may be ex-
pected that the many-body forces increase with compres-
sion. Therefore, as a starting point for calculations it
would appear that the measured Cauchy violation at
P =0 be satisfied before reliable predictions can be made
for the behavior at high pressure. For the cubic alkaline-
earth oxides experimental static compression data have
been obtained. ' From these data estimates of the bulk
moduh and their pressures derivatives have been deter-
mined. Although information on the individual Ci is
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more limited, a number of studies of the pressure depen-
dence of individual elastic moduli have been undertaken
experimentally. ' The CJ for MgO have been mea-
sured' to a pressure of -3 GPa.

Several alkaline-earth oxides exhibit polymorphism at
high pressure. CaO and SrO have been shown to
transform to the 82 (CsC1) structure at -65 GPa (Refs.
16, 17, and 21) and -36 GPa (Ref. 19) respectively; BaO
appears to transform to a distorted 82 phase at —10 GPa
(Ref. 20). Theoretical predictions for the pressure of the
81-82 transition in MgO range from 110 to 1050
GPs.i' 2 Information on the elastic properties of those
high-pressure phases that have been observed experimen-
tally is difficult to obtain. Although empirical equations
of state have been fit to the existing pressure-volume data
for the high-pressure phases, such analyses are often poor-
ly constrained by the data as a result of the strong depen-
dence of the equation of state on the often hypothetical
zero-pressure bulk modulus of the high-pressure phase
(see Ref. 19). This problem is particularly important for
determining the pressure dependence of elasticity, equa-
tions of state, and phase transitions in materials that may
be of geophysical importance such as the close-packed
(i.e., sixfold and eightfold coordinated) oxide phases stud-
ied here. 26'i7

Recently, first-principles calculations have been carried
out based on a model for ionic solids that incorporates the
effect of spherically symmetric charge relaxation in
response to the Madelung potential at the site of the ions. '
In other words, the ion charge density is allowed to con-
tract and expand as the electrostatic potential at the site
of the ion is raised and lowered, respectively. This
potential-induced breathing (PIB) model was shown to
give a good account of the Cauchy violation in MgO as
well as contribute substantially to the splitting of the
longitudinal optic (LO) and transverse optic (TO) modes
in the alkaline-earth oxide and alkali-halide crystals. The
model utilizes charge densities of the component ions cal-
culated from relativistic atomic self-consistent-field (SCF)
calculations employed with a generalized %atson-sphere
model. "

From the charge densities pair potentials are obtained
by the use of density-functional techniques. M The pair
potentials are functions of both the interionic distance and
the Watson-sphere (shell) potential, the latter dependence
providing the effective many-body contribution.

Although superficially similar to the breathing-shell
model, the PIB approach is fundamentally different by
virtue of the fact that the relaxation of charge density is
coupled directly to the Madelung potential; in the
breathing-shell model the breathing is accomplished by
short-range interaction with near neighbors. An inherent
limitation of the breathing-shell model is its inabihty to
obtain a positive Cauchy violation at equilibrium (i.e.,
C~ is always greater than C,z). The distinction between
the two approaches is brought out in the present paper by
the fact that the PIB model is able to reproduce correctly
both positive and negative Cauchy violation found experi-
mentally for the class of materials studied here.

The present paper is concerned with the second-order
elastic moduli and high-pressure behavior of the alkaline-

earth oxides in the 81 (NaC1) and 82 (CsC1) phases. A
similar model has been used recently to calculate the
equation of state of MgO (81 phase). In that study the
ionic charge densities were determined by the Hartree-
Fock HF-SCF method and the pair potentials calculated
by modified electron gas (MEG) techniques. Comparison
between the present results and those obtained from the
HF-SCF technique will be exainined in detail in a subse-
quent paper. All calculations reported here are for the
static lattice (no zero point or thermal contributions). The
effect of potential-induced breathing on the quasiharmon-
ic lattice dynamics and thermal properties will be present-
ed elsewhere.

In Sec. II the theoretical methods are outlined, includ-
ing the procedure used to fit the numerical potentials to
an accurate and effective analytic form. The elastic
moduli at zero pressure are presented and discussed in
Sec. III. The compression curves (equations of state) cal-
culated for the static lattice from the PIB model are
presented in Sec. IU. The calculated pressure dependence
of the elastic moduli in the 81 and 82 phases, including
a discussion of low- and high-pressure instabilities, are
given in So:.V. In Sec. VI, PIB theory predictions for the
8 1-82 transitions in the alkaline-earth oxides are
presented. The possibility of other phase transitions for
MgO is also considered. Section VII contains a discussion
and concluding remarks.

II. THEORY AND PARAMETRIZATION

In the original applications of the Gordon-Kim model
to ionic crystals, the total charge density was assumed to
consist of overlapping rigid-ion charge densities. In fact,
the first calculations used free-ion charge densities, al-
though this is not necessary. When the real crystal is
constructed from free ions, a relaxation of charge density
occurs in response to the crystal potential. ' Moreover,
when a crystal lattice is strained, the electron density re-
laxes in response to changes in the crystal potential. The
lowest-order description of this response is the spherically
symmetric relaxation of charge density, termed "potential
induced breathing". The rigid-ion model is particularly
suspect in the oxides, because free 0 is not stable; there-
fore, the oxygen part of the electron density, stabilized by
the crystal potential, will be highly susceptible to changes
in the lattice. What is required is a simple means of cou-
pling the electrons around each ion to the changes in the
crystal lattice.

In this paper we couple the electrons to the lattice by
use of the PIB model. s The crystal is assumed to consist
of overlapping ions. The electron density of each ion is
found by a self-consistent relativistic calculation, using
the local-density approximation with an average self-
interaction correction, and the Hedin-Lundqvist pa-
rametrization for the correlation energy. The crystal po-
tential is approximated by use of a Watson sphere.
Specifically, we center the nucleus of the ion inside a uni-
formly charged spherical shell, with a total charge chosen
to neutralize the ion (thus the sphere around a 0 ion
would have charge +2e). The radius of the sphere is
chosen so that the electrostatic potential inside the shell is
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identical to the long-range (Madelung) potential at the site
of the nucleus when the ion is in the lattice (see Refs. 4
and 5). The pairwise interactions between ions, which de-

pend on the ionic charge densities in the original Gordon-
Kim model, are now dependent on the crystal structure.
In addition, the self energy of the ion (that is, the energy
required to assemble the electrons around the nucleus) is
now a function of the site potential.

Within the pairwise interaction approximation, the total
energy of the crystal may be written in the form

4= —,
' g Z»P(k )+ g Sk(P(k))

k', I'

Zk is the net charge on the kth ion, Sk is the self-energy
of the kth ion [which is coupled to the lattice through
P(k )], and pkk is the "short-range part" of the interaction
between the kth and k'th ions. The prime on the summa-
tion signs indicates that the (k)=(k ) terms are omitted.
Within the Gordon-Kim approximation,

0kk'(Pk Pk' R)=E[LL»(P» r)+ Lk'(Pk' r R)1

E[—nk(P», r)] E[—nk (Pk, r —R)], (3)
k, l I, k

+ —, g' pk»(P(k), P(k') Ir(k) r(k')
5

)

where P(» ) is the Madelung potential at the site (ik ),

where nk(P, r) is the charge density of an ion of type k in
a Watson sphere with interior potential P, and E[n] is a
sum of functionals obtained in the local-density approxi-
mation (LDA). In atomic units (fi=e=m =1; distances
in Bohrs and energies in Hartrees),

E[n(r)]=—„(3ir') ' f d'r[n(r)]'~'+ —, f d'r f d'r'
/

r —r'/

——,'(3/n)' f d r[n(r')] + f d r n(r)», [n(r)]+ f d r v,„,(r)n(r) .

The first term is the Thomas-Fermi kinetic energy. The
second and third terms are the (exact) Coulomb and local
exchange energies, respectively. In this paper the Hedin-
Lundqvist parametrization of the LDA correlation energy

e, is used. ' In the last term, v,„,(r) is the Coulomb po-
tential of the two nuclei. The ionic self-energies Sk are
also calculated by the use of the functional (4), with

v,„,(r) = —Zk/
~

r ~, and with self-interaction correctionsi2
to the exchange and correlation energies included. The
Madelung contribution to the total energy can be calculat-
ed by use of the Ewald technique. i~

To speed the calculations, numerical values of the self-
energies S» and the short-range pair interaction pkk are
fit to analytic functions for interpolation between comput-
ed values. First, the range of Madelung potentials needed
is determined for each ion. Then, the charge density for
each ion is calculated self-consistently for several (on the
order of 10) potentials in this range. The self-energy of
each ion is fi't to a quartic polynomial in the Madelung
potential. The resulting polynomial is accurate to about
10 hartree for the range of potentials used in this paper.

The short-range pair interactions [Eq. (3)] are divided
into six parts, as described in the Appendix, and each part
is parametrized. Typically, the largest error in the
parametrized potential is 2—5%, and it is usually this
large only at rather small distances (the largest errors are
at R =2 bohr in the Mg-0 potential). To check the accu-
racy of the parametrization, the energy of MgO in the
rocksalt phase was calculated as a function of the lattice
constant in two ways. First the parametrized self-energies
and potentials were used, and second, the charge densities,
self-energies, and pair interaction potentials at each
volume were calculated explicitly. Only the nearest-
neighbor Mg-0 and 0-0 interactions were used for this
test. The results of both calculations are plotted in Fig. 1.
There is no apparent error in the parametrized form ex-
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FIG. 1. Calculated total energy versus volume for MgO in
the PIB model, showing the difference between the numerical
calculations {circles) and the parametrized form as discussed in
the Appendix {solid line). The parametrized form is accurate

a 3for unit-cell volumes between 8 and 40 A .

cept at very small volumes. Since, as we shall see, the FIB
model is accurate to at most several percent, the parame-
trization scheme is more than adequate for our needs.

The parametrized form of the potentials substantially
simplifies the calculations, because the total energy [Eq.
(1)] can be expressed analytically as a function of the lat-
tice strain. First derivatives are evaluated analytically
within this model. Second derivatives are calculated by
the use of the exact first derivatives and the five-point
Lagrange numerical interpolation formula.

The final computational approximation is the trunca-
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TABLE I. Equilibrium lattice constants of the cubic alkaline-earth oxides.

MgO
Calc.' Expt. Calc.'

Cao
Expt. b Calc.' Expt. b

BaO
Calc.' Expt.

4.30
4.58'
4.34
4.260'
4.293'

4.211 4.82
4.94'

4.810 5.13 5.16 5.49 5.54

'The first line gives the PIB result. Static lattice calculations, except where noted.
bRoom-temperature data (see Ref. 36).
'MEG, Cohen and Gordon (Ref. 3). Watson-sphere [(4)—(5)] model.
~SSMEG, Muhlhausen and Gordon (Ref. 4).
'Boyer (Ref. 6). Room-temperature.
SSMEG, Hemley et al. (Ref. 7).

tion of the sum over ion pairs in the short-range part of
the potential. After the third nearest neighbors of all

types (i.e., third nearest Mg-Mg, 0-0, and Mg-0 pairs in
MgO) the short-range sum in the total energy is essential-

ly converged: on a graph similar to Fig. 1 there is no ap-
parent difference between the curves calculated by trun-
cating at the third- or fourth-neighbor shell, except at
small volumes beyond our interest. This result is valid for
all the compounds and lattices discussed in this paper.

TABLE II. Cohesive energies (eV per molecule}.

PIB
Thomas-Fermi Kohn-Sham

Expt. '

III. EQUILIBRIUM CALCULATIONS

This section is devoted to the equilibrium properties of
the experimentally stable low-pressure 8 1 (rocksalt)
phases of the alkaline-earth oxides MO, where M=Mg,
Ca, Sr, or Ba. Questions of the stability of this phase
within PIB and under pressure will be considered in Sec.
VI. The calculated equilibrium lattice constants are com-
pared with the experimental resultss7 in Table I. The re-
sults of other Gordon-Kim —type calculations. 4's' are also
listed for MgO and CaO. Because the present theory does
not as yet include zero-point motion or temperature ef-
fects, both of which would tend to increase the lattice
constant, it is seen that the present treatment generally
overestimates the equilibrium lattice constants for these
crystals

The cohesive energies of MgO and CaO are calculated
following the method of Cohen and Gordon. The free-
ion total energies were calculated by setting the %atson-
sphere potential to zero for each ion. Table II gives the
energy required to drive the reaction

MO(solid)~M +(free ion)+0 (free ion)+e

for M=Mg and Ca. The fourth column lists the experi-
mental cohesive energies, as tabulated in Ref. 3. The

second column lists the cohesive energy using the PIB en-

ergy [Eq. (1)],with the kinetic part of the ion self-energies
calculated in the Thomas-Fermi approximation [the n ~

term in Eq. (4)]. This approximation gives cohesive ener-
gies that are about 30% smaller than found by experi-
ment. In the third column the cohesive energies calculat-
ed by the method of Kohn and Shami are shown; the use
of this method is discussed in detail in Sec. VIII, where
possible improvements in the model are outlined.

The PIB elastic moduli at equilibrium are compared to
the room-temperature experimental and the rigid-ion
modified electron gas results in Table III. The PIB
moduli were found by numerically differentiating the ex-
act first derivatives, as outlined in Sec. II. The bulk
modulus was calculated from the second derivative of the
energy with respect to volume. The C, modulus was
found by stretching (contracting) the lattice in the [001]
direction, with a volume preserving contraction (stretch)
in the plane perpendicular to [001]. C44 was determined
by stretching (contracting) the lattice in the [111]direc-
tion, and then contracting (stretching) uniformly in the
[111]plane to preserve the volume.

There are several points of interest in Table III. The
most important is that the Cauchy equality demanded of
rigid-ion pair potential models has been broken. Al-
though many-body interactions are not explicitly con-
sidered in calculating the total energy [Eq. (1)], the coup-
ing of the self-energy and pair interactions to the
Madelung potential provides effective many-body interac-
tions, hence in general Cii&C~. In fact, the sign of 5
(=C&z —C44) is correctly predicted in all four cubic
alkaline-earth oxides, a result not possible in breathing-
shell models, ' unless nonspherical deformations are al-
lowed. The results of the MEG calculation for MgO
and CaO, in which a fixed Watson sphere was used, are
also shown in Table III. The present calculation, in which
the %atson sphere is allowed to expand and compress
with deformation of the crystal, gives generally better
agreement with experiment for the individual moduli.

30.7
28.0

21.4
19.1

'See Cohen and Gordon (Ref. 3).

33.5
30.1

31.5
37.4

IV. PRESSURE-VOLUME RELATIONS

Within the parametrized version of FIB outlined in Sec.
II it is straightforward to calculate the equation of state.
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TABLE III. Second-order elastic moduli.

MgO 1.39
1.70

1.63'

E'
Calc. Expt.4

2.70
2.26'

2 97'

Calc. Expt.
C~2

Calc. Expt. 4

0.95' 1.27
1.42'

1.56'

Gale. Expt.

0.99
0.42'

1.01'

Cb
Gale. Expt. Gale.

—0.54
0.00'

QC

Expt.

—0.61'

1.02 2.06 2.23
2.07'

0.50
0.97'

0.66
0.97'

0.81 0.78
0.55'

—0.16
0.00'

—0.22

0.80 0.89

BaO 0.66 0.74

1.71 1.74

1.33 1.74

0.34 0.47

0.33 0.49

0.49 0.56

0.31 0.34

0.69 0.64

0.50 0.38

—0.15 —0.09

+ 0.02 + 0.15

'Bulk modulus, E= 3 (C))+C)2).
'Shear modulus, C,'= —,

' (C» —C»),
'Cauchy violation, 6=C&2 —C~.
Experimental data from Chang and Graham (Ref. 12), except where noted.

'Experimental data from Jackson and Niesler (Ref. 13).
MEG, Cohen and Gordon (Ref. 3}.

E"
Calc. Expt.4 Expt. 4Expt. ' Calc.Calc.

TABLE IV. Pressure derivatives of the elastic moduli at zero pressure.

C,
'

Q&C

Calc. Expt.4

CaO

BaO

4.18
4.02'

4.33
4.09

4.13'

4.85

5.67

3.60
2.42'

3.88
2.85'

4.12

3.84

3.78'

4.14

4.34

3.49

0.79
0.41'

0.07
0.19'

0.04

—0.30

0.20

—0.21

—0.47

1.00
2.00'

1.67
2.00'

1.66

2.29

0.50'

1.89

2.55

3.81

'E'=
3 (C»+ 2C)2).

C,'= —'(C'„—C', ).

C12 C44
4Experimental data from Chang and Graham (Ref. 12), except where noted.
'Experimental data for MgO from Jackson and Niesler (Ref. 13).
~MEG, Cohen and Gordon (Ref. 3).

O0

t t t

0 25 50 75
Pressure (GPa)

FIG. 2. Calculated PIB equation of state for the B 1 and B2
phases of MgO and experimental data from Ref. 14 (squares)
and Ref. 15 (circles).

F t t l t 1 t
1 t

0 25 50 75
Pressure (GPa)

FIG. 3. Calculated and experimental equation of state for the
81 and 82 phases of CaO. The experimental data are from
Ref. 16.
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lated 82 compression curve is shown; according to exper-
iment this compound appears to transform to a distorted
82 structure.

6

o
0

The pressure as a function of volume is calculated from
P(V) =—d4( V)ldV and P(V) is inverted to provide the
usual equations of state. The second derivative of the en-

ergy with respect to volume gives the bulk modulus, viz. ,
K = —V(d 4/@VS), which can be written as a function
of pressure or volume.

Experimental volume versus pressure data are available

for the 81 phases of the alkaline-earth oxides considered
here and for the 82 phases of CaO and SrO. ' The
P- V equations of state calculated from the FIB model for
the 81 and 82 phases of the four compounds are com-

pared with the available experimental data in Figs. 2—5.
In all cases PIB is within 5% of the experimental data.
Note that the agreement with the experiment is particular-

ly good for the low- and high-pressure phases of CaO and
for the high-pressure phase of SrO. For BaO, the calcu-

20 40 60

Pressure {GPa)

FIG. 4. Calculated and experimental equation of state for the

B1 and 82 phases of SrO. The experimental data are from

Ref. 18 (squares) and Ref. 19 (circles and triangles).

V. PRESSURE AND VOLUME DEPENDENCE
OF THE C;J.

In this section we use the PIB model to study the
behavior of the elastic moduli under pressure. The
method is that used in Sec. III: at a fixed volume, the
equilibrium pressure and elastic moduli are found by
making small distortions to the cubic lattice and calculat-
ing the corresponding derivatives. Experimentally, the
pressure derivatives of the elastic moduli at zero pressure
have been determined. ' The results of the FIB calcula-
tion are compared to experiment in Table IV. The
theoretical model correctly predicts the observed trends as
M goes from Mg to Ba. The results of the MEG calcula-
tion are also shown for MgO and CaO. Again the PIB
model gives generally better agreement with experiment
than does the rigid-ion theory. According to the high-

pressure Cauchy condition, d(P)=Ci2 —C44 ——2P, i.e.,
5'=2 (see Ref. 3). The deviation from this relation pro-
vides another measure of the many-body interactions in

the crystal. Values for LL' that are both larger and smaller
than 2 are calculated from the model. This is observed

experimentally as well, although the measured range of
values is larger than that calculated.

The elastic moduli have also been calculated explicitly
at high pressure in the 81 and 82 phases of the oxides.
The pressure dependence of C», Ciz, and C44 are shown
for MgO in Figs. 6 and 7. Also included is the pressure
dependence of the quantity Cii —C~ —2P. From Fig. 6
one can see that the deviation increases with increasing
pressure for MgO. Similar results are found for the other
oxides, although for BaO Ci2 —C~ 2P increases—with

pressure. For each compound the shear modulus C44 is

found to decrease monotonically at high compression in
the 81 phase. On the other hand, C~ increases with

~ g)
Q
E

6 ~

ooo
o~Q0 N

+ oo

"g O
OR-

g o
~ oo
N0
Wo-o

Pressure (GPa)

FIG. 5. Calculated equation of state for the B1 and B2
phases of BaO and experimental data for the B1 phase (Ref.
20).

o—
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I

0 500100 200 800 400
Pressure (GPa)

FIG. 6. Pressure dependence of the elastic moduli of MgO
(B1). C~I (solid line), C» (dashed line), C44 (dashed-dotted
line), and C&2 —C44 —2I' (dashed-double-dotted line).
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FIG. 7. Pressure dependence of the elastic moduli of MgO
(B2). C»» (solid line), C»& (dashed line}, C~ (dashed-dotted

line), and C»2 —C44 —2P (dashed —double-dotted line).

~~
U0

um
~~
40
U

Ld

Cl I I
\ i i r

20 22 24 26 28 30
Valume (X )

FIG. 8. Volume dependence of the elastic moduli of MgO
{81).C» (solid line), C»q (dashed line), and C~ (dashed-dotted
hne).

pressure in the 82 phase. With the exception of BaO,
Ci2 is found to be negative at P =0 for the 82 phases of
all of the compounds. In addition, C44 is negative for
MgO at P =0 in this structure. In other words, the 82
phase of this compound is elastically unstable with respect
to a shear distortion at low pressure and is therefore
predicted to be nonquenchable from high pressure.

Examining the volume dependence of elastic moduli is
important for studying thermal expansion. The behavior
of the elastic moduli as a function of volume for MgO
(81) is shown in Fig. 8. The shear modulus C, vanishes
at a volume of about 27 A, corresponding to a lattice
constant of 4.76 A. Beyond this volume the lattice is un-

stable with respect to a distortion in which the lattice
stretches along one of the three cubic axes and contracts

in the plane perpendicular to the stretch. In alkali halides
it has bein shown that this type of instability is related to
the melting transition. ' ' The pressure dependence of
the bulk modulus is also important in calculating the
melting curve of an ionic solid. '

VI. PHASE TRANSITIONS

In the preceding discussions it was assumed that the
81 (rocksalt) phase was the ground state for these oxide
crystals. Experimentally, this is true, but the Gordon-
Kim —type models occasionally have difficulty predicting
the proper ground state. For example, with free-ion
charge densities the Gordon-Kim model predicts that
lithium fluoride is stable in the zinc-blende (83)-type
structure. To test that the 81 phase is indeed the equili-
brium phase of the alkaline-earth oxides within PIB, the
energy per molecule was calculated as a function of
volume per molecule for six lattices. The first three have
cubic space groups: (1) 81 (rocksalt); (2) 82 (cesium
chloride); (3) 83 (zinc-blende). The other three are hexag-
onal: (4) the tungsten carbide structure; and two nickel
arsenide structures, with (5) the oxygen ion (0); and (6)
the metal ion (M) on the arsenic site. The hexagonal lat-
tices are allowed to completely relax by adjusting the c/a
ratio to minimize the total energy at each volume. The
possibility that the first three phases will undergo a shear
transition into a tetragonal phase with c/a &1 is also con-
sidered.

The PIB results for MgO are shown in Fig. 9. The c/a
ratio as a function of volume and the total energy per
molecule are shown in Figs. 9(a) and 9(b), respectively.
The cubic 81 phase, with no tetragonal distortion, is the
predicted equilibrium phase of MgO. The PIB model
finds that the 81 phase is the equilibrium phase for all of
the alkaline-earth oxides, in agreement with experiment.

The model may also be used to study pressure-induced
phase transitions. The transition occurs at the pressure P
in which the Gibbs free energies of the two phases are
equal. At absolute zero 6 =4+PV, so it is easy to calcu-
late the free energy as a function of pressure with the
parametrized form of the energy. Table V lists the PIB
transition pressures (P,„) and volumes ( V«).

The model predicts that a 81-82 phase transition will
occur under pressure in all of the MO compounds. The
81-82 transition has been observed experimentally in
CaO (Ref. 21) and SrO (Ref. 19). The calculated P„are
in good agreement with experiment for these crystals in
comparison with the earlier MEG theory, ' although the
predicted transition volumes are low (as is the case for
MEG). The 81-82 transition has not been observed in
BaO, which transforms from the 81 phase to a tetragonal
structure at 9.0 Gpa, well below the predicted B1-B2
transition. The PIB total energy for this low-symmetry
structure has not been calculated, so we cannot predict the
transition pressure.

No solid-solid phase transition has yet been observed
experimentally in Mgo. Theoretical predictions for the
81-82 transition range from 117 (Ref. 22) to 1050 GPa
(Ref. 24). The PIB prediction of 250 GPa is nearly identi-
cal to that predicted by the MEG method of Cohen and
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FIG. 9. Study of the possible equilibrium phases of MgO within the PIB model. {a) shows the c/a ratio which minimizes the ener-
1 The 81 and 82 phases (solid line) remain cubic at all pressures. Note thatgy per unit cell for a given structure at a given vo ume. e an

for the volumes shown ere t e zinc- en eh h -bl d (83) (dotted line) structure undergoes a shear compression in the z direction. The nota-
tion for the hexagonal phases is as o ows: ungs en ca1 h

' f ll t ngsten carbide (dashed line); NiAs with 0 on the As site (dashed-dotted line); NiAs
with Mg on the As site as —ou e- o 'n .(d hed —d bl -d tted li e. (b) and (c) show the total energy per unit cell versus volume for each phase, cal-
culated at the c/a ratio given in part a. s ows ert ( } (b) hows the 81 (solid line) 82 (dashed line}, and 83 {dotted-line) phases, while (c) shows
81 (solid line), tungsten car i e s e ine, anb d (da h d 1' ) nd NiAs with 0 (dashed-dotted line), and Mg on the As site (dashed —double-dotted
line).

Gordon3 (but over a factor of 2 lower than the extended
SSMEG model described in Ref. 7, where SSMEG is the
s e -saiih ll-stabilized MEG). On the basis of thermochemical

45systematics, Navrotsky and Davies have suggested that
the high-pressure phase of MgO is not 82, but nickel ar-
senide. As seen in Fig. 9(b), there is no evidence that the
NiAs structure is stable at any pressure according to the
PIB model.

VII. DISCUSSION

A parameter-free model for the cubic alkaline earth ox-
ides has been presented and shown to give a good account
of both zero-pressure equilibrium properties and high-
pressure behavior of these compounds. The most signifi-

cant result of these calculations concerns the predicted
zero-pressure elastic moduli for these oxide crystals. The
calculated trends in the elastic moduli are found to be in
good agreement with experiment. In particular, the Cau-
chy equality is broken for these crystals and the sign of
Cauchy violation is correctly reproduced in each. In addi-
tion, the magnitude of the calculated moduli for MgO and
CaO are generally in better agreement with experiment
than are previous rigid-ion calculations (i.e., with fixed
Watson spheres).

On the other hand, the zero-pressure elastic moduli for
all crystals (except Cii for BaO) are too low, and the
magnitude of the Cauchy violation is underestimated.
The latter effect will be modified by including the thermal
contribution in the theory. This contribution to the Cau-
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TABLE V. B 1-B2 transition.

I'„, GPa
Calc. Expt.

V„{B1),A
Calc. Expt.

V„(B2), A
Calc. Expt.

4V„/V(B1), %
Calc. Expt.

CaO

SrO

BaO

251
256

55
121b

36
90'

) 'JOO'

63c

36

9f

11.3

20.9

26.3

34.0

20 7'

27.5d

10.8

19.3

24.2

31.2

18.7'

24. 1

—4.3

—7.9

—7.9

—8.3

—10.0'

—13.0

'Mao and Bell (Ref. 15).
bMEG model, Cohen and Gordon (Ref. 3).
'Mammone et al. (Ref. 16); see also Jeanloz et al; (Ref. 21).
Sato and Jeanloz (Ref. 19).

'SSMEG, Hemley (Ref. 47}.
Tetragonal structure, Liu and Bassett (Ref. 20).

chy violation has been studied from the standpoint of
rigid-ion theory for MgO and the alkali halides. 43 ~ It is
also likely that more accurate quantitative predictions for
the elastic moduli for these oxide crystals will require fur-
ther study of the density functionals that are used as well
as different treatment of the charge density. Some evi-
dence for this is seen by the ability of the model to predict
other quantities. Although the present treatment is quite
reasonable in predicting the equilibrium lattice constants
of the four alkaline-earth oxides, previous calculations of
the Gordon-Kim —type that use different approximations
find somewhat better agreement, at least for MgO (Table
I). It is therefore likely that further refinements in the
theory will improve the quality of the results for the elas-
ticity of these crystals This po. int is elaborated further
below.

As discussed above, the calculation of the pressure
dependence of the elastic moduli of the simple oxides is
relevant to solid-earth geophysics. It is common to ex-
pressed the pressure dependence of the elastic moduli in
terms of the zero-pressure derivatives. Reliable predic-
tions for these derivatives are important in geophysics.
The improvement in the calculations of these quantities in
comparison to the previous rigid-ion MEG calculations
has been noted above. The best agreement between the
present theory and experiment is obtained for MgO.
Indeed, the calculated value of the pressure derivative of
the bulk modulus E' is within the experimental error
quoted by Jackson and Niesler for MgO. ' At high pres-
sure, however, the present theory overestimates the
compressibility of MgO as shown in Fig. 2. This suggests
the need to examine higher-order zero-pressure derivatives
to model accurately the equation of state at high pres-
sures.

The experimental trend in the pressure dependence of
the shear moduli (C, and C44) for the four crystals is
reproduced by the theory; that is, C,

' increases in going
from MgO to SrO and then decreases for BaO, whereas
C44 decreases from MgO to BaO. Previous studies of the
mechanism of the 81-82 transition in rocksalt-type crys-
tals have suggested a correlation between the softening of

mode and the phase-transition pressure. 4~'464~

The drop in C44 from MgO to SrO is consistent with this
interpretation. As in the case of the alkali halides, the
high-pressure instability where C44 vanishes occurs well
above the predicted 8 1-82 phase-transition pressure.

The predicted transition pressures (P„) for the 81 82-
phase transition in CaO and SrO are very close to experi-
ment. The extremely accurate result for SrO is probably
fortuitous. The situation for CaO may be similar. Recent
attempts at reversing the transition (i.e., decreasing the
pressure from the 82 to the 81 stability field) suggest
that the true thermodynamic boundary may in fact be
closer to that calculated here. ' It should be noted that
whereas these systems have been studied at rooin tempera-
ture and the calculated P„apply to the static lattice, the
8 1-82 phase boundaries for these oxides are estimated to
be only weakly temperature dependent in this range.

Despite the excellent agreement for P„ for CaO and
SrO, the theory underestimates the transition volumes
(b, V„). This discrepancy suggests that there may be a for-
tuitous cancellation of errors in the relative contribution
of the internal energy 4 and the Pb, V terms in the Gibbs
free energies of the 8 1 and 8 2 phases in the region of the
phase transition. That Gordon-Kim —type calculations
tend to underestimate EV„ for CaO and SrO has been
noted previously. ' An earlier MEG calculation for SrO
was in fairly good agreement with experiment for
compressing of the 81 phase (see Refs. 19 and 48); how-
ever, the density of the 82 phase was significantly un-
derestimated (i.e., 6Vt„at the experimental P„was
smaller than experiment). In the present model the densi-

ty of the 82 phase of SrO is in good agreement with ex-
periment, but the compressibility of the 81 phase is too
large. The self-consistent augmented-plane-wave calcula-
tions performed for MgO and CaO by Bukowinski
predict a larger volume difference between the 8 1 and 82
phases of these compounds than does the present model,
particularly at very high pressure ( ~ 100 GPa).

Gordon-Kim —type calculations have been most suc-
cessful for low-Z elements (with the exception of H). It is
therefore interesting that for BaO, the sign of the Cauchy
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violation is correctly calculated (in contrast to the results
of spherical shell models} and the calculated compressibil-
ity in the 8 1 phase is in good agreement anth experiment.
On the whole, however, the results for BaO are generally
poorer than thee for the other oxides studied (e.g., the
magnitude of 5 and X'). It is likely that these problems
are associated with quality of the wave function used for
the Ba + ion. For a high-Z ion such as a Ba + electron-
correlation effects may be quite significant. Furthermore,
the low symmetry of the high-pressure phases of BaO
suggests that nonspherical deformations of the charge
density may be important in this crystal. The latter prob-
lem may require charge densities obtained from band-
structure calculations, as discussed below.

Finally, possible improvements in the fundamental
theory employed here are discussed. In this study, the
Thomas-Fermi expression has been used for the kinetic
energy in both the expression for the self-energy of the
ions and the pair interaction energies. Indeed, in the
present theory, the pair interaction energies can only be
found within the Thomas-Fermi approximation. The ac-
curacy of the approximation is shown by the good agree-
ment with experimental lattice constants shown above.
This agreement suggests that although the Thomas-Fermi
approximation errs in calculating the total energy of the
system, it correctly predicts the change in energy due to a
distortion of the lattice.

In finding the cohesive energy of an ionic solid, howev-

er, one does not compare the total energies of two similar
lattices, since in one "lattice" the ions are infinitely far
apart. The pair interactions are only a small part of the
cohesive energy (about 3 eV in MgO and CaO), the rest
being due to the change in self-energy of the ions. It
seeins reasonable to use a better approximation for the
kinetic-energy part of the ionic self-energy. Within the
local-density approximation, the kinetic energy is exactly
determined by the method of Kohn and Sham. is When
this functional is used to calculate the self-energies of the
iona, while still employing the Thomas-Fermi formalism
for the pair energies, the cohesive energies listed in the
third column of Table II are found. These calculations
are in good agreement with experiment and with the cal-
culations of Ref. 3, which are listed in the fourth column
of Table II.

On the other hand, when the total energy is calculated
as a function of volume with the Kohn-Sham self-energy,
the predicted equihbrium lattice constants are 4.02 A for
MgO and 4.49 A for CaO, significantly smaller than those
found experimentally, or with the Thomas-Fermi version
of PIB. The error in this approximation probably comes
from the use of different energy functionals (Kohn-Sham
and Thomas-Fermi) in the self-energy and the pair energy.
To illustrate this point consider what happens when the
lattice contracts: The PIB effect reduces the amount of
overlap (from what it would be if ions were rigid) by mov-
ing charge from the tail region of the 0 ion to a region
nearer the oxygen ion nucleus. If two different function-
als are used for the self-energy and pair potentials, part of
the net charge by energy comes from this difference,
which is unphysical. Recent work by Harris suggests
that one can improve upon the Thomas-Fermi pair energy

while maintaining the spirit of the Gordon-Kim approxi-
mation. Studies in this area are in progress.

Another approach to improve the cohesive energies
may be by the use of better charge densities within a PIB
treatment. It should be pointed out that the Watson-
sphere induced charge densities do not minimize the PIB
crystal energy [Eq. (I)). Better results may be obtained if
variational parameters Pk are introduced to give in Eq.
(1}.

ACKNOWLEDGMENTS

We would like to thank J. L. Feldman, R. E. Cohen, C.
Y. Fong, J. R. Hardy, J. W. Flocken, and R. G. Gordon,
for useful discussions, and R. M. Hazen for review of the
manuscript. Work carried out at the U. S. Naval
Research Laboratory was supported by the U. S. Office of
Naval Research (Materials Science Division).

APPENDIX: PAIR POTENTIALS
AND PARAMETRIZATION

The pair potentials are calculated in a manner that is
slightly different than found in the original Gordon and
Kim paper. First, the kinetic energy and exchange func-
tionals (denoted as Vx and V„, respectively), are identical
to Gordon and Kim's, but for the correlation potential
(denoted as V,} the Hedin-Lundqvist parametrization is
used. The latter is the functional used to calculate the
electron density in the Liberman program. ' Second, the
electrostatic interaction is divided into four parts, as fol-
lows. The charge density for the ith ion is written as

P;(r) =Z;5(r) —n;(r), (Al)

where Z; is the atomic number, 5(r) is the Dirac 5 func-
tion, and n;(r) is the electron number density. Defining¹=f d r n;(r) as the number of electrons in the ith
ion, the electrostatic interaction energy between ion i and
ion j, separated by a vector R is

k, k', 0'

and with Pk chosen to minimize the energy for a given
structure. As pointed out by Harris, (1}is not the exact
Hamiltonian of the system, so a variational minimization
need not improve the agreement with experiment. Use of
Eq. (5) will, however, increase the calculated cohesive en-

ergy, since 4 in (5) is necessarily less than or equal to 4 in
(1).

Another possible improvement of PIB would be to use
more accurate charge densities. As mentioned above, pre-
vious Gordon-Kim calculations for oxides have used
spherical charge densities determined from Hartree-Fock
theory. ' ' Another approach is to include nonspherical
deformations of charge density. This extension could be
accomplished by generating densities from APW calcula-
tions, as was done by Boyer, but instead of using a rigid-
ion model, charge densities could be calculated at dif-
ferent volumes.
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(Z; —Ã~ )(ZJ —N~ )
V„J(R)= +Z;P,J.(R)

R

+ZJP,t(R)+ V,tJ(R), (A2)

P»(R)= I dim;(r} 1 1
(A3)

where P„ is the short-range part of the electrostatic po-
tential of the ith ion:

pair potentials —V„Vk, —V„, and —V, are positive de-
finite. They also decay exponentially at large R for ex-

ponentially decaying electron densities, allowing us to use
a relatively simple form to parametrize the pair potentials.
In doing this, one must account for the change in the po-
tentials as a function of both the distance and the
Madelung potentials at the ion sites. We fit the short-
range electrostatic potentials to the form

P„(P,R) =exp[f~o" (P)+f'i'(P)(R —R )

and V„J(R) is the short-range part of the interaction be-
tween the two electron distributions: where

+f,"(P)(R-' —R -')], (A5)

V~= r r'n r n~
r'

(A4)

The advantage of this form of the Coulomb interaction is
that P„(R)~0 and V„J(R)&0 for all R, and both func-
tions decay exponentially with increasing R. Evaluating
the potentials in this fashion substantially reduces the
roundoff error in the calculation.

As defined here, the electrostatic potentials P, and the
I

fk (P) Cko+Ckl(P Pt)+—&k2(P Pt)' —
~

The pair potentials are fitted to the form

VttJ(Pt, PJ', R ) =atexp[gki"J'(P;, PJ )+g'i 'J'(P;, PJ )(R R)—
+ ""(P P NR ' —R ')]

(A6)

where a; =+1 for the kinetic-energy interaction and —1

for everything else, and

g "'(P PJ)="k'0' +"k'i'(P P)+"k—'2' (PJ PJ)+dk—'3 (P P) +"—k4' (P P}(PJ P—J)+dk'5—'(PJ —PJ)

where P;, PJ, and R are fixed parameters, usually taken to
be the value at the midpoint of the range over which the
fits are made. The term linear in R accurately accounts
for the exponential decay of the Gordon-Kim pair interac-
tion at large distances, and the I/R term is used to pro-
vide better agreement at small values of R. It is not the
correct form of the interaction as R~0, but the present
applications of the model are concerned only with the re-
gion R & 1. The quadratic fit to the potential parameters
is adequate for the range of potentials discussed here.

The parametrization procedure is as follows: the range
of Watson sphere potentials P required for each ion are
determined first, along with the range of distances R
needed for each pair interaction. The charge densities re-

I

quired for each ion are then calculated at several (usually
on the order of 10) values of P in the required range. The
value for P„(R) at a suitable number of points for each P,
and Vt,J.(R) (t =s; k, x, or c) for each P; and PJ, and a
similar mesh of R values are then found. These values
are then fitted to (A5} and (A6) by the method of linear
least squares, fitting the logarithm of the potential to the
logarithm of (A5) and (A6). Typically, the fit is within
5% of the true potential at any point within the range of
the fit, with the largest errors being made at the end-
points. As shown in Sec. II, the fit is adequate so long as
unit cell volumes are kept within reasonable bounds. The
values for the parameters are available from the authors
on request.
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