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The scattering of high-energy phonons at irregular surfaces without and with liquid He is dis-
cussed theoretically by taking account of all eigenmodes of phonons in a solid. It is found that the
diffuse component for irregular surfaces without liquid He increases with increasing frequency pro-
portional to v*. The mode-converted surface phonons at irregular surfaces play a role in the diffuse
scattering observed in the time-of-flight phonon-reflection experiments. In this connection, the
causes of the anomalous behavior of high-energy phonons scattered at the solid—liquid-He interface
are discussed. It is pointed out that the mode-converted surface phonons are of considerable impor-
tance for the effective phonon transmission across the solid—liquid-He interface. This is concluded
from the analysis of the scattering processes of mode-converted surface phonons. The shape of
phonon-reflection signals is obtained as a function of time.

I. INTRODUCTION

With the advent of high-energy-phonon generation and
detection techniques, it has become possible to study the
scattering of phonons of known polarization, frequency,
and propagation direction in solids. These techniques
have been applied to investigations in various fields of
condensed-matter physics.! One of the significant appli-
cations is the scattering of high-energy phonons at solid
surfaces or interfaces. Recently, Taborek and Good-
stein®>~* have succeeded in distinguishing clearly the pho-
non modes when reflecting at sapphire surfaces with the
use of the heat-pulse technique. In addition, they have re-
vealed that bulk phonons (hereafter referred to as B pho-
nons) are scattered both specularly and diffusely at crystal
surfaces. An additional striking feature is that diffuse
signals are severely affected by placing liquid He at the
solid surfaces, but that the specular signals are only slight-
ly influenced. The underlying mechanisms of these phe-
nomena are not yet well understood, though recent studies
of the scattering of high-energy phonons with the use of
the heat-pulse technique,”~® phonon imaging,’~!! and
thermal conduction'>!* have improved our knowledge of
boundary scattering.

The first part of this paper treats the scattering of
high-frequency phonons at irregular surfaces without
liquid He, and clarifies theoretically the cause of the dif-
fuse scattering observed in the time-of-flight phonon-
reflection experiments. In the succeeding part, phonon
scattering at the solid-liquid-He interface will be dis-
cussed. In the present paper the sapphire surface is used
for illustration, because sapphire is a mildly anisotropic
crystal, which allows one to use the isotropic elastic ap-
proximation if the phonon-focusing effect is disregarded.
The plan of this paper is as follows: In Sec. II the eigen-
modes of phonons in a solid with a free boundary are
briefly recapitulated. With the aid of this formalism, the
scattering cross sections are obtained for all phonon eigen-
modes. Relations between the differential cross sections
and the time-of-flight reflection signals are obtained. In

33

Sec. III it is shown that the diffuse signals are due to two
causes. One is direct scattering at irregular surface, B
phonon—B phonons, and the other is the process B
phonons—ssurface phonons (referred to as R phonons),
where it is demonstrated that the mode-converted R pho-
nons are backscattered into B phonons by surface irregu-
larities and constitute the diffuse signal. In Sec. IV the
shape of the diffuse signal is calculated as a function of
time. Section V describes the couplings between phonons
and the He system close to the boundary: the
displacement-type coupling and the deformation coupling.
It is concluded that the direct interaction between B pho-
nons and the He system cannot give the effective energy
transfer below about 1 THz. In Sec. VI the R-phonon-
mediated energy-transfer mechanism is investigated. It is
suggested that the mode-converted R phonons play a role
in the anomalous absorption of phonons at the
solid—liquid-He interface at around 100 GHz. Conclud-
ing remarks are given in the final section.

II. MODE CONVYERSION OF B PHONONS
AT CRYSTAL SURFACE

High-resolution time-of-flight phonon-reflection experi-
ments have revealed that the reflected signals are com-
posed of both specular and diffuse parts.2~* The cause of
diffuse scattering of the phonons actually lies in the sur-
face irregularities which violate translational invariance
parallel to the surface. We could consider various surface
irregularities: a rough surface, imperfections like disloca-
tions in the vicinity of the surface, and surfaces covered
by chemisorbed or physisorbed impurities. This paper
treats mainly the rough surface, since the sapphire sur-
faces used in the phonon-reflection experiments are
known to be well characterized by a scale of roughness of
about 100 A.

There are five phonon eigenmodes specified by J which
are orthogonal in the sense of Eq. (A4) (see the Appen-
dix)."* For the transverse (T) phonons, there exist two
kinds of eigenmodes which have a velocity spectrum
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¢ >cr, where cy is the velocity of T phonons. The first
mode is the TH mode polarized parallel to the surface [see
Fig. 1(a)]. The angle 6y of incidence and reflection is re-
lated to ¢ by cot’@y =B*(c)=(c/cr)*—1 and the range of
the velocity ¢ is from ¢z (8 =m/2) to infinity (65 =0).
The other T mode (referred to as the TV mode) consists of
T phonons polarized in the sagital plane followed by
evanescent pseudo-surface-waves [see Fig. 1(b)]. The velo-
city ¢ of this mode is confined in the finite range
cr<c<cp, where ¢; is the velocity of longitudinal (L)
phonons. Another mode consists of mixed longitudinal
(L) and transverse (TV) waves with vertical polarization,
which interact with each other through the surface [Figs.
1(c) and 1(d)]. In these modes c takes a continuous value
greater than c; .

A. Scattering of phonons at rough surfaces

Let us consider a rough surface whose height from the
plane z =0 is given by a function f(r), where r is the

|

Hy =3 (@,0,/45%)' [ 7 dz F(k+K)u,(2)up(2)8(2)a] (1) —a,(0][a) () —api0)] ,
JJ'

where F(k+k’) is a two-dimensional Fourier transform
of the roughness function f(r) and k is the two-
dimensional wave vector [see Eq. (2.3)]. The decay rate of
the J-mode phonon into the J'-mode phonon is obtained
from the imaginary part of the self-energy given by
y=—2Im(II(J,w;)), and one finds'" 1

Y —J)=3 Sc0hblo;—or) (| Fl+k)|?)
2

© 2
X 'fo uy(z)-uy(2)8(z)dz| . (2.2)

In Eq. (2.2), the ensemble-averaged Fourier transform of
the roughness function is defined by
(| F(k+k)|2)=S [ dre'* ¥ (f(r)f(0)) , (2.3)

where S is the normalization area introduced by integrat-
ing over r.

B. Differential cross section of L phonons

The differential cross section of J-mode phonons is de-
fined by

#i0,y (T —T")
o)

where QJ is the incident energy flux of J phonons with
the velocity c; given by

do(J—J")= , (2.4)

0;=+po|uy | 20%c;S . (2.5)

The scattering of T phonons at the solid surface has been
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two-dimensional position vector. The spatial dependences
of the mass density p(x) and the elastic constants
A(x),u(x) are expressed by combining the roughness func-
tion f(r) and the Heaviside step function as
g(x)=goO0(z +£(r)),"* where g, is the mean value of the
mass density or elastic constants. According to Steg and
Klemens,'® as a first approximation, the bumps of rough-
ness can be described as a mass-density fluctuation. The
effects of roughness on the elastic-constant fluctuations
are discussed later. For f(r) small compared with the
wavelength, as considered here, we can expand the step
function as

O(z +f(r))=06(z)—f(r)b(z) .

Thus, one can see that the random part of the mass densi-
ty is separated as Ap(r)=pqf (r), where Ap(r) has dimen-
sions of gcm™2. We write the perturbed Hamiltonian due
to the mass density fluctuation as'”"!8

(2.1)
Surface
evi 8y
TV ! TV
(b)
:GL eL:ql
i L l
TV TV L TV L
(¢) (d)

FIG. 1. (a) Transverse mode polarized parallel to the surface.
The angle of incidence 6y is related to B(c) by cotfy=pl(c),
where c takes the continuous values greater than cy. This mode
is denoted as TH mode. (b) Transverse mode polarized in the
vertical plane (TV mode). The longitudinal part is localized in
the surface. The velocity of the wave front (c) traversing the
surface takes the values between c¢r and c¢;. (c) Transverse
mode with vertical polarization (TV mode). The incident TV
waves are separated into the transverse and longitudinal waves
when reflecting at the surface. The angle of incidence 6y is ob-
tained through the relation coty, =6(c) and ¢ >c¢.. (d) Longitu-
dinal (L) mode. The angle of incidence and/or reflection are
given by cotf; =8(c) for the L wave and cotf,=p(c) for the
transverse wave, where c is greater than c; .
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discussed in a previous short report!’ (hereafter referred to
as I). The present paper describes in more detail the prob-
lem of the scattering of L phonons. Let us consider the
case where L phonons are incident at angle 6; on a rough
surface and are scattered into B phonons. The energy flux
of L phonons can be obtained from the first term in
square brackets of Eq. (A6) in the Appendix:

fiw’c

—_ (2.6)
4mcp 8(c)

QL=
The cross section [Eq. (2.4)] of L phonons into L phonons
is obtained as

2
°°§,'/’ +5%

where {=D +iB [see Eq. (A7)], y =c/cL, ¥ is the angle
between the two-dimensional vector k and k’, and the fac-
tor W is obtained by assuming the white noise for the
correlation function (2.3):

W= (Apa 2w
8mp? ’

where a is the characteristic length parameter of the sur-
face roughness. For the process L—TH, one finds

We, sin*ypdx d
dcr(L—»TH):——————-cLsmw xdy
cr 3e2x Ly:4

where x =c /cy. The cross section into TV phonons with
spectral range larger than ¢; becomes

do(L—-L)= LATY I 2.7
CL

> dydy,
c’y?

(2.8)

(2.9)

r |2
do(L—TV)=2 L& dydy, (210
crey

B'cos’ P+ %2_

and the cross section into TV phonons of spectral range
¢r <c <cy is obtained as

112
do(L—TV)= 2 141"

ey dxdy. (.11

82
" cos2h+ ——
B'cos Yy I

In a manner similar to that used in deriving Egs.
(2.77—(2.11), the cross sections of the reverse processes
contributing to the time-of-flight spectra become as fol-
lows:

wig| sztlfdy dy

do(TH—-L)= vy (2.12)
CTCL)’ e
r|2 2 2
do(TV—L)= 37 lfj Beosd s layay,
cic’y 8
(2.13)
and the ¥ mode of the spectral range ¢ <c <cy,
2. v 2
do(TV—L)= W3[§ 4L B°g’,s Yo ldydy. (2.14)
LCY

C. Decay rate of L phonons into R phonons

Finally, let us consider the rate (L—R) of L phonons
into R phonons. The scalar product in the definition of
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y(L—R) of Eq. (2.2) yields from Egs. (A6) and (A9),

kk' | cos’yf]
| ug-ug | 2= Ik —8—‘+y25f%], (2.15)
where f,=1-2yn/(1479?) and f,=1-2/(14+77.

From Eq. (2.4), one has the cross section

wWe
do(L—»R)=— (2.16)
2cRC

(oSS + 78 Dy
Although the above cross section is not observable directly
in the time-of-flight reflection experiment, R phonons
converted at the rough surface should be rescattered into
B phonons by the roughness and constitute the diffuse sig-
nal in the time-of-flight experiments. The detailed argu-
ments on the effect of mode-converted R phonons on the
time-of-flight reflection experiment are given in Sec. IV.

III. SPECULAR VERSUS DIFFUSE SCATTERING
OF TH-PHONONS

In this section we discuss the frequency dependence of
the partition ratio between specular and diffuse parts by
illustrating TH-mode phonons. The scattering probability
of a TH phonon incident at an arbitrary angle 6y with
angular frequency w into the diffuse scattering part is ex-
pressed by

tag=to 3,
7€(Tp)

INTH—J")/Qy +#wT(TH—R)/Qy ,

(3.1
where I'(TH—J’) is integrated over the scattered angle:
N(TH—J)= [ [ y(TH—J)dx dy

and {Jp} is the set of all J’s except R phonons. The ex-
plicit expression for the first term of Eq. (3.1) is

(aBp)’w’cF,

N(TH-J' )=
2 (2m)%(2p)c}.

JEfg)

(3.2)

Here the factor F;=I,+1,+1; is the numerical constant
of the value ~3.5, where the first term (I, =) corre-
sponds to the process TH—TH, and I, and I; corre-
spond to the decay processes into TV phonons and L pho-
nons. The decay rate of a TH phonon into a R phonon
becomes

(aBp)o’cf?
Srp’cicipK
Hence, the first term of Eq. (3.1) becomes
(aBp)Yw*F,

’
8mipict

I'(TH—-R)= (3.3)

ty(w, TH—B)= (3.4)

and the second term is obtained as

(aBpYw'f?

toy(w, TH-R)= .
M - 16p’crciK

(3.5)

We see from Eq. (3.4) and (3.5) that the component of the
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diffuse scattering increases with increasing frequency pro-
portional to the fourth power. This is due to the fact that
the correlation function of roughness is taken as the white
noise. The extension to the surface which has different
correlation characteristics is straightforward, but this is
not essential in the present work.

The component of specular reflection coefficient is ob-
tained by extracting the part of the diffuse scattering from
unity as

rs=l-—(th+t2M) . (36)
The sapphire surfaces used in experiments’~*°~!* have a
roughness scale of the order of §=100 A. This indicates
that one can treat the surfacg with mean variation in
depth and width of §=100 A with the areal density
w =0.56"216 The characteristic length 8 of roughness
should correspond to the length scale a given in Egs. (3.4)
and (3.5), and one can replace (aAp)2 by w(AM)", where
the averaged mass of “bump” is estimated as
AM =pya*=3.99 1078 g for a =100 A. The resultant
probability of the diffuse scattering for TH phonons of
frequency v in GHz yields for sapphire crystal,

tagr~10""v*, 3.7)
where the following values for sapphire are used:
¢ =11X10° cm/sec and ¢ty =6X10° cm/sec. This in-
dicates that TH phonons with frequency around 100 GHz
are scattered dominantly into diffuse part and, for suffi-
cient low frequencies ( << 100 GHz), most of the incident
phonons are specularly reflected. The same conclusion is
true for L phonons. We omit the discussion on this point
for L phonons. It should be emphasized that the proba-
bility of diffuse scattering ¢4 cannot exceed unity. From
this condition we can estimate the frequency regime
where the present analysis is valid. In the case of rough-
ness parameter 5=100 A, one has the condition v <200
GHz. This value is reasonable because the corresponding
wavelength of 200 GHz phonons becomes about 300 A.

do*(J—J')cos?08(t —2d /c;;)
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IV. DIFFUSE SIGNALS IN THE TIME-OF-FLIGHT
REFLECTION SIGNALS

A. Direct process: B + roughness—B

Let us consider the case in which the heater and bolom-
eter are very small and close together. Figure 2 shows the
geometry of our system with the definition of the thick-
ness of crystal h and the polar coordinate r. Then each
element of the area dA =r dr dy on the top surface is ir-
radiated by B phonons emitted from the heater of the
Lambertian source and the element dA reradiates pho-
nons. Since the heater and bolometer are assumed to be
very small and close together, the bolometer detects only
the phonons backscattered with the same angle as that of
incident phonons: that is, the element dA4 can be con-
sidered as a new source. Defining S(¢) as the heat flux
emitted by the heater and taking into account the time de-
lay of arrival at the bolometer t=2d/c;, where
d =(r*+h?)'"?, we have the fraction of the reflected in-
tensity

da(J—J', ¢, ¥)cos*0S (t —2d /c;;)
(r’+h*? '
Here cj; is defined as c¢;;=2c;c;/(cy+cy). The cross
section do(J—J') is defined by Egs. (2.9)—(2.14). The
diffuse signal R(t) as a function of time is obtained by

integrating Eq. (4.1) over r (over the irradiated surface)
and assuming the heat pulse described by a 8 function

S()=8(1)S, .

dR,= 4.1)

(4.2)

This approximation is valid for the crystal of about 1 cm
in thickness because heat pulses used in the experiments
were of 10—100 nsec duration.>~% The relation between r

in Eq. (4.1) and x in Egs. (2.9)—(2.14) is obtained from
x2=cot’0+1=(h/r*+1, x=c/cy . 4.3)

Using this relation, the diffuse signal as a function of time
is represented by

27
R(1)=S dy | rdr 44
° J,J'GE[JB] fo f (r*+hn?? “44)
|
Here the definition of the cross section is E7PWey (ctit?/4—h?)
r3(L—»TH)= s 4 .10 ’
do*(J—J')=do(J—J')/dx dy . creirt h
The resultant expression for L phonons of (4.4) is obtained
by defining R, =Y, r;, where tz2h/err. @47
3 12 | (c}t?/a—h?)? iti i
rL—L)= 4 17-PTZ' 112(_;' | 2 Lon?] Here the definition of Pis
crt h
5.4
t>2h/c,, (4.5) P=Ef's_si . 4.8)
3mdhPWer(ciot?/4—h?) r
r(L—>TV)= 5 6 12 ’
ciecrt The other processes concerning T phonons have been
t>2h/cir, (4.6) givenin L.
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rough surface

f— ]

Source
& Detector

FIG. 2. Geometric arrangement of the present system. The
heater and bolometer are assumed to be close together. The
crystal thickness is 4.

B. Component of R phonons in diffuse signals
and its time delay

B phonons scattered at the surface have a high proba-
bility of mode conversion into R phonons as shown in the
next subsection [see Eq. (4.16)]. At first, to see the effect
of mode-converted R phonons on the diffuse signals, let
us consider the transition rate of R phonons by roughness.
(Note that the mode-converted B phonons at a rough sur-
face are assumed to reach the detector without scattering
in the present calculation.) The inverse of the lifetime of
R phonons into B’ phonons can be obtained by using Eq.
(2.2) as well:

2WfiwF,

[(R—B)=—7
CTCRK

(4.9

This transition rate is similar to that obtained by Maradu-
din and Mills'® except the numerical factor. For the pro-
cess (R—R), one has the transition rate,

[D(R—R)=mWaolf,+2v*f3) /(cRK?) . (4.10)

We see, from the ratio of Eqgs. (4.9) and (4.10), that the
transition rate of R phonons into R phonons is 3.21 times
as large as that of R phonons into B phonons:
I'(R—R)=3.21T'(R—B). It should be noted that Mara-
dudin and Mills!® obtained the result I'(R—R)
~10I'(R—B) in their calculation of the attenuation of R
phonons due to roughness. In a similar manner done in
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t(B=R) _t(R=R) t(R=R) _t(R-R)

r(R-B)
r(R-B)
r(R-B)
r(B-B)

FIG. 3. Higher-order processes of scattering of mode-
converted R phonons. The incident energy is normalized to be
unity; that is, t(B—R)+r(B—B)=1.

deriving Eq. (3.4), i.e., replacing the roughness by the de-
fects with the average mass of bumps AM =pya’, one
finds the effective lifetime of R phonons taking account
of Eqs. (4.9) and (4.10),

‘rRz«lOOV_5 sec , (4.11)

where v is in GHz. In deriving Eq. (4.11) the known
values for sapphire are used: c¢;=11.0X10°cm/sec,
cr=6x10° cm/sec, cg=0.92cty, and py=3.99 g/cm>.
By taking v=50—100 GHz, we have g ~ 10 nsec. These
results indicate that, when R phonons propagate along the
rough surface, the R phonons should be backscattered
into B phonons with the life time 7z. This should result
in the time delay in the temporal signals of diffuse
scattering. However, it is too small to distinguish this
time delay in the diffuse signals with our experimental ac-
curacy (since the time duration of heat pulse is 10—100
nsec). Thus, we can neglect the time-delay effect in the
analysis of the temporal shape of diffuse tail for the pro-
cess of mode-converted R phonons.

C. Ratio of intensities of diffuse signals
between two processes: B—B and B—-R—B

R phonons converted at rough surface should be back-
scattered into B phonons as mentioned in the previous
subsection. This is analyzed in more detail by the follow-
ing arguments considering the higher-order scattering
processes. Let us define the normalized rates of the mode
conversion as r(J—J'«R) for B—B and ¢(J—R) for
B—R [see Eqgs. (3.4) and (3.5)]. When a J phonon is scat-
tered at rough surface, the incident energy normalized to
unity is shared by B phonon and R phonon. This situa-
tion is expressed in the following form by considering the
higher-order scattering processes (see Fig. 3):

r(J—>J)+t(J—>R) I r(R->J)+tJ—>R) I [1-r(R—=J)] ¥ r(R—J")
JE (g} J'E (g} JE(Jg)
+tU-R[I— 3 rR-INP S rRoIN+ = 3 rU—J)+t(J-R). (4.12)
JE(Jg) J"E(Jg) JE )

Here the first term of the left-hand side is the lowest-order process corresponding to the scattering B—B. The second
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term is the second-order process representing the process B—>R-—B and the third term indicates the process
B—R—R-—B. One can sum up the left-hand side into the form of the right-hand side of Eq. (4.12) which should be-
come unity from the law of energy conservation. All energy converted from J-mode phonon into R phonon is backscat-
tered into B phonon. Though the more systematic treatment should be made in terms of a Green function, these are not
necessary in the analysis of the diffuse signals in the time-of-flight experiments.

Now let us consider the case where J phonons are incident at the rough surface and scattered into the definite J'54R

phonons and R phonons. These processes are given in the following expression from Eq. (4.11):

r(J—=J)+t(J-RIr(R>J)+t(J—-R) |1— 2
JEUg)

=r(J->J")+t(J—-R)r(R-J)/ 2

r(R—J'") [r(R—>J")+ ---

r(R—J'). (4.13)

JEp)

By comparing the first and second term of Eq. (4.13), we have the partition ratio of the processes (J—R) and

(J—J+#R),

t(J—>R)r(R-J')

Prr=T02m s rr=T)
J'elJg}

(4.14)

For example, the ratio between the processes (TH—TH) and (TH—R—TH) yields

t(TH—>R)r(R—TH)

(4.15)

Pratn = TR S TH)[- (RS TH) 47 (RSTM) +7(RSL)]

Equation (4.15) is estimated as

£ [ep |
Pn{.’r}{="'2£‘l‘ - (I|+12+I3)—1, (4.16)

CR

where I,—I; are defined in Eq. (3.2). Numerical estima-
tion of Egs. (4.16) is made in the next subsection together
with the analysis of the temporal shape of reflection sig-
nals.

D. Numerical results

For the calculation of the time-of-flight reflection spec-
tra, the parameters for sapphire are used by identifying
the velocity of slow transverse phonons (ST) as that of TH
phonons and the fast transverse phonons (FT) as TV pho-
nons; cst=6.0X10° cm/sec, cpr =6.5X 10° cm/sec, and
¢, =11.0Xx10° cm/sec. Figure 4 shows the calculated
shape of reflection signals. The thicknesses of crystals are
taken to be £ =1.0 cm. Curves 6, 5, and 4 correspond to
the T phonons TH—-TH, TH—TV, and TV->TV.
Curves 3, 2, and 1 are due to the L phonons L—TH,
L—TV, and L—L. Curve 4 comes from the mode con-
version from B phonons to B phonons, and curve B shows
the component of the mode-converted R phonons. The
ratio of height of curves 64 and 6B is pyy.T =0.2 and of
2A4 and 2B is pyy.tv=0.07. These are calculated from
Eq. (4.14). In Fig. 4 we find that curves 2 and 3 are
rounded in comparison with the other processes. This in-
dicates the absence of the forward scattering in the pro-
cesses L—-TH and L—TV. This is attributed to the fact
that the roughness has been simplified as the mass defects.
As seen from the interaction Hamiltonian (2.1), the mass-

[

defect interaction includes the scalar product of the polar-
ization vectors, and this vanishes for the processes be-
tween L phonons and T phonons (L—TH and L—TYV).
Provided that the fluctuation of the elastic constants are
taken into account as done in Ref. 18, one can obtain the
sharp peaks for curves 2 and 3.

Signal (arbit. units)

Time(psec)

FIG. 4. Calculated results of reflection signal taking into ac-
count all phonon modes. Curve A comes from the mode con-
version to B phonons. Curve B represents the component of the
mode-converted R phonons. The thickness of crystal is taken to
be h=1 cm. The peaks (1—6) correspond to the processes
L-L, L-»TV, L»TH, TV—>TV, TV-TH, and TH—-TH,
respectively.
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V. PHONON TRANSMISSION ACROSS
THE SOLID-LIQUID He INTERFACE

This and following sections discuss the origin of effec-
tive phonon transmission across the solid-liquid He inter-
face. This so-called Kapitza problem above about 1 K
has been studied theoretically in two different views:2?!
the modification of acoustic mismatch (AM) theory by in-
corporating surface irregularities, and the quantum
mechanical extension taking into account the interaction
between phonons and the He system or adsorbed impuri-
ties. The modified AM theory yields valuable informa-
tion with regard to the role of surface irregularities for
this problem, but it is unable to provide insight on the
striking features observed with the aid of new techniques
of phonon generation and detection such as the cosine law
of transmitted phonons,z‘ and the isotope effects between
He and *He.?*?* Figures 5(a) and 5(b) are the schematic
diagram showing the anomalous transmission of high-
energy phonons across the solid-lic}uid He boundary. A
brief outline was published earlier.2* This paper gives the
theory in greater detail with various extensions, and
brings out clearly the physical significance of the mecha-
nism proposed in the present work.

A. He system close to the boundary

Apart from poorly defined surfaces such as metal sur-
faces (hard to handle theoretically), one can consider
well-characterized surfaces such as those of sapphire used
in the phonon reflection experiments.? It has been well ac-
cepted for these cases that the first adsorbed layer of He
(next to the surface) is immobile at sufficiently low tem-
peratures with a density similar to that in bulk solid He at
a pressure of about 100 atm.?> At the location far from
the range of the attractive substrate potential, the liquid
He should maintain its bulk properties. The He atoms be-
tween the first adsorbed layer and bulk liquid are bound
weakly to the substrate and their motion is quite restrict-
ed. One can regard it as a dense fluid with no long-range
order?>?¢ at temperatures around 1 K, where the most ex-
periments of phonon reflection and transmission have
been performed.

narrow cone cos®
He He
Solid Solid
Low energy High energy
(a) (b)

FIG. 5. Schematic diagrams of the scattering of phonons at
the solid—liquid-He interface. (a) This shows the scattering of
low-energy phonon. The transmitted phonons are within the
critical cone determined from the law of momentum conserva-
tion. (b) This is the diagram of scattering of high-energy pho-
nons. The angular distribution of transmitted phonons follows
the cosine law. The diffuse component of reflected phonons are
much influenced in the presence of liquid He.
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The two-level tunneling state (TLS) model has been in-
troduced for liquid *He or *“He by Andreev?”?® to explain
the observed T-linear specific heats above the quantum
degenerate temperature (no long-range order). The con-
cept of the TLS’s for the He system is quite analogous in
many respects to the TLS model in glasses originally pro-
posed by Anderson, Halperin, and Varma,” and Phil-
lips.® The TLS’s are responsible for the universal low-
temperature properties shared by all configurationally
disordered systems (see Fig. 6). The essential differences
of the TLS’s between liquid “He (or *He) and glasses are
that He atoms possess high tunneling probabilities due to
a large overlap of the wave functions of the He atoms and
the density of states per unit energy n (E) of the TLS’s is
larger than that of glasses by a factor of the order of 10°
as shown in the later discussion. The TLS model has been
also introduced independently by the present author for
the He system close to the interface,3! where the positions
of He atoms should be quite irregularly distributed (no
long-range order).

It is interesting to note that the observed specific heats
of the adsorbed He system are explainable by the TLS
model above a few degrees K both for *He and *He.’?—3¢
These results are to be compared with those of inelastic
neutron scattering on He-layered surfaces revealing
dispersionless surface excitations.>* The maximum energy
difference E,, can be estimated to be about 100 K from
the binding energy of van der Waals potential to the sub-
strate. The magnitude of the level density v(E) per one
He atom becomes z/E,,, where z is the effective number
of neighboring vacant positions. By taking z~5 and
E,, ~100 K, the density of states per one atom can be es-
timated as v(E)=3X 10" erg~!. The number density of
He atoms in the first few adsorbed layers is N~10'
cm™2, so that the density of states per unit area n, be-
comes

no~3x10¥ erg~'cm=2. (5.1

This is quite large compared with the density of tunneling

states in glasses reduced to per wunit -area:
no~10% erg~!cm—23¢

— .

v €

4 f

|

FIG. 6. Double-well potential for He atom or local groups of
He atoms close to the solid surface in a configurational space.
The potential barrier V and the distance d between wells takes
the distribution due to the randomness of the environment of He
atoms.
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B. Coupling between phonons
and He system close to the boundary

An important task in understanding the effective pho-
non transmission is to determine the type and strength of
coupling between phonons and the He system. Under the
circumstances that phonons are incident into the the sur-
face in contact with liquid He, the interaction has the ef-
fects of scattering and energy absorption. The two types
of interaction could be considered for our system. One is
the displacement-type coupling and the other the defor-
mation coupling.

1. Displacement-type coupling

Though the displacement-type coupling between ada-
tom and substrate phonons has been studied for many
problems since the work of Lennard-Jones and Strachan,’
this coupling needs caution when applying it to our prob-
lem, as discussed by Brenig and Schoenhammer.’® They
pointed out that, if in the expansion of the substrate-
adatom potential V only term linear in the substrate dis-
placement are taken into account, the resulting Hamil-
tonian does not conserve the total momentum.

Let us consider a TH phonon incident at angle 6 to the
surface (with parallel polarization to surface) defined
through the relation cot’y =(c/cy)?—1 (see Fig. 1).
The displacement vector of TH phonons is written as'*

172
_ t i(k-r—ot)
uTH(x,t)—g 20 (ay+a_y)ury(z)e ,
(5.2)
where
k, [ 2xc? |72
u(z)=——2 | ==— | cos(Bkz),
S P P
(5.3)
uH(1)=0.

Here p, is the mass density of solid, w; the angular fre-
quency, k the two-dimensional wave vector parallel to the
surface, and c is the velocity of the wave front traversing
the surface, respectively. a; and its Hermitian conjugate
a} are the annihilation and creation operators of TH
mode phonon satisfying the ordinary commutation rela-
tion of the Bose type. Following Brenig and Schoenham-
mer,*® the interaction Hamiltonian can be represented by
the quadratic form with respect to the relative displace-
ment between the He atom and the substrate

=1fla—u®]?,

where a is the coordinates of the He atom measured from
the equilibrium position, and f is the coupling constant
between the He atom and the substrate. The one-phonon
(TH mode) absorption proability (dimensionless) is de-
fined by
t D = M ’ (55)
Qrnlwk)

(5.4)

where QTH(wk) is the incident energy flux defined by Eq.

(2.5) and #w, is the energy difference between the ground
state and the first excited state of the He atom bound in
the attractive potential from the substrate. The transition
rate (sec™!) for the normal incidence of the TH mode
phonon I'p due to the coupling Eq. (5.4) becomes, using
the first-order perturbation theory,

S tiwy —fiwg) ,

N}
I'p= p (5.6)

ocTS

where N /S is the number of He atoms per unit area. In
deriving Eq. (5.6) we have used the relation w}=f/my,.
As a result, one has the one-phonon absorption probability

2Nﬁa)imHe
tp=—"—7—
pocrS

It should be noted that this absorption probability is ex-
pressed by the known physical parameters. We can obtain
the same sum rules from Eq. (5.7) with those obtained by
Maris.* The absorption rate of a TH phonon by the TLS
with a broad distribution of energy difference can be ob-
tained by replacing the 6 function 8(#wy —#iwy)N/S in
Eq. (5.7) by ny. Taking account of the temperature
dependence, one has

8wy —Hiwog) . (5.7)

2nofiwim
tp=— kB onh(fiwy /2kpT) .
PoCT

By using the explicit value of ny of Eq. (5.1) we have the
absorption probability 7, (corresponding to the transmis-
sion coefficient) to be

tp=6.9%x10"%7,

(5.8)

(5.9

where v is expressed in GHz. If one considers a phonon
of 100 GHz incident at the surface, the rate becomes
t;=6.9X10~* This is too small to transfer energy effec-
tively in the frequency regime considered here as well as
the conclusions of Ref. 39. These calculations are, how-
ever, based on the assumption of noninteracting He atoms
close to the boundary. When the surface density of ad-
sorbed He atoms becomes high, we need to incorporate
the interaction of He atoms. As a result, fiwp, in Eq. (5.7)
is replaced by the smaller value than the value estimated
from the van der Waals potential for a single atom.

2. Deformation coupling

The other important interaction arises from the cou-
pling proportional to the strain called deformation cou-
pling. We should bear in mind that the physical natures
of He atoms close to the boundary include the contribu-
tion from the He atoms and/or substrate surrounding the
He atoms. When a TH phonon is incident at the rough
surface, the substrate surface atoms are deformed locally
by an incident phonon; i.e., the phonon works as a defor-
mation coupling proportional to the strain e,g. The He
atoms close to the surface should change the states by
rearranging the atomic configuration quantum mechani-
cally from this coupling. As a consequence, the He sys-
tem close to the interface has a new energy state Ej,
which differs from the initial one E;. Because the spread
of the wave packet of He atoms is small with respect to
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the special change of the strain, one can estimate the
atomic energy difference as
JE;

Ef—E;=3 ——eap a,B=xpz.

(5.10
a8 aeaﬂ

We can estimate the strength of deformation coupling
constant g,g=0E /de,g for the TLS from Eq. (5.10) by
postulating the complete deformation of e,g=1. Due to
this deformation the change of the binding energy of the
He atom should be of the order of the van der Waals po-
tential so that the deformation coupling constant becomes
about g =100 K. Thus, the interaction Hamiltonian be-
tween a TH phonon with the wave vector k and the He
system is expressed in the second quantized form,

Hy=ggmo, , (5.11)

where the operator o, is the Pauli matrix. The strain 7,
is obtained using the displacement field of a TH phonon
of normal incidence as

7k}
Powy TS
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Ne=— sin(k,z)ax +a' ;). (5.12)

For phonons with much longer wavelength compared
with roughness scale 8, the above strain component van-
ishes at the boundary (z=0), of course. For phonons
with short wavelength this is not the case, and there is a
nonvanishing contribution of the strain component. If the
variation of roughness is comparable with the wavelength
of an incident TH phonon, it is reasonable to take the
average value

(sin%(k,z)) = % f oa sin¥(k,z)dz .

As a result, the absorption probability due to the above
deformation Hamiltonian (5.11) becomes, using Eq. (5.5),

Fiwoy,
25T

2mgnow
tS = 3
PocT

In deriving Eq. (5.13) we have used the following transi-
tion rate calculated by the time-dependent perturbation
theory

. (5.13)

2 2
g wn
I's= 3°tanh
pPoCT

. (5.14)

k
2kgT
The density of state per unit area n, is estimated in Eq.
(5.1). If we take the values for the mass density of a solid
and the velocity of a TH phonon for sapphire as py=3.99
gem ™3, ¢7=6.0x10° cmsec™!, and g =100 K, the ab-
sorption probability for frequency v in GHz is

tg~2.56X 107 % . (5.15)
For the incident phonon of v=100 GHz, the absorption
probability becomes tg~2.56% 10~%. This is too small to
explain the experiments (~ 10~!) as well as the case of the
displacement coupling obtained in Eq. (5.9).

Apart from the phonon absorption by the adsorbed He

system, there is an interesting possibility that adsorbed air
molecules constitute two-level tunneling states similar to
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those of glasses.’*** The phonon absorption rate for these
cases is obtained as well by using Eq. (5.13) which is the
same as that obtained by Kinder.*® From the density of
states per unit volume obtained for fused silica
no=~10% cm~3erg—!, as a typical value, we can estimate
the density of states per unit area as

no~10%° cm~%erg~!. (5.16)

The deformation coupling constant is known to be of the
order of g~1 eV.>® Using these values, we have the
scattering rate for frequency v in GHz as

t=~1.12Xx10"% . (5.17)

This is also too small to explain the phonon-reflection ex-
periments as well as Eq. (5.15). In this connection it
should be mentioned that Shingh et al.*! searched for the
existence of TLS similar to glasses in the adsorbed layer
of water molecules on small y-alumia particles with an
average diameter of 70 A. They could not, however, ob-
tain the evidence showing the TLS in these layers.

C. Interaction between phonons in liquid He
and two-level systems close to the boundary

Provided that the TLS is excited by absorbing the pho-
non energy from a solid, it returns to the initial state by
emitting a phonon into a solid or liquid. We can conclude
from the following arguments that the coupling with pho-
nons in liquid He are very strong compared with that of
phonons in a solid so that the excited TLS emits a phonon
into liquid He dominantly. The type of coupling between
phonons in liquid He and the TLS close to the boundary
should be the deformation type.>! The expression of the
decay rate I'y.; of the TLS due to the interaction with
phonons in liquid He becomes the same form with Eq.
(5.14), where the mass density and the velocity of phonons
are replaced by those of liquid He. As a result, one has
the ratio of the transition rates from Eq. (5.14) as

Ty
_HeS (5.18)

3
pser

where the mass density of liquid *He of p; =0.145 gcm 3
and the velocity of phonons in liquid “He of
v, =2.38X10~* cmsec™! are used. Because the transi-
tion rate of the TLS by emitting a phonon into liquid He
is as large as that obtained in Eq. (5.18), it is appropriate
to consider that all phonon energy absorbed by the He
system is emitted into the He system. Thus, it is suffi-
cient to calculate the absorption probability of phonons by
the adsorbed He layer using formula (5.5) in order to dis-
cuss the origin of phonon transmission across the solid-
liquid He interface.

r He-L

VI. EFFECTIVE ENERGY TRANSFER
INTO LIQUID He

In Eqgs. (5.9) and (5.15), we have shown that the direct
interaction process of phonon absorption (B phonons to
He system) is negligible. Let us be reminded, however, of
the experimental evidences**~% that diffusely scattered
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phonons play a key role to transfer the energy effectively.
In Sec. IV we clarified that diffuse signals are due to two
causes. One is the direct scattering of B phonons at irreg-
ular surfaces (B phonons + roughness—B phonons), and
the other due to the mode-converted R phonons (B
phonons + roughness—R phonons—B phonons). Thus,
another possibility of the effective energy transfer occurs
through the interaction between R phonons and the He
system: The R phonons converted from B phonons at
rough surface interact with the He system, and the energy
of R phonons are absorbed by the He system (see Fig. 7).
If the lifetime of mode-converted R phonons due to in-
teraction with the He system (ry) is shorter than that of
R phonons due to scattering by roughness (7 ), the pho-
non energy converted into R phonons should be
transferred into the He system. (Note that due to the
large acoustic mismatch, the classical leaking of energy of
R phonons into liquid He for rough surfaces is small
compared with that from the decay of R phonons to the
TLS.) As a consequence, the component of R phonons of
diffuse signals (~20%) should vanish when liquid He is
present (see Fig. 4). Let us compare in the following sub-
sections the lifetimes 75 and 7z of R phonons due to the
above two scattering processes.

The lifetimes of mode-converted R phonons due to in-
teraction with the He system are obtained from the fol-
lowing two types of interactions.

A. Displacement-type coupling

The lifetime due to the displacement-type interaction
between R phonons and the He system is calculated
straightforwardly by replacing the surface displacement
uty(0) in Eq. (5.4) by that of R phonons (A9) as

172

fik falap+aty) . (6.1)

R0=_ LA
u; (0) Y 2000, KS

The inverse of lifetime 75 4 becomes, from Eq. (6.1),

| why*mycorf3no
2poKcg
Taking the numerical values for sapphire, we have the

lifetime of R phonons with frequency in GHz under the
condition fiwy > 2kp T,

fiwy,
2%, T

anh . (6.2)

TH,d

n
(1)

B B

FIG. 7. Two possible channels of energy transfer. Process (1)
represents the direct process and (2) represents the R phonon
mediated process of energy transfer.

T,4~0.88X 1072y~ sec . (6.3)

B. Deformation coupling

The lifetime of R phonons due to the deformation in-
teraction can be obtained by using Eq. (5.11) and the wave
function of R phonons as

fiwy,
2%, T

2.2
1 TRoWKE
= anh

. (6.4)

Tas  pociK

It should be noted that the frequency dependence of Eq.
(6.4) is different from that of bulk phonons ~w;.3® This
comes from the fact that the energy density of R phonons
is localized in the vicinity of the surface of order of its
wavelength; i.e., the energy density is frequency depen-
dent. The numerical estimation of Eq. (6.4) for frequency
v in GHz for sapphire gives

Ths~1.02X 1073y~ 2 sec . (6.5)

The ratio of lifetimes of R phonons due to scattering by
roughness and the TLS is obtained from Egs. (4.11) and
(6.3) as

Tha/TR~10"** (6.6)

from the displacement-type coupling. For the deforma-
tion coupling one has the ratio from Egs. (4.11) and (6.5)
as

Ths /TR=107 . 6.7)

From Egs. (6.6) and (6.7) we see that the mode-converted
R phonons are absorbed effectively by the He system for
the frequency about 100 GHz. Note that if the influence
of surface irregularities to the density of states of TLS is
taken into account, we should have a much shorter life-
time than the estimation of Egs. (6.3) and (6.4). As a
consequence, the diffuse tail arising from the mode-
converted R phonons vanishes when the surface is in con-
tact with liquid He at around 100 GHz of phonon energy;
i.e., the diffuse signal to the mode-converted R phonons
(curve B in Fig. 4) vanishes. These are the reasonable re-
sults for explaining the anomalous phonon scattering at
the liquid-He—solid interface.

VII. CONCLUDING REMARKS

The scattering of high-frequency phonons at irregular
surfaces without and with liquid He has been discussed
theoretically by taking into account all phonon eigen-
modes in a solid with a free boundary. We have calculat-
ed the frequency dependence of the partition ratio between
the diffuse and specular component for the surface
without liquid He, and obtained that the diffuse com-
ponent is proportional to the fourth power of frequency.
The shapes of phonon reflection spectra have been calcu-
lated as a function of time. The role of mode-converted R
phonons to the diffuse signals in a time-of-flight spectra
has been discussed in detail by considering the higher-
order scattering processes of the mode-converted R pho-
nons. It has been shown that there exist six processes of
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the mode-conversion when reflected at the rough surface.
The additional important conclusion is that the diffuse
signals are composed of two causes: One comes from the
direct scattering (B phonons— B phonons), and the second
is due to the R phonon mediated scattering process
(B—-R—B, B>R—-R—B, and so on). The mode-
converted R phonons are of considerable importance in
the interpreting of the origin of the diffuse scattering of
high-frequency phonons as seen from Fig. 4.

It has been experimentally revealed that the diffuse sig-
nals are strongly influenced by placing liquid He at the
solid surface.>>~% In this connection, the mode-converted
R phonons should play an important role for the effective
energy transfer into liquid He, as concluded from the
comparison of lifetimes of R phonons due to the surface
roughness and the interaction with the He system. Of the
characteristic features observed by the transmission or re-
flection experiments, we need the consistent theoretical
explanation of the following experimental findings: The
cosine law of transmitted phonons into liquid He,*? the
importance of the surface irregularities,* the role of dif-
fusely scattered phonons for phonon transmission, > 8
and the presence of an “energy gap” for phonon absorp-
tion, 2> #4—46

At low frequencies it is well accepted that the classical
channel obeying the AM theory is restricted by the critical
cone. By increasing frequency, the angular-distribution
measurements show that there is another channel for con-
ductance which carries most of the energy. The shape of
the anomalous channel is not restricted by the critical one
and radiates phonons into all directions.*? In the present
mechanism this cosine law of transmission follows from
an isotropic distribution of two-level tunneling states.
The cosine law does not result in the surface irregularities.
Considerable theoretical effort has been expended in an at-
tempt to elucidate how surface irregularities perform their
role for the energy transfer.’:*® The present mechanism
is different from these in many respects. The anomalous
energy transfer is observed even for the surfaces in contact
with solid *He and *He.*¢*’ These surfaces are exposed to
air and would be covered by a few adsorbed air molecules
in which He atoms can be embedded. For these dirty sur-
faces, He atoms close to the interface should be randomly
distributed due to the misfitting of atomic configuration
between the substrate atoms and He atoms. Thus, it is ex-
pected that, for the dirty surface, the TLS’s are composed
of both He atoms and disordered layer.

We have treated the problem as simply as possible in
order to clarify the underlying the mechanism of the
problem. The isotropic elastic approximation is used for a
solid. Solids are generally anisotropic in an elastic proper-
ty which results in the focusing effect of the phonon prop-
agation as discussed in detail by Taborek and Goodstein.>
For the detailed comparison with experiments it is neces-
sary to consider the anisotropic nature of crystals. This is
an interesting future theoretical problem. The formula
determining the ratio of diffuse and specular scattering,
Eq. (3.1), is valid under the condition ¢ < 1. This scatter-
ing probability ¢ is proportional to the roughness scale 8%,
namely, sensitive to the substrate characteristics. Crystal
surfaces covered by a few adsorbed air molecules possess a
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possibility that this layer constitutes the highly attenuat-
ing layer®® for high-energy phonons. Especially, if the
wavelength of incident B phonons is comparable with the
thickness of these dirt layers, these layers should affect
the interaction between B phonons and the He system.

In conclusion, the results presented here will be useful
for resolving the unsettled problem of anomalous phonon
transmission across the solid—liquid-He surface. After
completing this manuscript, the author found the experi-
mental works>>>! concerning the present subject. Burger
et al.>! have observed only specular reflection and no He
effect for low-energy phonons. For high-energy phonons
a big change of the diffusely scattered component was
found when the Si surface was in contact with liquid He.
These results seem to be explainable from the mechanism
discussed in the present work.
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APPENDIX: PHONONS IN A SOLID
WITH FREE BOUNDARY

Provided that an isotropic elastic continuum occupies
the half space z >0 with a street-free boundary at z =0,
the displacement vector at a point x=(r,z) and time ¢ can
be expanded in terms of eigenmodes'*

1/2

A la+at 0],

2p0) J

(A1)

u(x,n)=3
J

where p is the mass density of a solid, J=(k,c,m)
represents a set of quantum numbers which specifies the
eigenmodes of phonons, c is the velocity of a wave front
traversing the surface, and m specifies the mode. The
sum over J is defined as

1
(27r)?

2= fdk 2 fD ﬁf(k,c,m)+f(k,cR,R) s
J m%R m C

(A2)

where D, denotes the spectral range of the velocity ¢ for
the mode m, and k is the two-dimensional wave vector
parallel to the surface. R represents the Rayleigh mode
(representative surface mode) whose amplitude decreases
exponentially with the distance from the surface. In Eq.
(A1) a; and a} are an annihilation and creation operator
of the J-mode phonon satisfying the following commuta-
tion relation:

la;,a)}1=8;, . (A3)
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Here the symbolic expression 8, ;- should be understood to
be

8,5 =8m,mOx,x0c,c’ - (A4)

If ¢ and ¢’ belong to continuous spectra (B phonons), we
use the definition 8, . =c8(c —c’). The r dependence of
uy(x) is described by a plane wave originating from the
translational invariance parallel to the surface:

uy(x)=uy(z)e’*7/812 (AS5)

where S is the surface area and u,(z) represents the am-
plitude of J phonons along the depth from the surface.

The L phonons are reflected at a surface into both L
phonons and TV phonons as a result of the interaction
with each other through the surface [see Figs. 1(c) and
1(d)]. The wave function of L modes are constructed
from the linear combination of the mixed L-TV mode as
obtained by Ezawa.!* The explicit form of the wave func-
tion of the mode depicted in Fig. 1(c) becomes

1/2
ki
27

K
uiLey@)=i—-

uNz)=i

8675
Mk 1/2
ujL=Tx,y(z)=—7] ey [6~1/%(e ~18k_ Deidk7)
+Bl/zBeiﬂkZ] ,
(A6)
X 172
u,LT(z)z _2_; } [81/2(e—-i5kz+Dei8kz)+B—l/2Bein2] ,
where
8(c)=[(c/cL ?—11'2, Ble)=[(c/cr)?—1]'7,

(A7)
poB=1—4ap o _ 4ap)HB 1)
(B*—1?+4aB’ (BP—1)+458

The first two terms in the square brackets of Eq. (A6)
represent L waves, and the third term means TV waves.
The factor D has the physical meaning of the reflection
coefficient of L phonons at a surface. The angle of in-
cidence and/or reflection is defined by the relation
cotf; =8(c).

For the modes shown in Fig. 1(d) we have

[8~1/2Bei5kz+31/2(e—iﬂkz+Deiﬂkz)] ,

(A8)
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where the first term represents the L waves and the last two are the TV waves, in which D represents also the reflection
coefficient of TV waves at a solid surface. The angle of incidence and/or reflection is obtained from the relation

cotfy=p(c). In the above two modes [Eqgs. (A6)—(A8)], c takes the continuous value greater than c; .

The wave function of R phonons is expressed as

172
Kj | k - -
uJ‘sz,y(Z)=l?] E] e Tkz-—l—z_};—z;e nkz
k 2 2
utz)=—y X —rhke_ 1_H?Ze""‘z

(A9)

Here, y2=[1—(cg /c7)*], n*[1—(cg /cL)*], and K =(y —n)(y —n+2yn?)/2, where c is the velocity of R-mode pho-

non.

*Present address: Department of Applied Physics, Faculty of
Engineering, Hokkaido University, Sapporo 060, Japan.

IFor instance, see the review in Non-equilibrium Phonon
Dynamics, NATO Advanced Study Institute Series B, edited
by W. Bron, (Plenum, New York, 1985).

2P. Taborek and D. Goodstein, J. Phys. C 12, 4737 (1979).

3P. Taborek and D. Goodstein, Phys. Rev. B 22, 1550 (1980).

4P. Taborek and D. Goodstein, Solid State Commun. 33, 1191
(1980).

5D. Marx and W. Eisenmenger, Z. Phys. B 48, 277 (1982).

6D. Marx and W. Eisenmenger, Phys. Lett. 93A, 152 (1983).

73. T. Folinsbee and J. P. Harrison, J. Low Temp. Phys. 32, 469
(1978).

8H. C. Basso, W. Dietsche, H. Kinder, and P. Leiderer, in Pho-

non Scattering in Condensed Matter, edited by W. Eisen-
menger, K. Lassmann, and S. Doettinger (Springer-Verlag,
Heidelberg, 1984) p. 212.

9G. L. Koos, A. G. Every, G. A. Northrop, and J. P. Wolfe,
Phys. Rev. Lett. 51, 276 (1983).

10A. G. Every, G. L. Koos, and J. P. Wolfe, Phys. Rev. B 29,
2190 (1984).

11G. A. Northrop and J. P. Wolfe, Phys. Rev. Lett. 52, 2156
(1984).

121 J. Challis, A. A. Ghazi, and M. N. Wybourne, Phys. Rev.
Lett. 48, 756 (1982).

13R. O. Pohl and B. Stritzker, Phys. Rev. B 25, 3608 (1982).

14H. Ezawa, Ann. Phys. (N.Y.) 67, 438 (1971).

ISA. A. Maradudin and D. L. Mills, Ann. Phys. (N.Y.) 100, 262



8676

(1976).

16R. G. Steg and P. G. Klemens, Phys. Rev. Lett. 24, 381
(1970).

17T, Nakayama and T. Sakuma, J. Appl. Phys. 47, 2263 (1976).

18M. Narita, T. Sakuma, and T. Nakayama, J. Appl. Phys. 49,
5507 (1978).

I9T. Nakayama, Phys. Rev. B 32, 777 (1985).

20A., C. Anderson, in Phonon Scattering in Solids, edited by L. J.
Challis, V. W. Rampton, and A. F. G. Wyatt (Plenum, New
York, 1976), p. 1.

21A, F. G. Wyatt, in Nonequilibrium Superconductivity, Pho-
nons, and Kapitza Boundaries, NATO Advanced Study Insti-
tute Series B, edited by K. E. Gray, (Plenum, New York,
1981), Vol. 65, p. 31.

220, Koblinger, U. Heim, M. Welte, and W. Eisenmenger, Phys.
Rev. Lett. 51, 284 (1983).

230. Koblinger, E. Dittrich, U. Heim, M. Welte, and W. Eisen-
menger, in Phonon Scattering in Condensed Matter, edited by
W. Eisenmenger, K. Lassmann, and S. Doettinger (Springer-
Verlag, Heidelberg, 1984), p. 209.

24T, Nakayama, J. Phys. C 18, L667 (1985).

25D. F. Brewer, A. J. Symonds, and A. L. Thomson, Phys. Rev.
Lett. 15, 182 (1965).

26B. C. Crooker, B. Hebrall, E. N. Smith, Y. Takano, and J. D.
Reppy, Phys. Rev. Lett. 51, 666 (1983).

27TA. F. Andreev, Pis’ma Zh. Eksp. Teor. Fiz. 28, 603 (1978)
[JETP Lett. 28, 556 (1978)].

28A. F. Andreev and Yu. A. Kosevich, Zh. Eksp. Teor. Fiz. 77,
2518 (1979) [Sov. Phys.—JETP 50, 1218 (1979)].

29P. W. Anderson, B. 1. Halperin, and M. Varma, Philos. Mag.
25, 1 (1972).

30w. A. Phillips, J. Low Temp. Phys. 7, 351 (1972).

3IT. Nakayma, J. Phys. C 10, 3274 (1977).

32D. W. Princehouse, J. Low Temp. Phys. 7, 287 (1972).

TSUNEYOSHI NAKAYAMA 33

33D. C. Hickernell, E. O. Mclean, and O. F. Vilches, J. Low
Temp. Phys. 13, 241 (1973).

34J. G. Daunt and P. Mahadev, Physica 69, 562 (1973).

35H. J. Lauter, H. Godfrin, C. Tiky, H. Wiechert, P. E. Ober-
mayer, Surf. Sci. 125, 265 (1983).

36See the review by S. Hunklinger and W. Arnold, Physical
Acoustics (Academic, New York, 1976) Vol. 12, p. 155.

37T. E. Lennard-Jones and C. Strachen, Proc. R. Soc. London,
Ser. A 5, 442 (1935).

38W. Brenig and K. Schoenhammer, Z. Phys. B 34, 283 (1979).

39H. J. Maris, Phys. Rev. B 19, 1443 (1979).

40H. Kinder, Physica 107B, 549 (1981).

41G. P. Shingh, M. von Schickfus, S. Hunklinger, and K.
Dransfeld, Solid State Commun. 9, 951 (1981).

42R. A. Sherlock, N. G. Mills, and A. F. G. Wyatt, J. Phys. C 8,
300 (1975).

43]. Weber, W. Sandmann, W. Dietsche, and H. Kinder, Phys.
Rev. Lett. 40, 1469 (1978).

44E. S. Sabisky and C. H. Anderson, Solid State Commun. 17,
1095 (1975).

45A. C. Anderson and W. L. Johnson, J. Low Temp. Phys. 7, 1
(1972).

46]. T. Folinsbee and A. C. Anderson, Phys. Rev. Lett. 31, 1580
(1973).

47N. S. Shiren, Phys. Rev. Lett. 47, 1466 (1981).

48], C. A. van der Sluijs and M. J. van der Sluijs, J. Low Temp.
Phys. 44, 223 (1981).

49, S. Buechner and H. J. Maris, Phys. Rev. Lett. 34, 316
(1975).

50H. Kinder, A. De Ninno, D. Goodstien, G. Paterno, F.
Scaramuzi, and S. Cunsolo, Phys. Rev. Lett. 55, 2441 (1985).

513, Burger, K. Lassmann, and W. Eisenmenger, J. Low Temp.
Phys. 61, 401 (1985).



