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LiKSO4 has been investigated extensively by a variety of techniques recently. The phonon density

of states of this material is now calculated for its two phases P63 (C6) and P31c (C3„) using the
rigid molecular-ion model within the external mode formulation. The partial density of states asso-

ciated with translations of each species of atoms and translations and rotations of the "molecules"

SO4 are individually derived in the two phases. The free-energy difference and vibrational energy
for the two phases are also evaluated. We have also analyzed the anharmonic behavior in the sys-

tem at q=0, using perturbation theory in order to understand its role in the rotational dynamics of
SO4 2 ions.

I. INTRODUCTION

Extensive studies of phase transitions in LiKSO4 have
been carried out during this decade using a variety of ex-
perimental techniques dealing with macroscopic and mi-
croscopic physical properties of the system. Thermal ex-
pansion, ' piezoelectric and elastic, pyroelectric, ~ polariza-
tion and ferroelectric, and dielectric behavior have been
studied. X-ray diffraction, neutron diffraction, 's and
thermal analysis have been used to identify various
phases and the underlying crystal structure. Infrared ab-
sorption, Raman scattering, ' electron-paramagnetic
resonance, " Brillouin scattering, ' inelastic neutron
scattering, ' and high-pressure' techniques have given de-
tailed information on the lattice spectra and some infor-
mation on the dynamical aspects underlying the phase
transitions. The interest in this system is because of its
pyroelectric and ferroelectric behavior, the large number
of phase transitions, and observation of incommensurate
lattice in certain temperature regions. It is stated that the
series of phase transitions observed in LiKSO4 is very
peculiar and has never been observed in any material of
this simple inorganic type. Many phases possess hexago-
nal symmetry and are associated with the P6& (C6) space
group; this phase seems to appear rather reentrantly. The
detailed theoretical study of lattice dynanucs of this phase
and of another phase P 31c carried out by us'5 recently de-
rived impetus because of this feature as well as a goal of
understanding the Raman spectra' of the two phases.

The phase transition occurring at around 210 K while
cooling involves a space-group change from P6i (C6) to
P31c (C3 ) as established on the basis of Raman intensity
redistribution' "' ' of the lithium translational mode
and sulfate internal modes across the transition tempera-
ture. It is also said'+" that the phase transition is associ-
ated with cooperative reorientation of one of the SO&
tetrahedra in the unit cell either by rotation of about 60'
around the c axis or by rotation of 108 about an ap-
propriate axis passing through sulfur and normal to the c
axis. In a recent study'+' of Raman-active low-

frequency external modes, it is argued that the reorienta-
tion of SOq "molecules" is likely to take place about an
axis normal to the c axis. Computer simulation' studies,
however, show that large rotations do not occur only
about any single unique axis; they occur about more than
one axis, as in the case of other ionic systems like NH4C1
(Ref. 17).

Our objective in the present work has been (a) to evalu-

ate one-phonon and two-phonon density of states to study
how the effect of the reorientations of sulfates manifests
itself in the density of states, (b) to study how the thermo-
dynamical parameter, namely, the free energy changes be-
cause of these reorientations, and (c) to examine the role
of anharmonicity in understanding temperature-dependent
Raman data. In Sec. II we briefiy outline the lattice-
dynamical model used in these studies. Section III gives
the details for evaluation of one-phonon and two-phonon
densities of states and free energy. The one-phonon densi-

ty of states is determined by solving the secular equations,
based on external mode formalism, for a large number of
wave vectors in the Brillouin zone. It has been resolved
into a partial density of states corresponding to transla-
tions of Li+ and K+ ions and translational and rotational
modes of SO4 molecular ions, using the information on
eigenvectors. The two-phonon density of states may help
in the analysis of Raman data. The Raman experi-
ments' ~' have revealed that the low-frequency rotational
Ei(TO) mode at 40 cm ' in the P6i phase is quite broad
(width is nearly 40 cm '). Below the transition tempera-
ture a new E mode appears at 64 cm ' (width of about 10
cm ') in the P3lc phase. So also an Ez mode at 52
cm ' changes to a mode at 61 cm '. The quasiharmonic
calculations' do not agree with these findings; across the
phase transition instead of the Ei mode at 44 cm ' an E
mode appears at 27 cm ', although the Eq mode at 39
cm ' has a corresponding E mode at 45 cm '. %'e have
summarized how one can reconcile the apparent contra-
diction between experimental results and quasiharmonic
lattice-dynamics results in Sec. V on the basis of an ap-
proximate anharmonic theoretical approach outlined in
Sec. IV.
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II. LATTICE-DYNAMICAL MODEL

Recently we reported results of lattice-dynamical stud-
ies pertaining to the P63 and P31c phases of LiKSO~. '

We were able to analyze and understand several aspects of
the Raman spectra' of these two phases on the basis of
the lattice-dynamical calculations. Comparison of experi-
mental and theoretical mode frequencies has been mostly
satisfactory. Therefore, we believe that the theoretical
model provides a basis for further studies of the dynami-
cal behavior of the system making use of the interatomic
potential function used therein. We have carried out the
study of the details of density of states and related aspects
which is the subject matter of this paper. Computer ex-
periments have also been carried out by us; a preliminary
report of this work is given in Ref. 16.

The dynamical analysis' was based on eigenvalues and
eigenvectors of the dynamical matrix associated with the
crystal assuming that the interactions among the constitu-
ents of the lattice can be described either by the rigid-ion
model or by the rigid-molecular-ion model' within the
usual quasiharmonic approximation. The rigid-ion model
yields the external modes of the lattice as well as the inter-
nal modes of the SO4, ions in the crystal; the rigid-
molecular-ion model gives the external modes only as
governed by the external mode formalism. ' It may be
noted that, in the rigid-molecular-ion model, only the
nonbonded interactions between pairs of atoms are taken
into account, and the intramolecular interactions do not
enter into consideration. %e have restricted the present
study to external modes only as they are the modes that
are affected most by changes in crystal structure.

The atom-atom potential function is comprised of a
long-range Coulomb interaction and a short-range Born-
Mayer —type repulsive interaction. The potential energy
between two nonbonded atoms (Ek) and (E'k') separated
by a distance r is given by

e Z (Ek}Z(E'k')
NEO

III. FREQUENCY DISTRIBUTION
OF EXTERNAL MODES AND FREE ENERGY

The space-group symmetry allows us to confine numer-
ical evaluations to wave v~tors within the irreducible
Brillouin zone (IBZ). The sizes of the IBZ for the P63,
and I'31c are —„and —, of their respective Brillouin
zones. The partitioning of the IBZ adopted for calcula-
tions is shown in Fig. 1. %e sampled within the IBZ 112
wave vectors in the case of the P63 phase and 224 wave
vectors in the case of the P3lc.

A. One-phonon density of states

The frequency distribution of phonons or one-phonon
density of states g (co) is defined as

g(co)=A I +5(a)—coj.(q)}dq=A +5(co—co (q ))dq
J J~P

(2)

where A is a normalization constant such that

g m co=1; mJ qz is the phonon requency o the jth
normal mode of a phonon of wave vector q, p being the
mesh index in the partitioned IBZ, and dq provides the
weight factor corresponding to the volume of the pth
mesh in q space. The root sampling method is used in ob-
taining g (co).

Figures 2(a) and 2(b) show the total one-phonon density
of states of external modes of LiKSO4 in the P63 and
P31c phases respectively; the g(co) for the P31c phase is
shifted by about 10 cm ' towards higher frequencies in
the region of 0—50 cm ', compared to that of the P63
phase. It may be noted that there are certain band gaps in
the g(ro) of both the phases. A band gap of about 10
cm ' is noticed around 145 cm ' and another of nearly
280 cm ' around 350 cm '. The latter large band gap
clearly separates the lithium translatory mode at around
500 cm ' from the lower external modes. However, these

T

R (Ek}+R(E'k'

with I/(4reo)=9X 10 Nm /C, a =1822 eV, and
b =12.364. R(Ek) and Z(Ek) are the effective radius
and charge of the atom (Ek) belonging to the unit E.
Evaluation of these parameters using physicochemical
considerations, equilibrium structure, equilibrium condi-
tions, cohesive energy, etc., is described in Ref. 15. The
parameters Z (Ek) and R (Ek) used in the rigid-
molecular-ion model are 0.95, 0.55, 1.1, and —0.65 for
the charges, and 1.375, 1.95, 1.0, and 1.35 A for the radii
of Li, K, S, and 0 atoms, respectively.

There are two formula units of LiKSO~ per unit cell as-
sociated with F63 or P31c phases. In the external mode
formalism' there are, therefore, 24 degrees of freedom as-
sociated with each unit cell and the size of the dynamical
matrix is 24 X 24. Computer program ruseR (Ref. 20) has
been used to calculate the dynamical matrices and solve
the secular equation, and this took about 45 sec on the
NORSK 560 computer for each wave vector.
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FIG. l. Partitioning of the irreducible Brillouin zone in the
a b plane used in calculation of density of states. The wave
vectors sampled correspond to the central point of each mesh;
each wave vector sampled was given a weight proportional to
the volume of the mesh surrounding it.
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FIG. 2. One-phonon density of states of LiKSO4 in the P63
and P 31c phases.

8. Partial density of states

lithium modes are also coupled with some low-frequency
internal modes (see Ref. 15), and therefore they shift to
lower frequencies. These features have a remarkable simi-
larity with the observations made recently in the case of
LizSO4 (Ref. 21).

P63
i KSO~

M. R o.w-
r

ir
~0.'I

P31g

about the Cartesian axes.
The partial density of states g'~'(co) associated with

each of the partial eigenvectors is defined by the relation

g I'(co)=A g +5(co co—f(q ))!gj', ~l "lq(qq)! de (4)
cell j,p

V ~PEi

g„~&„~„~,. indicates that the summation is carried out
over all the atoms or molecules of the same ith species in
the unit cell.

The partial one-phonon density of states associated
with the translatory modes of Li+, K+, and the SO4
ions as well as the rotatory modes of SO& ~ ions are
shown separately in Fig. 3 for both the phases. From
comparison of the partial density of states with the total
one-phonon density of states, we observe that several
prominent peaks in the one-phonon density of states can
be associated unambiguously with specific dynamical
behavior of the individual constituents of the unit cell.
We note that the peak at =50 cm ' in the one-phonon
density of states is predominantly due to sulfate librations,
that at nearly 100 cm ' due to translatory modes of po-
tassium, and that at nearly 500 cm ' due to translations
of lithium.

The partial density of states also indicates that the
phase transition from P6i to P31c affects the translations
of potassium ions and translations and rotations of SO4
ions, the lithium translations being largely unaffected.
Since the immediate environment of the SO4 (which ro-
tates) is a set of hthiuin atoms and not that of potassium,
it is somewhat surprising that the potassium atoms are af-
fected and not the lithium atoms. However, since the
lithium vibrations occur at rather high frequencies, they
may be expected to show smaller change.

g;(q) = g [gj„(q)egj.„(q)ejj„(q)].
V,P

(3)

Corresponding to the 24 degrees of freedom of external
modes per unit cell in LiKSO4 there are 24 modes for any
wave vector q, and correspondingly there are 24 branches
(j is the branch index) of dispersion relation. There are
24-component eigenvectors associated with each one of
the 24 modes. The eigenvector g'(q) contains detailed in-
formation of displacement components for each of the
atoms and the molecules; the translatory and rotatory dis-
placements of molecules are identifiable separately. The
eigenvector g'(q) is, therefore, a direct sum of the mass
(moment-of-inertia) —weighted translatory (rotary) partial
eigenvectors g'J „"~„(q) of the atoms and molecules. For
the sake of clarity, we may note that
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Here v and p are the atomic and molecular indices, and t
and r represent trans1ational and rotatory components.
Each partial eigenvcctor is a three-dimensional vector
consisting of translatory displacement components along
the Cartesian axes or rotatory dispiacement components

FIG. 3. Partial density of states of LiKSO4 in P63 and P'31e
phases. Partial densities associated with translations of K and
Li atoms and of SO& molecules and that of rotations of SO4
are sho~n separately.
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1. Free energy

In the quasiharmonic approximation free energy per
unit cell of volume V at temperature T with contribution
from the static potential energy, vibrational energy, and
vibrational entropy is given by

F(V, T) = U( V)

+ g ,
'

fico; +—kqT ln 1 —exp
l

kgT

(5)

where U( V) is the static lattice energy per unit cell, R the
Planck's constant, and k~ the Boltzmann constant. The
summation extends over all normal modes in the Brillouin
zone. A normalization is used to obtain the free energy
per unit cell containing two formula units or the free ener-

gy per mole of I.iKSO4.
The free energy is calculated using Eq. (5) as a function

of temperature only, keeping volume V constant, as the
lattice constant variation over the temperature range
200—400 K is small and assuming that the crystal can be
in either of the phases over this temperature range. Since
our interest is only to compare the difference in the free
energies LLF( V, T) of the two phases, as brought about by
large-scale reorientations of the SO4 i ions, we assume
that (a) the internal modes are identical in the two phases
and (b) the variations in the phonon frequencies due to
variations in temperature are negligible compared to
changes in g (r0) due to reoriented sulfates. We have used
the g(co) computed for the two phases to calculate the
free energy of external modes. The static lattice energies

C. Free energy and vibrational energy

The frequency distribution g(co) can be used in the
evaluation of free energy, vibrational energy, and specific
heat of the solid.

have been calculated as —24.3933 eV per unit cell for P6&
and —24.3911 eV per unit cell for P 31c phases.

Figure 4 shows the results of calculation of F( V, T) for
the two phases. We observe that the F(V, T) for the two
phases are quite close and indistinguishable on the scale of
the figure; the free energy of P63 at all temperatures is,
however, slightly lower than that of P31c. As the free-
energy curves do not cross each other, we are unable to ar-
rive at any phase transition temperature based on our cal-
culations. This lacuna may be due to the fact that we
have not taken into account anharmonic interactions and
other changes in the structure accompanying reorientation
of sulfates. dd'(V, T), the difference in free energies of
the two phases, is rather small, only of the order of 0.01
eV. The recent single-crystal neutron-diffraction experi-
ments are noteworthy in this context as they have re-
vealed that the so-called phase II which contains the P31c
phase is, in reality, a mixed phase of P6i and P31c
phases and that it is not possible to transform the entire
crystal to the P31c phase.

E»b g(n;+ ,
' )R——co; —=J (n;+ —,

'
)g(co;)fico; dpi;, (6a)

fico;
n;= exp

8
(6b)

Using an appropriate normalization, the vibrational ener-

gy per degree of freedom is expressed in temperature
units. Note that in the classical limit at high tempera-
tures the vibrational energy per degree of freedom in a
sohd is simply ka T.

Vibrational energy E„;b, taking into account the exter-
nal modes only, is shown as a function of temperature in
Fig. 5. The asymptotic classical value corresponding to

2. Vibrational energy

In the quasiharmonic approximation, the vibrational
energy E„;b is given by
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FIG. 4. Free energy F( V, T) as a function of temperature for
the 863 and I'31@phases.

FIG. 5. Vibrational energy as a function of temperature for
I.iKSO4.
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kiiT per degree of freedom is reached at high tempera-
tures. From the low-temperature intercept on the energy
axis we derive that the zero-point energy per unit cell is
0.29 eV which corresponds to a temperature of 140 K per
degree of freedom. When internal vibrations are taken
into account the zero-point energy comes out to be about
360 K.

D. Two-phonon density of states

As the two-phonon density of states, involving wave
vectors q and —q, are of significance in relation to optic
experiments, we have evaluated this information also.
The two-phonon density of states is computed using the
expression

24 24

g2(~) = g g ( [n, (q)+ 1 ][nj'( —q)+ 1]5(co co—~(q) co—j'( —q)) +n;(q)[n, '( —q}+1]5(co+co&(q)—aij ( —q))
q=l j=l j'=1

+[nj(q)+1][n& ( —q)]5(co coj(—q)+coj ( —q))+[n&(q)][n&.( —q)+1]5(co+co (q)+. ~., ( q))I

and is shown in Fig. 6. A discussion of its possible impli-
cations with reference to the Raman data is given in Sec.
V.

IV. ANHARMONICITY IN LiKSO4

In the Introduction, we have already referred to the
changes observed in the Raman experiments' "' in the
frequencies and widths of the doubly degenerate rotational
modes at the phase transition. (The rotational modes of
the A representation are unaffected. ) The observed shifts
in mode frequencies could be due to anharmonic effects.
In a complex crystal, like LiKSOq, it is quite difficult to

I

P63
300 K

CO

1-

t

estimate the anharmonic effects rigorously unless one uses
elaborate computations. However, one can make certain
simplifying assumptions and arrive at qualitative trends in
the shifts of selected phonons as a function of tempera-
ture. We have based the following study on the approach
recently taken by Kuchta and Luty for studying the fre-
quencies of anharmonic librational modes at zero wave
vector for the a phase of solid nitrogen. The librations
are considered as uncoupled oscillators with the frequen-
cies determined by the one-dimensional crystal potential
along a direction specified by the harmonic eigenvector of
these modes. We have, as discussed in Sec. II, considered
the atom-atom potentials consisting of a Coulombic part
and a short-range Born-Mayer repulsive part and studied
anharmonic aspects of all normal modes at q =0 along c'
in the P6i and I'31c phases. The potential V(8~ } is com-
puted corresponding to any normal coordinate 81 of jth
excitation at q =0, by displacing Li and K atoms and
SO4 2 molecules and also by rotating SO4 molecules in
a manner specified by the eigenvector of the mode under
consideration. For

I 8J I
( (8J ) '~; the potential V(8J )

can be expressed by a polynomial in 8J given by

V(8j)=ao.j+ 2.l8J+ i J'8i+a4J'8J (8)
lao

U
p

O
I

u)

P3 Ic
300K

The coefficients ai J., a& J, and a41 of the harmonic and
anharmonic terms in this expression are useful in deter-
mining the harmonic frequencies and anharmonic shifts;
the coefficients are determined by least-squares fitting
V(8J } to Eq. (8). The appropriate moment of inertia I of
the oscillator is given by,

I

200 400
FREQUENCY (cm )

600
202 j
Ij (10)

Here k runs over all atoms and molecules in the primitive
.cell and uk and uk represent the translational and rota-
tional displacement vectors, for unit 8J, of the kth
atom/molecule with a moment of inertia I~. Expression
(10) gets slightly modified when ~I is nondiagonal. The
harmonic frequency is given by the expression

' 1/2

FIG. 6. Two-phonon density of states in P63 and P31c
phases of LiKSO4.

and from perturbation theory at q=0 the anharmonic
shifts due to third- and fourth-order terms are given by
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and

(3) 7o 5% 3,J
J I3 2

J J

'2

~'"=3M
(I,co, )' (12)

respectively. The renormalized frequency Q~(T) at any
temperature T is given by

Q, (T)=roj+(bj~' +6J~ )[2nj(T)+1] .

Figure 7 shows the nature of potentials V(8J ) for some
of the E- and A-type modes in the P63 and P31c phases
as typical examples. Using the coefficients of the least-
squares fitted potential, the third- and fourth-order
shifts are computed (Table I). Figure 8 shows the plot of
renormalized frequency as a function of temperature for
all long-wavelength modes. We observe from Table I that
the rotational E~ mode at 44 cm ' and the lithium trans-
latory A mode at 561 cm ' are highly anharmonic in the
P 63 phase. In the P 3 le phase the lowest-frequency rota-
tional E mode at 27 cm ' and lithium translatory A
mode at 561 cm ' are anharmonic. All other modes do
not exhibit perceptible anharmonicity. Further, this 27-
cm ' libratory E mode is so anharmonic that it is not
quite appropriate to use perturbation theory for this
mode. However, in Fig. 9 we have shown a plot of shifted
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FIG. 8. Renormalized mode frequencies in the P63 and P 31c
phases of LiKSO4 as a function of temperature.

'-. de a'- d&
min 8 min I (2/1)[g —V(8)] j

(14)

Here 8;„and 8,„are the turning points of the oscillator
and

E = V(8m;, )= V(8m~) =2kii T (15}

frequency of this mode as a function of temperature as
given by the perturbation approach by the dotted lines.
One may note that the steep increase in frequency of this
mode is unrealistic and refiects the limitations of such a
perturbation calculation.

We believe that a more realistic estimate of the shift in
frequency for such highly anharmonic modes may be at-
tempted via a modified perturbation approach, in which
the harmonic frequency on the right-hand side of Eqs.
(11) and (12) is replaced by the renormalized frequency.
Figure 9 shows the results of such a modified perturbation
calculation also for the 27-cm ' E mode in the P31c
phase and also for the ~=em ' Ei libratory mode in the
P6& phase, compared with results of the perturbation
theory discussed in the earlier paragraph. The modified
perturbation scheme results in reduced shifts.

In order to examine the validity of the modified pertur-
bation procedure, we have carried out a classical calcula-
tion which is valid for high temperatures. We consider a
classical oscillator of moment of inertia I in a potential
V(8}. The period of oscillation r of the oscillator is given

by

for the classical oscillator. Using the potential V(8 ), we
numerically compute the period and hence the frequency
(rii=2m/~) of 'the oscillator at any temperature. From
Fig. 9 we observe that the classical frequency derived thus
corresponding to 300 and 350 K are quite close to the re-
sults of the modified perturbation approach, suggesting
that the latter scheme does provide a fair estimate of the
anharmonic frequencies at these temperatures.

V. SUMMARY

The phonon density of states for LiKSO4 in the phases
P6i and P31c is obtained by making use of the rigid-
molecular-ion model within the framework of external
mode formalism. It is observed that the frequency region
below 50 cm ' is populated to a greater extent in the P63
phase compared to that in the P31c phase. Detailed
analysis based on study of the partial density of states
shows that this change in frequency distribution is princi-
pally due to the lower-frequency libratory modes of
SO4 in the P6& phase. The difference in free energy
corresponding to the two phases is of the order of 0.01 eV
in the temperature range 200—400 K, suggesting that the
two phases can coexist over this temperature range.

Qualitatively, agreement between the Raman data' "
and results of lattice-dynamical results' may be said to be
fair, although detailed comparison may reveal certain
discrepancies. This feature is especially prominent as far
as the low-frequency long-wavelength E& and Ez modes
are concerned. From Fig. 2 of Ref. 15 it may appear as if
the frequencies, derived theoretically, tend to become soft
as one goes from the P6i phase to the P31c phase, con-
trary to what is observed experimentally in Raman
experiments. ' " There are several aspects of the present
study that can be related to the experimentally ob-
served'+' frequency shifts of sulfate libratory modes and
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lithium translatory mode and the large widths of the low-

frequency rotational mode.
We observe from Fig. 6 that the two-phonon density of

states (with phonons of wave vectors q and —q) in P6i is
composed of three peaks below 400 cm ' at nearly 65,
110, and 200 cm ' while that of the P31c phase is made
up of four peaks at around 15, 65, 120, and 200 cm
apart from the |}function at F0=0. The peak at 65 cm
in the P6& phase is rather broad and asymmetric. To the
extent that the two-phonon density of states is sampled in
the Raman experiments, one may expect differences in the
line shapes due to this dissimilar feature in the two-
phonon density of states in the two phases.

Secondly, from the results of study of anharmonic ef-
fects given in Table I and Fig. 8, we note that only two-
out of the 21—optic modes, are highly anharmonic. The
remaining modes are mostly not affected by anharmonici-
ty. The low-frequency rotational mode (44 cm ' in the
P6& phase and 27 cm ' in the P31c phase) and the lithi-
um translatory modes at 561 cm ' (in both P6s and P31c
phases) are the modes that are affected by anharmonicity.

In Fig. 9 we have compared the results of anharmonic cal-
culation via perturbation, modified perturbation, and clas-
sical approaches for anharmonic rotational modes. Re-
sults of the modified perturbation approach are perhaps
indicative of the realistic anharmonic shifts possible in the
system. We beheve that the results of quasiharmonic cal-
culations' have to be viewed with caution as anharmoni-
city plays a very important role in renormalizing some of
the mode frequencies. As discussed above, certain low-
frequency rotational modes have hardened, while one of
the lithium translatory modes has softened due to anhar-
monicity. Qualitatively, the anharmonic studies may be
said to be in agreement with Raman experimental results
associated with S04 reorientations and lithium transla-
tory modes in so far as the anharmonic nature of the
modes is concerned.
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