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Optical cross sections associated with deep-level impurities in semiconductors
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Optical cross sections associated with deep-level impurities in semiconductors are calculated in the
tight-binding approximation, using a Green s-function formalism. The calculations are performed

by either neglecting or introducing the modifications undergone by the initial Bloch states in the vi-

cinity of the impurity. Great differences are then observed that enable us to interpret some experi-

mental data available on silicon.

where hv is the excitation energy associated to the radia-
tion and z denotes the axis of the radiation polarization, n

is the index of refraction, and E,tt/Eo the so-called effec-
tive field ratio. '

Equation (1) may be rewritten into a well-suited form:

I. INTRODUCTION

Optical cross sections (OCS) associated with transitions
between bound states and band states of a semiconductor
have often been calculated using perfect-crystal band
structure and pure Bloch waves as band states. ' Al-
though same workers have already shown, using sim-
plified models, that a correct description af the band
states could have great influence on the OCS calculated
spectra, atherss do not seem to agree with their con-
clusions. Our main interest here is to show the modifica-
tions undergone by the OCS, using either modified or un-

modified band states.
With this aim, we develop a Green's-function formula-

tion of the OCS in the tight-binding approximation. We
treat the case of covalent and diamond structure semicon-
ductors (the numerical calculations being applied to sil-
icon). Our method enables us to introduce, in an easy
manner, the modifications brought to band states by the
defect potential using Dyson's equation. If one chooses a
well-localized perturbation potential, one gets matrices of
small size, numerical calculations then being cansiderably
simplified. Our model is thoroughly presented in Sec. II.
The results concerning silicon are presented in Sec. III.
We put some emphasis on band states perturbation ef-
fects, but we also discuss the effects of the position of the
energy level and the symmetry of the wave function asso-
ciated with the bound state. Section IV is devoted to a
comparison with experimental and other theoretical re-
sults available on silicon.
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where Im denotes the imaginary part and the sign + ( —)

corresponds to a transition involving the conduction
(valence) band. Green's functions (Green's operator ma-
trix elements} are computed for the perfect crystal follow-
ing the so-called Brillouin-zone integration method which
is commonly used (see, for instance, Ref. 11}.

Introducing a point defect (here, a substitutional impur-
ity) adds a potential which can be supposed very localized,
especially if the associated energy levels are found to be
deep in the gap. The new resolvent (or Green's operator)
G of the perturbed system is related to the resolvent Go of
the perfect crystal by Dyson's equation:

II. THE MODEL

The optical cross section associated with transitions be-
tween a localized state

~

O'L ) of energy EL and the band
states

~ %bk) of energy Ebk is expressed as follows in the
dipole approximation
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Only when the extension of the potential is very limited
is this equation of easy use. Here we are going to consider
a matrix V associated with the impurity potential having
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terms different from zero on the perturbed site only. The
impurity is supposed to be represented by four orbitals,
just like a host crystal atom: s, p, p„, and p, . The ma-
trix V is taken diagonal, that is, we consider a shift on the
orbital energies of the impurity atom. The shift is identi-
cal for all types of orbitals. Its value will vary in order to
simulate different kinds of impurities and energy-level po-
sitions in the gap.

This study concerns the diamond structure, which has
two atoms per unit cell. We develop our calculations in a
tight-binding scheme. We retain interactions between
first and second neighbors only, and use the parameters of
Van der Rest et al. 'i As regards the optical matrix ele-
ments, we include intra-atomic and nearest-neighbor in-
teratomic contributions. These have been calculated
representing atomic orbitals by Gaussians. Their values
are listed, for silicon, in Table I.

III. THE RESULTS

A. The vacancy case

The vacancy case is represented in our model by a po-
tential shift V tending to infinity as introduced first by
Lannoo and Lenglart. 'i A calculation using the same
model as we discussed above has already been performed
by Bernholc and Pantelides. " Our results are of course in
total agrmnent with theirs, provided we use the same pa-
rameters defined in Ref. 14. Introducing a new set of pa-
rameters, ' giving better agreement with the results of
local-density calculations, 's leads to the following results:

(1) A bound state associated with the vacancy is found

TABLE I. Optical matrix elements expressed in an atomic
basis set. A and 8 denote two first neighbor atoms. The axis x
is chosen following the direction A —8. The values are ex-
pressed in atomic units. Other matrix elements are zero or are
deduced from these by symmetry.

P, (A) P„(A) =0.371
BX

at 0.36 eV (all energies are referred to the top of the
valence band). This state, of T2 symmetry, is threefold
degenerate.

(2} A resonant state of A~ symmetry is found in the
valence band at —0.68 eV (another one, also of A

&
sym-

metry, is found deeper in the valence band at —7.3 eV).
All these observations are consistent with other results

on the vacancy in Silicon. '

S. Sound-state energy levels
and wave functions

In the following, we consider the potential V as a vari-
able so that we can obtain one or two bound states whose
energy-level positions may vary from the lower to the
upper edge of the band gap. We remember that the high
localization chosen for the perturbation potential gives
our results their best validity when the bound-state energy
level is situated farther from the band edges, that is to
say, when the associated wave-function extension is the
most limited.

The bound-state energy levels EL are given by the
determinantal condition:

det[l G(—EL, )V]=0,
giving here

1 —VG~(EI. )=0 (8)

or

1 —VG~(EI, )=0, 9

where G~(E} and G~(E) are the diagonal Green's func-
tions of the perfect crystal related to s and p orbitals,
respectively. Equation (8) gives us the position of the
A i-type bound state while Eq. (9) is related to the Tz-type
states (threefold degenerated). The curves El. ——f(V) we
obtain from these equations are plotted in Fig. 1.

The bound-state wave function is expanded in a local-
ized atomic orbital basis (linear combination of atomic or-
bitals method) as

((),(&) P,(B) =0.155
BX

P, (&) P„(B) = —0. 165
8

BX

Q (&) $„(B) =—0.081a
BX

conduct(on bond "EL(ev)
-1.1

-0.9
-0.8

fy(&) fy(B) =0.134
Bx

-0.5
-0.4

f (&) —Py(B) =0.1348
Bp

- 50 —40 —30 - 20 -10
vaience band

.0,2

10 20 30 40 V(eV)

((,(&) Py(B) =0.076
gy

J' FIG. 1. Bound-states energy levels as functions of potential
V for A I states (solid hne) and T2 states (dashed line).
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FIG. 2. Green's functions versus ener
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where i stands for an atom and orbital type index.
is the i th atomic orbital of the crystal.

The coefficients a; are expressed in terms of Green's
functions using the following equation:

(I G—V)
~

VL, ) =0
and calculated following a method described by I.annoo
and Lenglart. '3

As the number of computed Green's functions is neces-
sarily limited, Eq. (10) should be truncated. A glance at
the convergence properties of the Green's functions en-
ables us to stop the expansion when we reach the third
neighbors of the defect site. As an example, we represent
in Figs. 2(a)—2(f) the diagonal s- and p-type Green's func-
tions, respectively, for a host crystal atom, a first and a
third neighbor atom of a vacancy. Rather good agree-
ment is obtained between the curves corresponding to the
third neighbor of the vacancy and that of the perfect crys-
tal. Conclusions are the same when studying the exten-
sion of the localized state. We find that for a state whose
energy level is deep enough, about 60% of the state is lo-
cated on the first neighbors and we reach more than 80%
when including first, second, and third neighbors for a Tz
symmetry bound state. These ratios are about 75% and
90%, respectively, when an A i symmetry bound state is
considered as these states are shown to be more local-
ized. ' Moreover, we notice that when the bound-state en-

ergy level shifts towards band edges, localization tends to
decrease, as expected from other theories (for instance,
from effective-mass results. Nevertheless, the decrease is
very smooth, as the Green's functions also vary smoothly
in the gap, so that the localization of a bound-state wave
function is not strongly related to its energy-level depth in
the gap (in contrast with effective-mass results).

C. Optical cross section

Here we are mainly interested in the effect on band
states of the perturbation which is caused by the impurity
potential. Equation (5) is there exploited introducing ei-
ther G (Green's operator of the perfect crystal), giving
the OCS tr corresponding to the unmodified band states,
or G (Green's operator of the perturbed crystal), leading
to the OCS o, which takes into account band states
scattering. We also discuss the results as a function of the
energy-level depth and the symmetry type of the bound
state. Transitions towards valence or conduction bands
have been investigated. We first checked the convergence
property of the calculation and found that good agree-
ment was obtained when comparing the OCS curves,
when second and third neighbors of the defect center are
included, respectively. ' This fast convergence may be ex-
plained by the convergence properties of the Green's func-
tions we noticed before.

clearly occur. Firstly, peaks are sometimes observed on 0.

curves that can be attributed to resonant state effects, as
will be seen later. Secondly, even in the absence of these
peaks, the OCS are substantially modified when including
band scattering effects, especially near thresholds for tran-
sitions, either towards valence or conduction bands. The
general tendency in the regions near thresholds in the ab-
sence of resonant states is that o is smaller than o . This
conclusion is different from that formulated by Jaros et
al. They discussed band scattering effo:ts in terms of
perturbations of the density of states of the crystal and
concluded that only sharp resonances or antiresonances
may alter the density of states. In fact it is clear, as the
bound-state wave function is very localized, that only lo-
cal densities of states near the defect center have to be
considered (those densities that are mainly altered by the
perturbation potential). We can easily prove this effect
when treating the simplified case of a vacancy in a molec-
ular model. The development is made in the Appendix.
This effect is of great interest because, as we noticed ear-
lier, transitions near thresholds are the most experimental-
ly concerned. For higher photon energies, band-to-band
transitions may occur and alter the shape of the OCS
curve.

2. Effect of the energy-level depth

As a general remark, we may say that the closer the
bound-state energy level is from the edge of the band in-
volved in the transition, the greater the OCS. This is due
to the 1/hv factor appearing in Eq. (1). Indeed, as the
bound-state localization remains nearly independent of V,
we may conclude that for a fixed value of Eb k, the arnpli-
tude of o is essentially determined by the
1/(Et. Eb k) =1/h—v factor The s.ame conclusion may
be applied to 0, provided that band states do not change
significantly, that is to say when

~

V
~

remains large.
First we consider transitions between the t„bound state

(of Tt symmetry and transforming as x) associated with
the vacancy and the valence band when the incident light
is polarized along the [100] direction. The two peaks ob-
served on the o curve of Fig. 3 at +1.04 eV and +7.66
eV, respectively, can undoubtedly be related to the

1.0

0.5

l. Effect of the scattering of the band states

For every figure of OCS studied here, we compare the
curve when pure-crystal wave functions are used (o, solid
line) with the curve which takes into account scattering of
the band states (cr, dashed line). Great modifications

lO 12
hv{ev)

FIG. 3. OCS for transitions between the t bound state asso-
ciated with the vacancy and the valence band when the light is
polarized along the [100]axis. oo: solid line. a: dashed line.



33 OPTICAL CROSS SECTIONS ASSOCIATED %'ITH DEEP-. . . 8599

CO

~~
C

0.5

I I

~ I
I
I

I I

I
I
I
I

10
hv(e~)

0.0—
0 8 10 12

hq(ev)

FIG. 4. OCS for transitions between the t, bound state asso-
ciated with V= —30 eV and the valence band when the light is
polarized along the [100]axis. o: solid line. o". dashed line.

resonant states observed at the relevant energies in the lo-
cal density of states around the vacancy [see imaginary
parts of Green's functions of Fig. 2(c) and 2(d)].

The position of the resonant states is expected to shift
when the potential V is varying. We show, in Figs. 4—6,
transitions between the valence band and the t bound
state for V= —30 eV, —10 eV, and +20 eV, respectively.
When V= —30 eV, a glance at Fig. 1 enables us to guess
that the A

&
resonant state is very close to the band edge.

We verify this in Fig. 4. If V increases a lot, the 3
&

state
becomes a bound state (for V= —10 eV, for instance).
Hence, no peak near threshold is observed in Fig. 5. On
the other hand, when V=+20 eV, the A

~ resonant state
is found deeper in the valence band (Fig. 6).

An equivalent comment can be made for transitions to-
wards the conduction band when the Tq state is resonant
and the A

&
state is bound. We consider the case V= —7

eV in Fig. 7. The peak is very high because of the low
threshold value in that case.

3. Effect of the bound state symme-try

The optical perturbation only couples states of different
symmetries (because of the 8/Bz operator). As we noticed
before, an A t resonant state is observed in the lower part
of the valence band (at —7.3 eV, in the case of the vacan-

0.5

FIG. 6. Same as Fig. 4 for V=+20 eV.

cy). The position of this state is shown from Fig. 2(a) not
to be very dependent of the potential V. We may then
compare the OCS obtained for transitions involving one
A t or Tz bound state, both of an energy level of about 0.4
eV in Figs. 8 and 3, respectively. The peak relative to the
A ~ resonant state (at about 7.3 eV above the threshold) is
observed when the bound state is of T2 symmetry, not
when it is of A& symmetry. This shows that the existence
and the position of the peaks observed on the OCS spectra
are closely linked to the symmetry type of the bound and
resotuLnt states. Moreover, as is normal by symmetry,
when the bound state is of A

&
symmetry, the light polari-

zation direction is not influent on the OCS curves. On the
contrary, when the bound state is of T2 symmetry, the op-
tical response is modified when the polarization direction
is changed (compare Figs. 9 and 3, where transitions
occur between t, and the valence band, when the light is
polarized along the [100] and [010] directions, respective-
ly). Finally, we noticed by symmetry that inverting the
symmetry axis of the bound state and the light polariza-
tion direction does not change the response of the system.

IV. DISCUSSION

The substitutional impurities S and Se in silicon give
deep levels which are found experimentally' at 0.59 eV
and 0.52 eV, from the bottom of the conduction-band

1.0p
I

C Il
~ I

I
I

I

I
( I

05;',
I

0.0
10 12

hv(«)
QO I.

0 2 10 12
hv(«)

FIG. 5. Same as Fig. 4 for V= —10 eV.

FIG. 7. OCS for transitions between the A ~ bound state asso-
ciated with V= —7 eV and the conduction band {light polariza-
tion is indifferent) 0: solid line. o". dashed line.
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1.0

L

0.5-

Oo-
0 2 4 6 8 10 12

hv(ev)
FIG. 8. OCS for transitions between the A ~ bound state asso-

ciated mth V= —14 eV and the valence band. cr: solid line.
0". dashed hne.

edge, respectively. These levels are thought to correspond
to the transitions between the charge states + and 2 + .19

The wave functions associated with these donor levels are
thought to be of A i symmetry. s No maximum is experi-
mentally observed near the threshold for transitions to-
wards the conduction band. ' The deep level Ai bound
state is well described in our model by the value V= —14
eV, which gives the bound-state energy at about 0.42 eV.
In that case we alsa notice a threefold T2 bound state at
0.85 eV. The associated OCS curve for transitions to-
wards the conduction band is shown in Fig. 10 (by dotted
lines) and gives no maximum near threshold, as experi-
mentally observed far Si:S and Si:Se. Experimental tran-
sitians from the bound states associated with Si:S and
Si:Se to the valence band have shown that the OCS have a
linear behavior with photon energy hv (Ref. IS) for small
energies (at less for h v &0.8 eV). This particular behavior
is also recovered by our calculations in Fig. 8.

A more interesting case is given by Si:Zn. A deep level
related to the transition Zn ~Zn2 is experimentally ob-
served at 0.31 eV from the top of the valence band. This
state is thought to be of T& symmetry. The OCS related
to transitions between this level and the valence band
shows a maximum for an excitation energy of about 0.6
eV. ' ' The calculated OCS associated with this level are
very close to those obtained in the vacancy case and al-
ready reported in Fig. 3. Our calculatian shows a max-
imum of the OCS for approximately hv=l eV, which
corresponds to the Ai resonant state already mentioned

1.0'

0 10
hv{~v)

FIG. 10. Same as Fig. 7 for V= —14 eV.

We have demonstrated that the use of unmodified
Bloch waves in calculating the OCS can lead to serious er-
rors. We have expressed the OCS in terms of Green's
functions localized around the defect center, that is to say,
exactly where band state modifications occur. In same
cases, the existence of resonant states near band edges can
account for the position of maxima of the OCS near
thresholds for transitions involving deep levels. However,
even in the absence of resonant states, the shape and the
amplitude of the OCS are modified. This leads us to con-
clude that, in practically all cases, it is necessary to take
into account the scattering of the Bloch states by the de-
fect potential when calculating the optical cross section.
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above. The difference observed between these values
could be explained by the effect of the Coulombic poten-
tial region, which is at the heart of the effective-mass ap-
proximation and neglected in our model, and which is
known to shift the maximum of the OCS towards the
threshold value. Let us note that the peak near threshold
is recovered only when the band state modifications are
taken into account. Indeed when neglecting the effect of
the band state modification (see cr on Fig. 3) one recovers,
as Jaros et al., that the maximum of the OCS corre-
sponds roughly to the first maximum of the valence band
density of states (close to 1.5 eV from the top of the
valence band).

V. CONCLUSION

0.5

0.0
0 4 6 8 10 12

~v(eV)
FIG. 9. Same as Fig. 3 when light is polarized along the

[010]axis.

APPENDIX: OCS ASSOCIATED %KITH
THE VACANCY IN THE MOLECULAR MODEL

We consider a system composed of the four dangling
orbitals surrounding the vacancy site. These orbitals are
decoupled from the rest of the crystal. If no interaction is
set between them, it is well known' that a fourfold degen-
erated state is observed at —,(E, +3E&), where Z, and Ez
are the energies of the atomic orbitals of s and p type,
respectively. Introducing a coupling y(y & 0) between
each pair of dangling bonds gives an A i state at
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,' (—Es+3E~ ) +3y and a T, threefold state at

,'(E—,+3E~)—y. These results are in total agreement

with those using our more elaborate model developed
above. The A, state is found to be in the valence band
(resonant state) while the T2 state is in the gap. Optically
induced transitions may occur between the Tz bound state
and the valence or conduction band of the crystal. Let us
consider, for example, a transition involving the valence
band.

The system is defined by four hybrid atomic orbitals as
done in Ref. 16. Let us note that

~
i, j& represent the hy-

brid orbital located on site i and pointing towards site j.
The vacancy is put on central site 0. Then the A&

resonant state is written:

I ai &
= 2(11 o&+

I
»0&+

I »0&+14 0&) (Al)

I t. & =
2 (110&+12,0& 13,0& —

~
4,0&),

[ t, & = —,
'

( [ 1,0& —
[ 2,0&+

( 3,0& —
[ 40&),

[ t, & = —,
'

(
J

1,0& —
[ 2,0& —

J
3,0&+

J
4,0&) .

(A2)

Only four optical matrix elements are considered between
hybrid orbitals pointing towards each other.

Considering a transition between the valence band and
the t, state, we get, for light polarization along the [100]
axis:

The bound state is threefold degenerated, a simple and
usual basis is given by

e(hv)= — 1,0 0, 1)
ptri2 t)

n.It v
' Bx

X Im(so ( Gg «„~so& (A3)
2

where ET ——, (E—,+3E~)—y and
~
so & is the s-type orbi-s

ta1 located on site 0.
Finally, we get

Pi)1 8
o'(hv) = 1,0 0, 1 ng o(ET —h v), (A4)

where n, o(E) is the local (site 0) and partial (s type) den-

sity of states at energy E in the valence band.
The effect of the perturbation on band states in the cal-

culation of the OCS is now quite obvious. If we describe
bands by unperturbed Bloch states, then the resolvent in-

troduced in Eq. (A3) is Go and the density of states in Eq.
(A4) is the s-type density of states of the perfect crystal as
the translational symmetry is conserved in that case. The
OCS o (hv) is then a function of the s-type density of
states.

On the other hand, if we use the exact band functions
(that is to say, G instead of G ), then the density of states
appearing in Eq. (A4) is equal to zero at any energy as
atom 0 is remote.

Considering transitions involving other bound states or
the conduction band obviously leads to the same con-
clusion. This model clearly shows the influence of local
band state perturbation on the OCS calculations. Any re-
finement of this crude model (such as that developed in
our model) must take this effect into account.
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