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Magnetophonon oscillations in quasi-two-dimensional quantum wells
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The transverse dc electrical conductivity of a quasi-two-dimensional quantum well, in the pres-

ence of a magnetic field normal to the barriers of the well, is evaluated for electron-phonon interac-

tion. For optical and polar optical phonons the conductivity oscillates as a function of the magnetic
field with resonances occurring when Phoo ——mL, where ~o, coL, are the cyclotron and phonon frequen-

cies, respectively, and where P is an integer. For elastic scattering with acoustical and piezoelectri-
cal phonons, at low temperatures, resonances are expected when PFKoo= EF—Ep, ~here e~ is the Fer-
mi level and @ the lowest subband energy in the direction of the magnetic field. The dependence of
the evaluated conductivities, inverse scattering rates, and Landau-level widths on the magnetic field,
the thickness of the well, and the temperature is sho~n explicitly. The results obtained here are in

accordance with those available in the literature.

phonons the resonance condition is toL, =Ptop' for acousti-
cal and piezoelectrical phonons at low temperatures the
expected resonance condition is PAcoo ——sz —eo, where e~
is the Fermi level and ea the lowest subband energy (z
direction). Since most of the results involve the Landau-
level widths, we evaluate the relevant inverse scattering
rates as well. These rates then are used to extract the level
widths. The dependence of the results on the magnetic
field, the temperature, and the thickness of the well is
shown explicitly; those for the scattering rates are in
agreement with the results of previous investigations.

In Sec. II we present briefiy the formalism. In Sec. III
we present the results in detail. Remarks and conclusions
are given in Sec. IV. Appendix A contains certain in-
tegrals necessary for the calculations. In Appendix 8 an
application of the Poisson s summation formula, involv-
ing broadened 5 functions, is presented. Finally, the in-
verse scattering rates for all types of phonons are evaluat-
ed in Appendix C.

I. INTRODUCTION

II. PRELIMiNARIES

A. Basic formulas

We consider a many-body system with a Hamiltonian
given by

(2.1)H =H +A, V WF(t);—
H is the largest part of H which can be diagonalized, A, V
is a binary type interaction, assumed nondiagonal, and

WF(t) is the ext—ernal field Hamiltonian with M being
an operator and F(t) a generalized force.

In Ref. 12 the Hamiltonian given by Eq. (2.1) was in-
serted into von Neumann's equation for the density opera-
tor p which was split into a diagonal (pq) and a nondiago-
nal (p„d) part Then by .means of projection operators and
for linear responses, two inhomogeneous master equations
(diagonal and nondiagonal)' as well as a diagonal and a
nondiagonal quantum Soltzmann equation were ob-
tained. ' They are valid in the Van Hove limit, A, ~O,

In the past years the quasi-two-dimensional systems
have been the subject of numerous experimental and
theoretical investigations. Novel fabrication techniques,
such as molecular-beam epitaxy or metal-organic chemi-
cal vapor deposition, have raised considerable interest in
the transport properties of electrons confmed between po-
tential barriers a few tens of angstroms apart. Unusual
effects associated with electronic motion, in layered struc-
tures (layer thickness less than hundred angstroms), in the
direction normal to the layers' or parallel to the layer in-
terface3 are well known.

The influence of electron-phonon or electron-impurity
interaction on electrical transport parallel to the barriers
of a quantum well, in the absence of a magnetic field, has
already been studied in a number of papers. In con-
trast, treatments of the same subject, in the presence of a
magnetic field, are limited. ' Recently, magnetophonon
resonances have been observed in thin (2.5—9-p,m) n+ n-
n+ GaAs structures. The conductivity component o.
oscillates as a function of the magnetic field with maxima
given by the relation Ptoo ——taL, where too and co&, are the
cyclotron and phonon frequencies, respectively, and where
P is an integer. These magnetophonon oscillations are the
same as in conventional (three-dimensional) sam les."
For submicron samples the results of Eaves et al. ' indi-
cate that o depends on the layer thickness.

Concerning magnetophonon resonances in quasi-two-
dimensional quantum well structures we are not aware of
theoretical work other than that of Ref. 8, in which only
inverse scattering rates were calculated. The purpose of
this paper is to evaluate the conductivity o in a quasi-
two-dimensional quantum well in the presence of a mag-
netic field (in the z direction) perpendicular to the barriers
of the well. We consider only the scattering of electrons
by longitudinal phonons (optical, polar optical, acoustical,
piezoelectrical) in the deformation potential model. The
results show an explicit oscillatory behavior of the con-
ductivity as a function of the magnetic field. For optical
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((J )gf )g = g( SF'(ng)gap/0
~

+(ng&, a„g), p=x y z (2.2}

where Q is the volume, q the charge of the carriers,
F(t)=qE(t) and g,.(r; —(r;)~)=g,. a;, where r; are the
positions of the carriers (fermions) and (n; )~ their posi-

t/~«~ 00, A,t =finite, where r« is the time for a transi-
tion between two eigenstates of H to take place,
r«=Pi/5s (this is equivalent to the first Born approxima-
tion). In this limit the average current density J, when an
electric field E(t) is applied, is given by

tions before the application of the electric field. Further-
more a„~——(g I a„ I g), where

I g) is the one-particle eigen-
state of h (H =gh ), (n~), is the average occupancy
of the state

I g}, and A~(n~), is the collision integral of
the Boltzmann equation. The second term of (2.2) is the
usual ponderomotive current; the first term represents the
many-body contribution of collisions to the current and
has been termed "collisional" current.

The second term of Eq. (2.2) vanishes for Landau
states 3 it does so for the states given by Eq. (2.8), see
below. In this case we have only "collisional" current,
and the diagonal dc conductivity tensor is given by [cf.
Ref. 13, Eq. (2.83)]

g (n ( ), (1—(n g ), )wg'(R „g—R „g)R„g,n ~~,
SPlll

(2.3)

where R„g——a&g, P=1/kttT with ks being Boltzmann s constant, and T the temperature; w~ is the binary transition
rate given by the "golden rule". Formula (2.3), first derived by Argyres and Roth, ' for p, =v=x, is valid for both elastic

((n~),q
——(n~ )~) and inelastic ((n~)~Q(n~)~) scattering.

As for the nondiagonal contributions (independent of the scattering due to the Van Hove limit) the relevant formula
for the dc conductivity reads' as

cr„"„(0)=Qfii g'(n&), q(1 —(n& ),q)(g'
I J„ I

g")(g"
I J„ I

g')(1 —e " ~ )/(eg- eg)— (2.4)

where j=qUIQ. The prime on g means g'&g". The to-
tal conductivity is obtained by cr„„=o&„+a&„.

The above formulas are fairly general and not tied to a
k space description. Therefore, they can be applied to sit-
uations where the semiclassical Boltzmann equation fails,
such as transverse magnetoresistance (Landau levels) or
conduction through localized states in amorphous materi-
als the relevant current comes from the first term of
(2.2), which is absent in a semiclassical treatment. Anoth-
er example is the integer quantum Hall effect. '

In the case of electron-phonon interaction (we assume
that the phonons remain at equilibrium), H, in Eq. (2.1),
contains an electron part and a phonon part; A, V is the
usual electron-phonon interaction. In this case the transi-
tion probabilities Ng are given by'

wg =g[Q (g,q~g') (Nq ),q

(2.5)

B. Quantum-well characteristics

We consider the one-electron Hamiltonian (H =g h )

ho= (p+q A)z/2m ', A =(0,8x,0) (2.7)

where we employed the Landau gauge for the vector po-
tential A. The magnetic field 8 (in the z direction) is per-
pendicular to the barriers of the well. For simplicity we
have assumed a spherical effective mass m' but the re-
sults of this paper hold for mi&m, as well. The dis-
tance between the barriers, assumed infinitely high, is L,
Assuming that the wave function vanishes at z =0 and at
z =L„ the one-particle eigenstates

I g) and eigenvalues e~
are given by

respectively. (Ne )~=No is the average number of pho-
nons. %e consider only longitudinal phonons as treated
by the deformation potential model.

where

Q(0 q

I g)=(2/L~L, )'~ P~(x xo)e ~ sin(k—,z),
k, =nm/L„n =1,2,3, . . . (2.8}

=
~ I+(q) I' I(0'Ie"'l0) I'@&g—&g+E, )

(2.6}Q(s-0' q)

IF(q) I' I(g'Ie '"'Ig) I25(e~—e~ —E~) .

The first and second term of Eq. (2.5) stand for the ab-
sorption and emission of a phonon of wave vector q,

eg=—e~„(N+ , )ficoo+n ep,—N=——0, 1,2, . . . (2.9)

where co~=
I
e

I
B/m ' is the cyclotron frequency,

eo ——( P ir/2m)(n. /L), and pz represents harmonic oscil-
lator wave functions, centered at xo ———Ak~/m*coo. X is
the Landau level index and n denotes level quantization in
the z direction. The radius of the orbit in the (x,y) plane
is I =(6/m coo)'~ For the calculation. s of this paper we
need the matrix elements
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(g
~

x
i
0') =xone 5kk +(I'/o)[(&+1)'"4-, A+ i

4 x —i]5ik ~(2 10)

expressed by Eq. (2.4), vanishes identically for the states
(2.8). We are thus left with formula (2.3) which, for
p =v=x, takes the form (spin included)

(g ~
CX g') =ll'[ —(N + 1)' 5N

+(&) 5N', N 1]5—kk' ~

I (& I
e""

I
&')

I

'=
I F- (+q. )

I

'
I Jx~ (»

I
'5. .

(2.11)

(2.12)

2
o" —=o (0)= q g(n~), q(1 (—ng), q)xx xx II cq

X iong (Xg —Xg ) (2.17)

f"
~
F„„(+q,)

~

'dq, = (2+5„„), (2.15)

where we have used the fact that n is a positive integer
(see also Ref. 7). Furthermore, with Eqs. (2.9) and (3.2)
(see Sec. III) we find that the density of states N(s) has
the form (spin included)

N(e)=2 g 5(s —s~„k )
N, n, k„

Ap
z + 5(e (N+ —, )A—coo neo) —.1 2

nl ~„
(2.16)

+iqz .F„„(+q,)=(2/L, ) e ' sin(nmz/L, )sin(n'mz/L, )dz,

(2.13)

I
Jew(u)

I
'=(&"/&')e "u" [L~'-"(u)]', (2.14)

I'=(I/~&)~o, 5/k =5k „.5gg, u =I'(q, +qy )/2

= I qi /2, and where Lz (u) is an associated Laguerre po-
lynomial. The derivation of the above expressions
proceeds as in the case of the usual Landau wave func-

ik z
tions, when sink, z is replaced by e ' (see Ref. 13, Sec. 4.2
and references cited therein). From Eq. (2.13) and
Parseval's theorem we find

where Xg =(g
~

x
~
g) [cf. Ref. 13, Eq. (2.84)]. In Sec. III

we evaluate this expression for various kinds of phonons.

III. MAGNETOPHONON RESONANCES

From Eq. (2.10) we find

Xg ———I ky, (3.1)

which entails that the factor (X&—X& ) in (2.17) varies as
(k» —k„') =q» due to the Kronecker delta of (2.12). Sub-
stituting (2.5), (2.6), and (2.12)—(2.14) in (2.17), we see
that o~ depends on k„and k~ only through
(k» —k„') =q». By symmetry, o„» will vary as q, so that
we can take cr =(a +cr»»)/2. For the summation over
k~ we assume periodic boundary conditions

L L.„/21' Ao
(3.2)

x

where Ao is the surface area. The limits +L, /21 come
from the fact that the P~(x+I k») are centered at
xo-—-12ky (-L./2&x &L./2). Fu~he~ore, we set
(ng),q=f~, u =I qi/2, and

AoLz AoLz
,
' f d'q= ', f dq, f du. (3.3)

8n 4 I

We can now proceed to the evaluation of the current in
the direction of the applied electric field (x axis). Equa-
tions (2.10) and (2.11) show that the diagonal ponderomo-
tive current ((J„)e), [second term of Eq. (2.2)] vanishes,
but the "collisional" current does not, for p =v=x, since
a ~

——(g~x ~g)=xo. Mora)ver, for p=v=x it can be
shown, by a procedure identical with that of Ref. 16, Sec
II, that the nondiagonal contribution for the current, as

I

%e also set

X' —N =M, M =0, 1,2, . . .

in the absorption term of (2.5), and

N' —W= —M, M =0, 1,2, . . .
in the emission term. Then (2.17) takes the form

(3.5)

Pe Ao
f~„(1 f~„)f ~

F(q)
~

—
~
F„„(+q,)

~

'dq,
I II N, N', n, n'

x f u
~
J~~(u)

~
du(Xo5( %Mcus +o[n— (n') ]Eo+E—)

+ ( 1+Xo )5(Miruoo+ [n —( n ') ]eo —Eq ) ) . (3.6)

%'e now consider various kinds of phonons.

A. Optical phonons

As usual, we take Eq =E=PAL -const and

AD
~
F(q)

~

= — =D'/0,
2ApE (3.7)
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where D' is a constant, co& is the phonon frequency, and p is the density. The integral over q, is given by (2.15) and that
over u by (Al) of Appendix A. Then (3.6) becomes

cr~ =CD' g fz„[(1 f&—+st „)Np(2N +M + 1)+(1 f~—t(c „)(1+Np)(2N —M +1)]5(Mficop R—cut )
N, M, n

+2CD' g [fN„(1—f&+t(c,„)Np(2N+M +1)5(—Mficpp+[n —(n')i]ep+(ricpL )
N, M, n, n'

+fN„(1—f~ M, „)(1+Np )(2N —M + 1 }5(Mficop+ [n —(n')i]sp —ficoL )], (3.8)

where C =(Pe /()lli)(1/2L, ~).
The second term of (3.8) is difficult to evaluate analyti-

cally for n+n' An. estimate of this term can be obtained
by transforming the sums over n and n' into integrals and
proceeding as, e.g., in Refs. 15 and 17. In what follows
we will consider that I., is so small that no transitions be-
tween the levels n can take place due to thermal excita-
tions, or phonons. For GaAs (m'=0. 07m, ) ep is about
50 meV, for L, =100 A, E=(rtcup-1. 78 meV, with 8
measured in Teslas and ktt T=26 meV at room tempera-
ture. That is, we consider that all the carriers are in the
lowest subband n =n'=1. In this case (3.8) is simplified
considerably:

&~ =3CD' g fz([(1 fw+sc, ()Np(—2N +M+1}
N, M

+(1 f~ —M()(1+Np)(2N —M+ 1)]

S. Polar optical phonons

The only difference from Sec. III A is that

Qq Q(qi+q, ) Qqji
(3.12)

where we assumed qz »q, for transport in the (x,y)
plane. This approximation allows us to do the integrals
over q, and u, in Eq. (3.6), exactly. ' In . (3.12) A is
the constant of the polar interaction and l qz /2 will can-
cel the factor u in Eq. (3.6) (after the integration sign}.
The integral over u is standard and is listed in Appendix
A, cf. (Al} and (A2). Corresponding to (3.10), that is, for
high temperatures and n =n'=1, we now find

T

cr~=3CA' g e "' " N +, '(1+Np)
N, M

X5(Mficop Picot ) . — (3 9) X 5(M(rtcup —(rico' ), (3.13)

Now optical phonons are important at relatively high
temperatures. In this case we approximate the factor
(1—ftv+sc, ) by 1 and f„, by e "' '. Then (3.9)
reduces to

(T =3CD' g e "' [(2N+1)(1+2Np) —M]
N, M

where A'=Al~/2. The sum over M is performed as pre-
viously. If N »M we can perform the sum over N as
well as since ( N —M)!/N! = 1. In this case (3.13) becomes

+~ coth(Pficop/2)

X5(MAu)p —RcoL ) . (3.10) X 1+2 g e " cos[2irs (cpL, /cop)]
s=1

Equations (3.9) and (3.10) show 5-function singularities of
the conductivity at resonance, Mcpp ——cpL, . The sum over
M can be performed with the help of Poisson's summa-
tion formula as shown in Appendix B. If N is large we
can perfortn the sum over N as well by writing

g~ Ne =(—1)(B/Ba)QN e and summing the
geometric series. Using (83) we find

p(, @)coth(PRa)p/2) NL

sinh(Piricop 2) 2cop

—2es (I ~/A+0)
X 1+2+e cos[2~s(cot /cop)]

(3.14)

where I'z is given by (C10). At resonance, the peak value
of the conductivity is given by (3.14) with the term in
large parenthesis replaced by coth(mI N /%cop). The period
of the oscillations in Eq. (3.14), given by cpL Pcop, P in-—
teger, is the same as in the experiments by Eaves et al. 'p

C. Acoustical phonons

In the Debye model Eq =Auoq, where uo is the sound
velocity. For F(q), as usual, we take

(3.1 1)

C C g
2Qpuo 0 (3.15)

where the datnping factor I z is given by (C6). At reso-
nance cos[2ms(coL/cop)]=1, the sum over s is easily
evaluated, and the quantity in the curly brackets becomes
equal to coth(m I ~/Acpp).

where c' is a constant. %e will also make the additional
approximation Np-(1+Np)=1/Phupq, in order to ob-
tain tractable integrals. All this is substituted in (3.6)
with fiuoq =Auoqz, we obtain
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e 2=Cc "g fiv„() fj—p„)I u
~

J~~(u) (
du 5(Memo R—uoV2u'/I)

N, N', n

+2Cc" g fN„(1 f—~„)f u i JNN(u)
~

du[5( —Mirupp+[n —(n') )eo+iriup/2u /I)

+5{M%coo+[n —(n') ]ep —))'iuov'2u /I )], (3.16)

1. Inelastic scattering

Using the property of the 5 function

5(x —xj )
5(g (x ) )=g (3.17)

where g'(x) is the derivative of g (x) and xj are found by
solving g (xj ) =0, we easily find

'2

o~ =3Cc
Q() Nl

I

X g fbi(1 —fz i)(N N')'—
NN'

where c"=c'/Pinup.
For n +n' the second term of (3.16) can be evaluated as

in Refs. 15 and 17, after the sums over n and n' are
transformed into integrals. In what follows, however, we
will will limit ourselves, again, to the case n =n'=1 for
I., & 100 A. In this case the second term of (3.16) is twice
the first term.

where eF (e——~ e—o)/Rcmp and I z is given by (Cl1). If
I N/%cop«1, oscillations of the conductivity as a func-
tion of the magnetic field are expected (in pure samples)
whenever ep —so=Pi)ip~p. In this case (3.20) becomes

a = 12Cc "(P/P)(1 —2e " ') . (3.21)

We further notice that the approximation I'~=A/r [c.f.
(Cl 1)] gives a resonance value of the conductivity propor-
tional to the magnetic field.

D. Piezoelectrical phonons

For the electron-piezoelectric phonon interaction we
have

~
F(q)

~

=P /Qq, where P is the piezoelectric con-
stant.

1. Inelastic scattering

The result, corresponding to (3.18), is

o~=(6CP'/m'up)

X g f~ i(1 —f~ i )(N N')—
T '2 2
(N N') pro-

v2 uo

N, N'

Qp

(N —N') lo
v2

'2 2

N~N'

(3.18)
This result, which is exact for two-dimensional phonons,
would be slightly more complicated if the approximation
Np-I/pRupq were not made. Without it, 2c"—+c' in
(3.18) and a factor qi [1+2N(qi )] evaluated at
qi ——(N —N)( pio/up)~2/Iwould multiply the summand.

2. Elastic scattering

where P'=P/Pfiu p.

2. Elastic scattering

If Ee =0 we find

oxx 12CP gfN1(1 tv i) . —

(3.22)

(3.23)
A much simpler result than (3.18) is obtained if

Rupv'2u /I is neglected in (3.16). We find

cr =6Cc"g(2N+1)fNi(1 f~i) . —(3.19)

For low temperatures pf~i(1 —fbi) =5(e~i —e~) and the
conductivity as given by (3.23), is proportional to the den-
sity of states at the Fermi level. Corresponding to (3.20)
we obtain

Acoustical phonons are important at low temperatures, in
which caru the factor f~,(1—fiv i) behaves like a 5 func-
tion. On the other hand, the approximation
Np = I/PAuoq requires not very low temPeratures. To ob-
tain insight, however, we make the approximation
Pfni(1 —

f~ i)=5(ski —e~) and we use (83). We then ob-
tain

o" =(12CP'/p) 1+2 g ( —1)'e
s=l

X cos(277$ EF ) (3.24)

cr~ = 12Cc "(eF/P)
where I z is given by (C13). At resonance Eq. (3.24) be-
comes

X 1+2 g ( —1)'e " ' cos(2nseF ) cr =(12CP'/P)(1 —2e " ') . (3.25)
s=]

(3.20)
The quantities CP'/p, in {3.25), and Cc "/p, in (3.21), are
proportional to the temperature and to the magnetic field.
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IV. REMARKS AND CONCLUSIONS I = " [L (x)]dx=, M&0 (Al)
The results of this paper are valid for electron-phonon

interactions treated in the first Born approximation.
Moreover, the assumption has been made that only the
lowest subband ( n =n = 1) is occupied, which limits their
applicability to very thin wells (L, &200 A). However,
this is only a quantitative limitation. The first term of
Eqs. (3.8), (3.16), and (C2) shows that the oscillations re-
ported here remain unaffected when the sum over n is
performed in the parts of the final results coming from
those terms; one has to replace ao by n eo and sum one-
third of the results over n. We do not expect the second
term (n+n') to qualitatively alter the results of the first
term for large thicknesses since the sample becomes
three-dimensional with a similar qualitative behavior. "
We further note that the assumption of a spherical effec-
tive mass, which is not that realistic, ' is not necessary for
the first term, i.e., m j' can be different than m,'.

At this point we are not aware of experimental work
other than Refs. 10 and 22, in which magnetophonon os-
cillations are reported in superlattice structures (L, & 1p }.
Therefore, we cannot compare our theory with the experi-
ment more than qualitatively. Magnetophonon oscilla-
tions of the conductivity (for polar optical phonons) with
the resonance condition reported here have been observed
in Ref. 10; the results indicate that the conductivity de-
pends on the thickness L, . Our results show that the con-
ductivity varies in all cases as 1/L„whereas the inverse
scattering rates as 1/L„ the latter result is in agreement
with Ref. 8, the former is probably new. This dependence
of the scattering rates on the thickness of the well has
been obtained in the absence of the magnetic field as
well. 4-'

The temperature and magnetic field dependence of the
inverse scattering rates are in agreement with the theoreti-
cal results of Ref. 8 as noted also in Appendix C. The
dependence of the level widths I'~ on magnetic field and
thickness, however, is tied to the approximation I ~-A/r
and this is done in order to have tractable algebraic equa-
tions when more than one term is kept in the expansion of
coth(n. l"~/Rcoo). For acoustical and piezoelectrical pho-
non scattering at low temperatures we expect oscillations,
in very pure systems, when the magnetic field is varied
with resonance condition Plcoo ——cF—@. To our
knowledge this result is new and experimental work is
needed to test its validity.
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APPENDIX A

The first three integrals below are listed in tables in
Ref. 20 and the fourth one is explicitly evaluated in Ref.
15:

I2 ——

I3 ——

I4 ——

e-"x~L,~ ~ x ' x=1, M~0

f e [L~(x)] dx =1,
e-"x~+' L,~x ' x

' (2N+M+1) .¹!
(A2)

(A3)

(A4)

Another useful integral is

I = e "x ' I. x x, M 0 .

%e set M'=M —1, we use the property

LM'+i( ) y LM'( ) (AS)

and the orthogonality property of the Laguerre polynomi-
als. Together with (A 1) this gives

(N'+M'}! 1 (N +M)!
( 6)N'! M N!

The last step is proven by induction.
Finally, by contour integration one can prove that

cos(2msx } ~ e '~~dx
I6 —— dx =Re

(x+a}(x +b )
—~ (x+a)(x2+b )

a e-' " s&0
a2+b2

(A7)

Equation (A7) will be used in the evaluation of the
scattering rate for polar optical phonons, cf. (C7) and
(C8}.

APPENDIX 8

Below we evaluate the quantity +~5(g(M}), where

g(M) is a periodic function of M. In a similar manner
one can evaluate the sum QM P(M)5(g (M) ).

We use the Poisson's summation formula in the form '

g f(M+ —, ) =f f(x)dx
M=0

+2 g ( —1)' f f(x)cos(2nsx)dx .
s=l

Applying (Bl) for 5(M —
a&L, / —coo} we find

(B1)

g 5(M —coL /coo)

=1+2 g e " ' cos[2ns(coL /coo)] . (B3)

g 5(M col /coo) = 1+2 g—c o[st. (scoL /coo)] .
M=0 s=1

Due to the 5 function, the lower limit in (Bl) can be re-
placed by —ao. If then the 5 function is approximated by
a Lorentzian of width 1 z and shift zero, the integration
involved can be done analytically and the result is
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APPENDIX C

Below we evaluate the inverse scattering rates from
which the damping factors I z, appearing in the text, can
be estimated according to I ~ =filr W. e have

1

~Wk„.~ k„n
(Cl)

x' k' ,8

When Eqs. (2.S) and (2.6) are substituted in (Cl) as well as
Eqs. (2.12)—(2.14), we find

, g (2+5nn )I IP(qi) I'JnN (&)
I
'die[&p5( —M~p+[n' —(n')'l&p+Eqi)

2N ~„
+ (1+ Np)5(Miiicop+ [n i—(n '}2]ep—Eqi )], (C2)

where we have neglected the component q, in the quanti-
ties F(q) and Ez. In both terms of (2+5„„)we will

again take n =n'=1.
—=A +5(Miricop Ace—r )/M,1

M
(C7)

1. Optical phonons

Using (3.7), (3A), (3.5), and (Al) we find

1

M
=3KD g Np+ (1+Np) 5(M@op iricor, )—(N —M)!¹!

4

(C3)

where A=3K''(I+2Ep)l /2. When the 5 function is re-
placed by a Lorentzian, (Bl) and (A7) give

1 A (coL, /cop)

~p (coi, /cop) +(I ~/i)!cop)

—2es ( I'~ /Arup)1+2 e
s=1

where K = I/2fil L,. If we approximate (N M)!/N!—
by 1, then (B3) gives us

=3KD'(1+—2Np} 1+2 g e
s=1

Xcos[2ns (coc /cop)]

Xcos[2ns (coL, /cop)]

At resonance (C8} gives the equation for I ~.
'2

x =fiA cothx,
p 5'+x' (C9)

(C4)

At resonance coL Pcop, cos2ms——(coL, /cop)=1, and (C4)
takes the form

I ~-3RKD'{I +2Np)coth(~l ~/ficop) . (CS)

The solution (graphical) of (CS) determines I"z. If
broadening is not included the factor, e " ' does
not appear in (C4) and I/r diverges, as found numerically
in Ref. 8. For the oscillations to be clearly observed
(irl ~/%cop) ( I, cf. (C4). With cothx =1/x +x/3
—x s/45, we obtain from (C5) the approximate result

ap
A'=mA/co co . (C10)

2

Again, I N is independent of N but its dependence on the
magnetic field is more complex than that of the preceding
r„, [Eq. (C6)].

where x =rrI ~/Atop and 5=moL, /cop. If bi'oadening is
not included I/r is proportional to the quantity in large
parenthesis in (C8} with e ' replaced by 1 and it diverges
at the resonance (see also, Ref. 8}. If cothx is approximat-
ed by 1/x, Eq. (C9) gives us

=(15I 1 —3k+ [(1—3b )'+ 36]' 'I /2)' ',
L 2

3irm 'D'(1+ 2Np )
(C6)

3. Acoustical phonons

a. E/asti' scattering

Equation (C6) shows that I z is independent of N and
proportional to the magnetic field. Its temperature depen-
dence is contained in Xo.

With (3.4), (3.5), (3.15),
Np-I+Np-I/Pfiupq we find

1/~=6'" .

(A 1),

(C 1 1)

2. Polar optical phonons

We proceed as in Sec. 1 of Appendix C. With (3.12)
and (A6) we find

Equation (Cl 1) shows that I/r varies linearly with tem-
perature and magnetic field in close agreement with Ref.
8.
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—= (6Kc "/tn "tt o )
'r

Xg(N —N') &~yp
(N N—')l o

v2 tto

4. Piezoelectrical phonons

a. Elastic scattering

b. Inelastic scattering

Repeating the steps in Sec. 3 a, we find

'2' 2

(C12)

—=6KP'I e E;(qo/2), E;(a)=I du .
a g

(C14)

b. Inelastic scattering

In this case M =N N'+—0 and the result is

—=6KP'/m coo
'r

This gives 1/r in terms of exponential integrals [if q, is
neglected in F(q) the integral over tt diverges]. Particular
cases (N=0, 1,2, . . . ) can be worked out. For N =0,
(C13) takes the form

If we replace q, in F(q) and No=(1+No)=1/PAuoq
by some average value q, we obtain Xg(N —N') '

J~N
(N N')—l too

v2 uo

'2 2

. (C15)

—=6KP'l qo =l
2u +qo

(C13) Notice that all scattering rates are inversely proportional
to the thickness of the well (K = 1/2%12L, ).
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