
PHYSICAL REVIE%' B VOLUME 33, NUMBER 12 15 JUNE 1986

Theory of conducting polymers with weak electron-electron interactions
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We show that the properties of many conducting polymers can be determined from the study of a

simple, continuum, one-dimensional model with a hmited number of relevant interaction parame-
ters. Over most of the range of validity of the model, low-order perturbation theory in the electron-

electron interactions is reliable. Properties of the ground state and low-lying excitations (especially

solitons and polarons) can thus be determined perturbatively. The results are compared successfully

with experiments in polyacetylene and other polymers.

I. INTRODUCTION

For the past few years, there has been enormous
research interest in the properties of conducting polymers,
especially polyacetylene [(CH)„]. Two simple noninteract-
ing models, the Su-Schrieffer-Heeger' (SSH) and
Takayama —Lin-Liu —Maki (TLM) models, have been
widely used in the study of these quasi-one-dimensional
materials. However, it has been realized for some time
that electron-electron (e-e) interactions may play an im-

portant role in the electronic structure of these materials.
To study the effects of these interactions, slightly more
complex models have been investigated in which the sim-
plest short-ranged e einteracti-ons (i.e., extended Hubbard
interactions) are included. The properties of the model
have been studied using erturbation theory, ' the
Hartree-Fock approximation, ' and Monte Carlo calcula-
tions among other methods. ' Comparison of these
results with experiment has led to conflicting claims about
the importance and strengths of these interactions.

We feel that to study the effects of e einteraction-s on
the properties of conducting polymers, it is necessary to
examine thoroughly the validity and correct interpretation
of the simple models themselves. In the following discus-
sion, the term "sitnple model" is used to refer to any one-
dimensional model Hamiltonian with a single electronic
(m) band with at most short-range electron-electron in-
teractions. %e will show that such an examination yields
a partial resolution of the controversy. In this paper, we
present a general model for the e einteractions -in terms
of which we discuss the following questions: (i) To what
extent can conducting polymers, which are quite compli-
cated materials, actually be described by a simple model
Hamiltonian'? (ii) What are the effects of e einteractions-
on the properties of these polymers and what are the in-
teraction strengths indicated by the experimental data?

The paper is arranged as follows. In Sec. II, we discuss
the relation between the physics of real conducting poly-
mers and the simple models. Two conditions for the ua

lidity of the simple models are obtained there In Sec. III.,
we derive expressions for a large range of properties of
conducting polymers obtained by the perturbative solution

of a model Hamiltonian which incorporate the most gen-
eral form of (short-range) e einter-actions. Conditions for
the validity of perturbation theory are also derived. In
Sec. IV, our results are compared to the experimental data
with emphasis on those quantities which would be zero in
the absence of e eintera-ctions. Finally, in Sec. V, we dis-
cuss the validity of both the model and the perturbative
solution in light of the results of Sec. IV, and the relation
of the present work to other approaches.

Our results as they apply to (CH)„can be summarized
as follows. (1) The simple models are only semiquantita-
tively reliable. Corrections to physical quantities due to
interactions which are missing from the model are expect-
ed to make on the order of 20% corrections to observable
quantities such as the soliton creation energy. (2) To com-
parable accuracy (-30%) the properties of the model can
be computed using low-order perturbation theory in the
e einteractio-ns. Thus, the major effect of interactions is
to lift some of the degeneracies that are present in the
noninteracting model and to make small quantitative
corrections to other quantities. (3) Crude estimates of the
values of the various interaction parameters can be ob-
tained by comparing the theory with experiment.

II. PHYSICAL INTERPRETATION
OF THE SIMPLE MODEL

The many degrees of freedom (e.g., o bands, tr bands,
lattice vibrations, etc.) and the complicated interactions in
the real conducting polymers, coupled with the impor-
tance of fluctuations and nonlinear phenomena charac-
teristic of one-dimensional systems, tnake a cotnplete
theoretical description impractical. However, in many
cases it is possible to construct a simple effective model
(as in Landau theory of a normal Fermi liquid) if one is
only interested in the low-energy long-wavelength excita-
tions of the system. This is a consequence of the fact that
in many conducting polymers, the characteristic correla-
tion length go is much larger than the lattice constant a,
so the low-energy excitations of the systems are relatively
insensitive to details of the underlying lattice structures.
(gula = W/b, o is large since the n-band width, 2W, is
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large compared to the band gap, 260.) One can treat these

systems in the continuum approximation obtained by ex-

panding all interactions about the Fermi surface. There-
fore, it is possible to derive the properties of the system
accurately from an effective Hamiltonian which describes
a field theory with a finite cutoff. There are only a few
relevant interactions in the continuum limit and the gen-

eral forms of these interactions can be determined easily.
However, the effective interaction strengths in the model
are extremely difficult to derive from first principles and
must generally be deduced from experiment. Despite ap-
pearance, the interactions are not truly bare microscopic
interactions.

Since any simple model is only an approximate repre-
sentation of the real material, it is important from the
outset to examine the conditions for the validity of these
models. As we pointed out in Ref. 4, the simple models
only give a satisfactory description of the electronic struc-
ture of the real materials near the Fermi energy'i (see Fig.
1}. Those properties of the models which depend only on
states near the Fermi surface are independent of the de-

tails of the model and hence we will refer to them as
"universal. " Those which depend on the states near the
band edges are model dependent, hence "nonuniversal. "
Since the simple models are incorrect near the band edges,
only the universal terms are meaningful. (See Ref. 4 for a
more complete discussion. ) We thus obtain two important
criteria for the validity of the simple models. First, the
band gap 260, which sets the scale of interesting energies,
must be small compared to the ir-band width 2 8',
equivalently, the characteristic correlation length go must
be large compared to the lattice constant a

This second condition emerges from detailed analysis of
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FIG. 1. (a) Calculated band structure of trans-(CH)„ from
Ref. 13. (b) Band structure of lattice (Solid line) and continuum
(dashed line) models of trans-(CH)„.
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Second, the characteristic magnitude of the e-e interac-
tions U must be small compared to the valence band

width

U
(2)

the structure of high-order perturbation theory (see dis-

cussion in Refs. 4 and 14). It can be understood on the
basis of a simple intuitive argument. An interaction with
strength U will strongly mix the states with energy

[E Ef—[ &U, (3)

where Ef is the Fermi energy. Clearly, only if condition
(2} is satisfied, will the results be independent of the band
structure near the band edges. Therefore, conditions (1)
and (2) are necessary for the validity of the simple models.

Since most conducting polymers have a small band gap
compared to m-band width, condition (1) is always satis-
fied. However, condition (2) indicates that the simple
models are only valid when e-e interactions are weak
(U/W «1). Detailed comparison with experiment of re-
sults obtained from the simple models, even from the ex-
act solution of the models, is extremely difficult to justify
when Coulomb interactions are not weak. %'e conclude
that model calculations are only valid to lowest order in
U/W. At best, the results are qualitatively correct outside
this regime, but even that is not guaranteed. For instance,
we showed in Ref. 4 that in the presence of strong e-e in-

teractions, charge-conjugation symmetry (which is a
feature of the simple models), is strongly broken.

The successes of the simple noninteracting models in

explaining many experimental observations suggest that
the e-e interactions in these materials are indeed weak.
For instance, the dimerization in (CH)„, was found' to
have the magnitude predicted' on the basis of the nonin-
teracting SSH model, and an analysis' of the Rarnan
spectrum has shown that the Peierls relation between the

gap and the electron-phonon coupling constant is well

obeyed (see discussion below). Another piece of evidence
which strongly supports both the claims that the proper-
ties of conducting polymers are insensitive to the band
structure far from the Fermi surface, and simultaneously
that the interactions are weak, comes from a comparison
of the optical absorption spectra of different materials. In
Fig. 2, we have plotted the optical absorption coefficient
a(co), normalized to its peak value a(co~) versus frequency
co in units of the peak frequency co~ for several conducting
polymers: trans and cis-(CH)-, polythiophene, polypyr-
role, and polydiacetylene. The curves in Fig. 2(a) display
a remarkable similarity among the four different conduct-
ing polymers. They all lie within about 30go of an aver-

age curve. For comparison, note the fact that samples of
thermally and electrochemically isomerized trans (CH)„-
differ by about 20% [see Fig. 2(b)]. In view of the enor-
mous differences in the structures of these materials, the
observed similarity in a(r0) is remarkable.

If the interactions were weak, this similarity could be
readily understood, since the simple models would be ac-
curate and to zeroth order, a single parameter, namely, the
gap h0, determines the entire spectrum. The rescaled op-
tical absorption would thus lie on a universal curve [see
Eq. (12}]. The striking universality demonstrated in the
a(co)'s thus strongly suggests that in most conducting
polymers, conditions (1) and (2) are fairly well satisfied.
However, the fact that the optical data of polydiacetylene
does not lie on this curve [see Fig. 2(c)], suggests that the
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tions may contribute to this difference.
The model we have studied is a massive field theory

which includes (almost) all possible interactions in the
continuum limit,

interactions in this material may be quite different than in
the others; presumably they are much stronger than in
(CH)„as has been claimed in chemistry literature. ' We
wild show that the long-range nature of Coulomb interac-

H =g I dx I 4s«)[ »—x&3+~«)&I]fs(»+g((WIsfz ftsfs42 +g I j.fis42JPIsA +g2l ftlsfzff2J Pls

+ 2 g3j. (Wisflsfzs02s+42s42sfisfIs )+ 2 g4J(kl. sWIsfECIs+42s42s42Ã42s ) I

[~(x)—~.f]'~I2 i '(x)
2go

+
2go

(4)

Here fs(x)=(QI„Q2, ) is a two-component spinor with
components QI, (x) which creates a right-moving electron
of spin s at position x, and gz, (x) which creates a left-
moving electron. h(x) is proportional to the local lattice
dimerization, and go/fog is the electron-phonon coupling
constant. b„„, is the term which breaks the symmetry be-
tween the two senses of dimerization [hence 5;„,=0 in
trfins-(CH), but b,;„,&0 for other polymers]. The g s are
the five independent e-e interaction constants in the usual
"g-ology" picture. ' In Eq. (4), we have chosen the units
such that A'vf = Wa =1, where vf is Fermi velocity. In
these units, the g s are dimensionless. We have ignored
those terms which are higher than quadratic order in the
Bose field h(x) by invoking the small magnitude of the
lattice distortion.

The momentum dependence of g's can only be neglect-
ed for short-range interactions; for 1/r interactions the
forward-scattering terms g2 and g4 would be infinite.
Long-range interactions are also intrinsically three dimen-
sional. Since the actual Coulomb interaction is long
range, we should briefiy discuss the justification for the
use of a short-range one-dimensional model. We are al-
ways interested in 2kF-type response functions. The
forward-scattering lines g2 and g4 are thus almost always
integrated over k and fo. At frequencies greater than the
gap and less than the plasma frequency so~ the Coulomb
interactions are fully screened by the electrons on other
chains. Thus, following Ref. 19, we find that whenever
the forward-scattering term occurs on an internal leg of a
diagram, it is equivalent to a short-range interaction

IO) e 8'2

g24g2, 4 +,

%here g24 is determined by short-range consideration,
e.g., U and V; b is the intra-chain lattice constant; and eo
is the static dielectric constant; co~=4mne /m„where n

is the n.-electron density. For (CH)», where n =10
cm, fico~ -3.5 eV so the Coulomb interaction is effec-
tively screened. On the other hand, in polydiacetylene,
~here n =10 ' cm, Ace~ —1.1 eV so the forward scatter-
ing is largely unscreened. This suggests that the e-e in-
teractions are much stronger in polydiacetylene which ex-
plains the observed difference in the behavior of polydi-
acetylene in the optical absorption data [Fig. 2(c)].

Hamiltonian (4) is a (1+ 1)-dimensional field theory
which is convenient for analytic analysis. Moreover, this
model contains many other widely studied models as spe-
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FIG. 2. (a) Rescaled absorption coefficients for various con-

ducting polymers. (Solid line) trans-(CH)„; (dashed line) cis-
(CH); (dashed-dotted line) polythiophene; (dotted line) polypyr-
role. (b) Rescaled optical absorption coefficients for thermally
(solid line) and electrochemically {dashed line) isomerized trans-
(CH) . (c) Rescaled optical absorption coefficients for trans-
{CH) (solid line) and polydiacetylene {broken line).
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cial cases. For g;i ——0, the model is equivalent to the mas-
sive Thirring Model. [This equivalence was exploited in

Ref. 14 to identify the universal terms in the theory, and
hence to justify condition (2)]. For g~

~

———4 V~
~

/ W,

gil ———gal ——(U —2Vl)/W, g2l ——g4l ——(U+2Vl)/W,
the model is the continuum limit of the SSH-extend
Hubbard model with H;„,= U/2 g„,[p„,p —]

[V~~p~p„+, ,+ Vlp~p„+, ,]. This latter model

has been intensely studied by Monte Carlo thus pro-
viding us with an additional check of our perturbative re-

sults.
The model in Eq. (4) is not well-defined unless a regu-

larization or cutoff scheme is specified. The results are
generally dependent on the cutoff scheme, but the univer-
sal terms are scheme independent. Unfortunately, our
model has six unknown parameters. Our strategy is to
calculate various properties of the model, and then deter-
mine these parameters roughly by fitting the results with
experiment data. The resulting values for the g's should
be interpreted as being characteristic, but not taken too
seriously in detail.

Since the simple model in Eq. (4) is only valid when in-

teractions are weak, the model can be solved by straight-
forward (though tedious) perturbation theory. The condi-
tion for the validity of low-order perturbation theory is

III. PERTURBATIVE RESULTS

We have evaluated the perturbative effects of the in-
teractions on the various quantities of physical impor-
tance. Here we report some of our results.

A. Perfectly dimerized lattice

g'
1

2W g'
2m Ap 2m

2 2$"
~p

g
2'

'2
2W

hp
+ln(2)ln

28'
0

For a perfect dimerized chain, we have calculated the
effects of electron-electron interactions on the physical
gap, the magnitude of the dimerization, the phonon spec-
trum, and the optical absorption coefficient by using stan-
dard Green's function methods.

(i) The physical gap. Up to two-loop order the physical
gap is found to be

U 28'
ln (&1 .

7T 0
(6) Ap

+0.2370+0 +o(g')
The logarithmic dependence on the cutoff is the expected
ultraviolet behavior of Fermions in 1+ 1 dimension.
Note that the presence of the factor (2n) ' in Eq. (6)
which occurs explicitly in each order of perturbation
theory, helps explain the fact that Monte Carlo calcula-
tions differ substantially from perturbation results only
when U is larger than W (see Fig. 3). For most conduct-
ing polymers In(2W/60)-2, so conditions (2) and (6) are
roughly equivalent. Therefore, for most conducting poly-
mers, low-order perturbation calculations are accurate so
long as the simple models are valid.
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FIG. 3. Lattice order parameter ho as function of on-site
Hubbard interaction U. Solid line is the second-order perturba-
tion theory results from Ref. 3; the full circles are the Monte
Carlo results from Ref. 6.

where

g =g li +g3i +g~~

II I 2
g il g2l g 1J.g3J. g2lg3l 2 g ~(

.his result explicitly shows that the nth-order term in the
perturbation series has the form

(g/2a)"[A„ln"(2W/bo)+B„ln" '(2W/b, )+ ]

The leading coefficient A„ is independent of the cutoff
scheme while other terms are scheme dependent. This is
not an artifact of perturbation theory; the same scheme
dependence appears in exact solutions of this sort of
model as discussed in detail in Ref. 14. In most polymers,
ln(2W/60)=2 —3, so the next-to-leading terms are not
completely negligible compared to the leading terms.
Typically, much of this scheme dependence can be ab-
sorbed into a scheme-dependent redefinition of the cou-
pling constants. Thus, it is important to remember that
even the magnitudes of the interactions are somewhat cut-
off scheme dependent. To first order in g, the entire ef-
fects of the e-e interactions on the one-particle Green's
function are contained in the renormalization of the gap;
in higher order there are further vertex effects. Note that
in the Hubbard model, the first effect occurs to order U .
Hubbard interactions thus increase the gap for fixed di-
merization, regardless of the sign of U.

(ii) The magnitude of the dimerization ho is found by
solving the self-consistency equation, dET /1 b,o 0, which——
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expresses the fact that the ground-state value of hp is that
which minimizes the total energy per unit length ET.
From the HeHmann-Feynman theorem it follows that the
self-consistency relation can be expressed as

2

, g(y,'~„y, ),,g s

=b„„,+, ln [1+O(g')],2go~ 2$'
COg7T

(10a)

where ( )a, means ground-state expectation value with

fixed lp, and, in the second line, the only effect of e-e in-
teractions to the first order in g is to replace bp by b. in
the usual Peierls relation. For the case of trans-(CH)»,
where b,;„,=0, Eq. (10a) can be inverted to obtain an ex-
pression for 6 as a function of gp

T

1
I

b, =2%exp — 1+ +O(g2) (10b)

where A, =gp/mot22 is the dimensionless electron-phonon
coupling, and g' is defined in Eq. (8). Note that the
dependence of 6 on A, is fundamentally altered if g' is not
small.

(iii) The optical phonon spectrum which we have com-
puted to the first order in the e-e interaction is

( 1 + 2)1/2
e02(k) =cop sinh

7l

sion for the optical absorption and one should expect even
greater dissimilarity between the different materials.

B. Properties of the soliton

In trans-(CH)„, the twofold degenerate ground state
permits the existence of domain wall or soliton excita-
tions. These are characterized by a a region of width g
over which the lattice order parameter h(x) changes sign.
The soliton can exist in three charge states, Q =+e, 0, or
—e, and has the reversed charge-spin relations from the
constituent electrons; it is spinless when charged and has
spin —,

' when neutral. In Ref. 2 it was shown that for the
continuum model without e-e interactions, the soliton
shape which minimizes its creation energy is

h(x) =hptanh (13)

The soliton creation energy as a function of its width was
also calculated there, and found to take its minimal value
of E, =2bplir when /=A, regardless of the charge state
of the soliton. We have calculated to first order the ef-
fects of interactions on the soliton creation energy, width,
and in the case of the neutral soliton, the spin density. In
these calculations, we have assumed soliton shape as in

Eq. (13). This approximation is examined in Appendix A.
(i) The soliton creation energy as a function of its width

can be expressed in terms of two dimensionless functions

f j(/leap):

g'
1

2W g~~ (sinh 'rt)
2~ 5, 2~ 4q2( 1+&2)

T 'I

fp + +Vifi + +O(g ) (14)

1 gii cosh '(z)
i z)1

z2(z2 —1)i/2 2ir z(z2 —1)
' '" 0, ifz~i (12)

where z—= iriep/2h. Here again, the first term in Eq. (12)
has the same form as the noninteracting result except b p

is replaced by b, . Obviously, this term, properly rescaled,
is the same for all materials. However, the second term is
proportional to g~~. In different materials, with different
values of g~~, the magnitude of this term will not be the
same. The presence of the second term in Eq. (12) makes
the rescaled optical absorption curves of the different con-
ducting polymers differ from the universal curve slightly.
As stated previously, the similarity in the observed optical
absorption among the various polymers strongly indicates
the interactions in these materials are "weak." Note Eq.
(12}is valid only for weak e-e couplings. If the e-e cou-
plings are strong, then all g's would enter into the expres-

where epp=2lm~, and i):—Ufk/2b, with 5 the physical
gap [see Eq. (6)].

The first term in Eq. (11) is exactly the result of
Nakahara and Maki except that bare gap hp is replaced
by the physical gap h. In addition, the e-e interaction
gives an extra contribution to the phonon spectrum [the
last two terms in Eq. (11)].

(iv) The optical absorption, to first order is

V)
0+=Cp 1+

3K
(15)

In this limit,

4'
E,+(g+ ) —E,o(g ) = Vi .

In Fig. 4, we plot the soliton creation energy as a func-
tion of its width for different values of Vi. The curves
are quite flat near the equilibrium width. This is due to
the softness of the soliton shape mode.

where Vi ——m/48 (g»+g22 —gii+g42 ), and the + and
—refer, respectively, to the charged and neutral soliton.
Note that charge-conjugation symmetry implies the exact
result that E, is independent of the sign of the charge.
The functions fj can be computed to arbitrary accuracy.
fp(v) is calculated in Ref. 2 (see Fig. 1 in Ref. 2); and

I (v+ —,
' )1(2v)

fi(v)=
v ~v I' (v)I (2v+ —,

'
)

where v—=g/gp. However, in the perturbative regime they
can be expanded to low order in X=(g—gp)/gp ——v —1:
fp 1+—,'«X +O(X ), ——where ~=0.25; fi ——1 ——,'X
+O(X2). The equilibrium width for a charged (g+} or
neutral (g ) soliton is obtainixl by minimizing E, with
respect to g:
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where V4 ——I/4n (gri +g23. —g3j. +g4j. )In(2 IV/6) and
s (x } is a complicated function which has the property
that it yields zero when averaged over even numbered sites
( kfx =rrn) or odd numbered sites ( kfx = Irn +'rr/2) (see

Appendix B). It is easy to check that Eq. (17) satisfies the
sum rule I s (x )dx = 1 (particle conservation). Thus, the

major effect of e -e interactions is to increase the spin den-

sity on the even sites, and induce a compensating negative
spin density on odd sites.

Besides the soliton, other excitations such as polarons
and bipolarons had been investigated by several authors
using noninteracting models. ' The polaron or bipola-
ron is a bound pair of solitons where the order parameter
takes the forin

b(x) =—bi (x)

0.50
0.0

(c) (b)

I .0 2 .0 5 .0

X +Xp=6 p
' 1 —(gp/g) tanh

FIG. 4. Charged {solid line) and neutral {dashed line) soliton

creation energy as function of its width. {a) V&
——0.2 1; {b)

Vl ——0.26; {c) Vl ——0.3 I .

(ii) The spin density of the neutral soliton is the differ-
ence between spin-up and spin-down densities,

s (x)= (pl(x) ) —(p, (x) )

=—sech —[( 1 + V4 )cos (k x)1 2 X

X —Xp—tanh

where the width g is determined by

2Xp
gp/g = tanh (19)

—V4sin2( kfx }]+ S(x), ( 17)

As in the soliton case, we have calculated the polaron

(bipolaron) creation energy as a function of its width g by

assuming Eq. (18) (see Appendix A for derivation}:

Ez ——(n+ n+2—)e+ —bgp/p — tan ' — +—b„„, ln [tanh '(gp/g) —gp/g]
4 4e l 4p ~p 8 ~p 2 IV

7r 7r

+
12 gii +g2& g3& +g42 }(f+r +f r 1)(f+r +f r

-—1)kpC-—

2 [g11[(f+i +f r I}'+(f+r +-f—r 1}']+,
'

(g 1 2-—g23g32-g42 )(f+. r +f r 1)(f+r +f r
——-1 }I-

[tanh-'(gp/g) —

gpss]

where e= bp[ 1 —(gp/g) ]' and +e are the energies of two mid-gap states; and f+, (f, ) is the occupancy number of
electrons with spin s in state (t + (rr ) and n+ g, f+,. —

Define e =b,pcos8; gp/g
—=sin8 (0 & 8 & rr /2 ):

N= n+ n+2; —F, =—(f+,+f, 1)—
2~inst ~int ~O

2I:— ln( 2 W/hp) =
~o—~ t g

2

Equation (20) becomes

Ez /b p Ncos8+ —(sin8 —8 co——s8) +—I ( tanh (sin8}—sin8)
4

(2 1)

+ 4 (g iJ +g2J g3J +g42 )+r+, »n8 ——,[g11(+'l ++', ) + —,(gii —g2& —g3j —g4J )Fl+, ]cot'8[tanh '(»n8) —»n8].
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The width is determined by minimizing Eq. (22):

10= E = N—sin8+ —8sin8+I sin8tan8
6o d8

1—» (gii+g2i —gii+g4i )F,F,cos8

1 2 Q 1 2 cos8
T[g(((Fi +F$ )+ 2 (gii, gpss, g3J g4i )FfFi ] cos8 — . , [tanh (»n8) —sin8]

sin 8
(23)

From Eqs. {22) and (23), one can readily get the polaron
(bipolaron) creation energy and its equilibrium width as
functions of the e-e interaction coupling constants and
the intrinsic gap 6;„,.

In the weak-interaction limit, 8 will differ from its
noninteracting value 80 by a small amount, 5. That is,
8=80+5 with

80+I tan8o ———N . (24)

To the first order in e-e interactions, one can solve Eq.
(23) by expanding to linear terms in 5. This gives

1
IFtFi(g ii +g2i g3i +g4i )~

A

where

+[(F,+F, )g((+ —,(giJ gpss gii g4l)F—,F,]CI,
(25)

4
& = —N cos8&+ —(80cos80+ sin80)

4+—I sin8O 1+ 1

cos 8o

8 = —
12 cos(90
1

(27)

C = —,cos80 1+ —
3

tanh (sin80)
1 2 2 f e

sin 80 sin 80
(28)

5=gll(ir/4)[ i 2V 21n(1+~2)

8=( /4)i I+g [-,' —23/21 (I+3/2)]i,

(29)

(30)

2v2
8

[3/21n( 1+3/2) —1]

g= 3/2/0 I 1 + (ir/4)g)( [2 ln( 1 +~2) —5/2~2] ]

2X,=V 21n(1+3/2)

(32)

erg() [2—ln(1+ V 2)][2~21n(1+v 2)——,
'

]
4~21n( 1+3/2)

(33)

When b,;„,=0 [e.g., in trans-(CH), ], only the polaron is
stable. For the polaron configuration, N = 1; F, = 1;
F, =0; 80 n/4. Then we —

g—et

IV. COMPARISON WITH EXPERIMENT

In this section, we compare some of our results with ex-
periment in order to estimate the magnitudes of the vari-
ous e-e interaction coupling constants. Since none of the
spectroscopic features are sharp, none of the parameters,
not even the gap parameter b„can be determined precisely
from experiment. Moreover, the simple models are accu-
rate descriptions of the properties of real materials only to
leading order in b, /W and g/2m, thus one should inter-
pret the values of the parameters we derive by comparing
with experiment as being only semiquantitatively mean-
ingful.

Since the most extensive experimental studies of any
conducting polymer have been of trans (CH)„-we have
only analyzed the (CH)„data, although our results could
apply to other materials as well.

(i) The ratio of average spin density on the even and
odd sites for a neutral soliton. In the noninteracting
model, the spin density on odd sites vanishes, so the ratio
of average spin density on odd and even sites (p /p+) is
zero; in the presence of e-e interactions "there is nega-
tive spin density on the odd sites which leads to a finite

p /p+. According to Eq. (16), this ratio is

—V4/{1+ V4). The ratio has been measured recently by
Thomann et al. 3' ' to be p /p+ ———,

'
in (CH), . From

this we deduce that V4 ———,', which in turn implies that the
dimensionless combination, (g/2n )ln(2W/50) which
enters perturbation theory is small, (g /2m )ln(2 W/b, ) = —,';
the e-e interactions are indeed moderately weak. If we re-
late this to the extended Hubbard model, the result im-
plies U =3-4 eV. Note that in the context of this model,
the ratio only depends upon the on-site interaction U, not
upon the nearest-neighbor interaction V. The physics
behind this is simple; since the electronic density vanishes
on odd sites in the zeroth order, the nearest-neighbor e-e
interaction can have no effect on the spin density in first-
order perturbation theory.

The spin density is an equilibrium quantity so that the
measured value is quite reliable and the physical interpre-
tation is clear. Also the theoretical result yields a value
which is moderately insensitive to the magnitude of pa-
rameter bo (which is not precisely known). We therefore
regard the spin-density measurement as the most unambi-
guous measurement of the strength of the e-e interaction
in (CH)„.

(ii) The photoinduced optical absorption. In the pho-
toinduced optical absorption measurement, two peaks at
AcoL ——0.45 eV and fmH ——1.40 eV had been observed.
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We believe that these peaks are due to electronic transi-

tions which involve charged and neutral solitons. To be

precise, the low-energy peak corresponds to the process
S ~S +e; (or equivalently, S+~S +e+) and we in-

terpret the high-energy peak as the process S ~S++e
(or S ~S +e+ } (see Ref. 25).

To calculate the peak positions, several subtleties
should be taken into account. (a) the electron final state is
properly a packet state with energy E, instead of any par-
ticular one-electron eigenstate. (b) The Coulomb correla-
tion, (EEs, ), between the extra electron and the soliton in
the final state has to be considered. (c) For the high ener-

gy peak, the long-range Coulomb interaction cannot be
neglected since the final state consists of two far-separated
oppositely charged particles (the electron and soliton).
This contributes an extra term E, &0 (the magnitude of
E, should be of order -e /eg -00.5 eV) to the high-
energy peak position. Combining these results, we obtain
the following relations for the observed peak positions:

RcoL E, (E——s+ —Eso)+—&Esp,

RcoH E, +——(Es+ —Eso)+bEs~, +E, .
(34)

Let us discuss the terms in this expression that we have
not evaluated previously in Sec. III. The optical absorp-
tion coefficient is proportional to the current. In our
model, the current operator is e„so the wave-packet state
is computed as

le&=& g Ik&&k
I

o'. l4'0&=—g&t Ik&

Eq. (16) that the creation energy splitting

Es+ E—s
——0.25 eV (see Fig. 4). Taking this value and

the experimental values for ficoL and irtcoH, we get
V= —U/2= —2 eV; and E, -0.3 eV. Again, the magni-
tudes of the e-e interactions are within the perturbative
regime.

At first glance, the negative V obtained above looks
quite strange. However, it is all natural in the g-ology
picture. In fact, the noninteracting model describes a
quasiparticle system. Some of the effects of the Coulomb
correlation have already been taken into account in an
average sense. A negative V does not necessarily really
mean attractive interactions between electrons. It only
tells us that in such half-filled systems, electrons prefer to
avoid each other. The effect of a negative V is similar to
the effect of a positive U; it is also a consequence of e-e
repulsion.

We repeat that the above estimates are fairly crude.
Several sources which contribute to the uncertainty in the
above analysis are (a) All five coupling constants g;
should be fit independently. In principle, they cannot be
represented simply by a U and a V. (b) The experiments
do not measure soliton creation energy very precisely. For
instance, the low-energy peak in the photoinduced optical
absorption experiment has a half-width about 0.3 eV. (c)
The corrections due to interactions far from the Fermi
surface, which may be as large as 20—30%, are of course
not correctly included in any simple models. Nonetheless,
it is gratifying to obtain results which are consistent with
the spin-density measurements.

where the sum is over ail states in the conduction band,
and

~
tI}0& is the mid-gap state. In the first-order pertur-

bation theory, we can approximately take the states in Eq.
(22) as those in the noninteracting model. It is easy to
show

' 1/2
0

Bk =m'
gokn.

sech (36)

The expectation value of the Hamiltonian in the wave-

packet state can be readily evaluated, to yield

E, =1.15p——,
'

hp ln
g' 2$'

p
(37)

and

6p~E„-=,2lg~~+-, (g +g gi +g—

+( gjl+g2l +g3i+g4l )1

where — (+ ) refer to charged (neutral) soliton.
Es+ Eso is evaluated in—Sec. III, Eq. (16).

Obviously, there are too many paraineters in Eq. (34)
for a meaningful fit to the experiment. In order to esti-
mate the characteristic magnitudes of the e-e coupling
constants, we imagine that the g's can be parametrized in
terms of the interaction of extended Hubbard model (i.e.,
U and V) with V~~

——Vi. Using the value of U estimated
from spin density experiment ( U=4 eV), we find from

V. DISCUSSION AND CONCLUSION

The effects of electron-electron interactions on the
properties of conducting polymers have been studied by a
variety of approaches and utilizing a number of different
models. We here comment briefly on what our results im-
ply concerning the proper interpretation of these other re-
sults, and conversely what these results imply concerning
the validity of our ap roach.

(1}Models. Most of the numerical approaches in-
volve the solution of a finite chain problem and take as
their starting point the extended SSH Hubbard model.
This model has only interaction parameters, U and V.
There is no compelling reason we know of to expect this
model to be quantitatively reliable, since even in the weak
coupling limit there are five independent coupling con-
stants g; [see subsection (3) below]. The model, indeed
any simple one-band model, is even less reliable in the
strong coupling limit, U/8'& 1, since the full-band struc-
ture, which is tremendously oversimplified in the model,
plays a role in the determining of the low-energy proper-
ties of the material (see Refs. 4 and 14). Numerical stud-
ies have also been performed for the PPP model' with
long-range 1/r interactions. While this model may, in
fact, be correct for an isolated polymer chain, when the
chain is embedded in a solid, or even in a solution, three-
dimensional screening effects are always relevant. For
most purposes, this implies that the effective interactions
can be taken to be short ranged (see Ref. 19).

(2) Accuracy of perturbation theory. The numerical
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solutions of the extended SSH Hubbard model are ex-

tremely useful for understanding the qualitative effects of
interactions, and, for our purposes, can be used as impor-
tant bench marks for testing the accuracy of perturbation
theory. %e have extensively compared perturbative re-
sults with numerical results for the Hubbard model as
sho~n in Fig. 3. From this comparison we conclude that
perturbation theory is quite reliable out to U/2t p & 1. For
U/2tp ~ 2, perturbation theory breaks down rather catas-
trophically. (Note, for U/2tp & 2, strong-coupling pertur-
bation theory in powers of tp/U becomes quite accurate. )

(3) Renormalized perturbation theory. We have recently
received a report by Horvitz and Solyom (HS) which
contains an elegant application of renormalization-group
techniques to essentially the same model as we have
analyzed. In fact, HS have summed up the leading loga-
rithmic contribution [-1n(2W/b, o)] to all orders in g.
The results agree with ours in the weak-coupling regime,
(g/2)ln(2W/hp)«1. The approach is not, however,
easily generalized to permit the study of the effects of in-
teractions on properties of solitons. Moreover, as noted
by HS, since 1n(2W/ho) is of order 2, it is not clear that
the interactions are fully renormalized.

(4) Comparison with experiment We ha. ve deduced the
value of two combinations of coupling constants from a
fit to experiment. To facilitate comparison with other
theoretical work, we have quoted the results in terms of
equivalent values of U and V. Care must be taken in in-

terpreting this equivalence; given the values of the physi-
cal observables such as the gap and the soliton creation
energies, the deduced values of the bare interactions that
appear in the Hamiltonian depend somewhat on the na-
ture of the ultraviolet cutoff of the one-electron spectrum,
especially if U/W is not small (see Ref. 14). Thus, even if
the physical interactions were exactly modeled by a single
Hubbard U, we should expect the value of U deduced
from continuum model calculations to differ from the
discrete model value by order 5U- U[U/(2tp)]. This is
consistent with the fact that our estimates of U, and those
of other workers, mostly fall in the range U-(4+1) eV.

%e conclude that simple models are only valid when

hp/W «1 and U/W «1. When U/2irWln(2W/
Ap) « 1, perturbation calculations are accurate. For most
conducting polyiners, ln(2 W/b p) -2, so perturbation
theory is typically valid as long as the simple models
themselves are valid. Experimental evidence suggests that
in trans-(CH), U =3-4 eV. In the cases where
U/W & 1 the simple models break down and a more real-
istic model is required.
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APPENDIX A: SOLITON AND POLARON
CREATION ENERGY

Here we give the derivations of Eqs. (14) and (20). The
creation energy of a defect as a functional of the lattice
configuration is defined as

E- t =Et.t.i[~]—«.t.i(~p)

E(P)+gE(1)+gE{2) (A 1)

b,E' '= (H, , )a—(H, , ) (A2)

where H, , is the e einteraction -Hamiltonian [see Eq.
(4)]; and ( )a is the ground-state expectation value as a
functional of the order parameter b,(x).

Since the ground state is a product state, so

where E(p) is the crmtion energy in the noninteracting
model and was calculated in Ref. 2 for "soliton" and Ref.
22 for "polaron" configurations. hE'" is the correction
due to the change in the self-consistent determined
electron-phonon coupling constant (top/gp); hE' ' is the
correction due to e einteractio-ns. To the first order in
the e -e interaction

+ 'g (&e'0',0 0-&+&0'0-'0 it &)+ 'g (&0'0'0 ,0-.&+&0'0',e-,e &)]-
=/ Jd tg ((y', y &(y y, & (q', it, &&/'y —))+g &yt, y &(y'y, , )+g (q', y, )(—qty

(A3)

The expectation values in Eq. (A3) are readily deter-
mined. In the soliton case, there is one mid-gap state

~ fp) and b„„,=O. Then

& 4i, (»4i.(» &a =(f.——')
I do I

' where

; 4o

(A5)
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is the mid-gap wave function and f, is the number of elec-
trons of spin s in the mid-gap state. Similarly, in the per-
fect dimerized system, we have

The self-consistency equations require

COg COg

db,go go o o

QPg
2

4go

~o 2W
ln

m

Mg
2

2
go p

g'
1

2W
2~" ~o

By using Eqs. (A4)—(A7), we get

I3E' '=(2f, —1)(2f,—1)(gii+g2i —g3J +g4J )I+

Cgg

g2
(A16)

where

—g'Io

I+ = ,
' J'—dx

I (()o I

" (A9)

COg gz
4go

(A10)

In principle, the lattice configuration h(x) should be
computed self-consistently to find that lattice configura-
tion which minimizes the defect creation energy. This is
generally quite difficult. However, I3E'3' is insensitive to
the exact form of h(x), since it only depends on integrals
of this quantity. Moreover, as long as the e-e interactions
are weak, the defect shape will not be very different than
in the absence of interaction. Therefore, as a quite good
approximation, we assume that the soliton has the same
shape as in the absence of interactions

AE(1) 6)g
2

2go

COg a2x —ao2 x
2go 0

2~0 g' 2 2W
ln

m 2m bo
(A17)

E' '=(2bo/Jr) fp(v) is calculated in Ref. 2. Put all terms
together, we finally get

2bo
E, = fo(v)+ (giJ +gpss g3J +g4i)fi(v)

48

where (pig/go)o is the electron-phonon coupling in the ab-
sence of e-e interactions; and b is the physical gap ln Eq
(7). Equation (A16) indicates that the first-order effect of
e-e interactions is to renormalize the bare gap to the
physical gap. This explicitly shows that the ansatz [Eq.
(Al 1)] is exact in the first-order perturbation theory and

h(x) =b,ptanh(x/g) (A 1 1)

r

(A18)

so that only its width is a function of the interactions.
This ansatz is exact to first order in the e-e interactions
(see discussion below). We have also tried other forms of
h(x), and found that the corrections to &&'2' were smaller
than corrections due to interactions which are missing
from the simple model.

Under the above ansatz [Eq. (A12)], Pp can be comput-
ed exactly.

This is Eq. (14).
Similar calculations have been carried out for the pola-

ron and bipolaron configurations. Here we just briefiy
mention a few new features. We refer to a polaronlike
configuration when the lattice has the form

X +Xp
hp (x)=b o

' 1 —go/g tanh

where

r 1/2
I (v+ —,

'
)

2~ng r(v)
sech"(x /g), (A12)

where

X —Xo—tanh (A19)

v=g/gp= 1+7,
&=(k—k)/k .

(A13)

(A14)

2xo
gp/( = tanh (A20)

Using Eqs. (Al 1) and (A12), we get

/3E' '= (2f, —1)(2f,—1)

3
(giJ. +g2i —g3i+g4J ) ~

r'(v+-,' )r(2v) ~ 2~
'

r (v)r(2v+ —,
'

) 2~ ~p

There are two mid-gap states (antibounding and bounding
states).

+Xo X —Xo
(1—i)sech +(1+i)sech

1

4v g x+xp x —xo(1+i)sech + (1—i)sech

(A21)

=ay
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and the mid-gap state

&+&o
S+ =sech (A22) 1

fo(x) =
2

. sech(x/go) .
0

(B2)

Then Define spin density operator

S(x)=p, (x)—p, (x),

(A23 }
where

(B3)

2

&qt, q„&=-
4g 2

+i(f+,+f, I) (—S+ —S' ) . (A24}

2ikFx g
—2ikFx=4i. it i.+4z 6 i [A.—Pi.e 4 is 0—z.e

(B4)

The self-consistency equations are now given by
(&;„,&0)

~g 2 b, 2W

gp' & ~p —~ t ~p
(A25)

By using Eqs. (A19)—(A25} one readily gets Eq. (20).

APPENDIX B:
NEUTRAL SOLITON SPIN DENSITY

In deriving Eq. (17) we use standard perturbation
theory. The nonperturbated wave functions are

k +i b,otanh(x /go)+ Ek
~ ikx

i [k +i biota—nh(x /go) —Ek ]

is the density of electron of spin s. (Note the phase factor
in the definition of this operator. } Standard perturbation
theory yields

S(x)= &0
i
S(x)

i
0&

+ g &0~S(x)
~

n &+H c. , (B5)
&n [H„[0&

n+p p n

where
~

0&(
~

n & ) is the ground state (nth exciting state) in
the noninteracting model.

Using formula (Bl)—(B6), one can readily get s(x} by
carrying out several complicated integrals. The result is

S(x)= sech —[(1+V4)cos'(kFx)
ko 4o

—V4sin (kFx)]+S(x),

(B1 ) where

I

1 2WS(x)= g, j ln cos (kFx}sech(x/go)[1 —ln(2cosh(x/go)]
ego hp

X X —21x
I

~4'0

+(gqz+g4j ) sin(2kFx)sech — ——sinh(x/go)ln(1+e ')
hp ko Co

28' 1 2
+g3i ln sech(x /go)cos (kFx) ———sech(x /go)

p 4 m
—2 ~x ~ /go)iyg

This is Eq. (17).
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