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We develop a general theory to calculate the vibrational response functions for disordered solids
(such as glasses and disordered crystalline alloys) in the presence of long-range Coulomb forces T.he
longitudinal «I(m) and transverse «,{co) dielectric functions are shown to be related by
«I(co)/«„=2 —«„/«, (co), where «„ is the-high-frequency electronic response. The Lyddane-Sachs-
Teller relation is generalized for use in such systems. %'e derive sum rules involving moments that
should be useful in interpreting experimental data. A general formulation is also set up for the den-
sity of states p(co ) and the neutron scattering law S(k,co). These general results are illustrated by
calculating these response functions for a model AX2 glass that roughly corresponds to vitreous sili-
ca. A periodic random network with 1536 ions in each supercell is constructed. The response func-
tions are found using the equation-of-motion method with the Coulomb sums included explicitly us-
ing the EwaM method. The {bare) transverse response shows a rather broad optic peak whereas the
longitudinal response (which is sensitive to the depolarizing field) has a sharper response at a higher
frequency.

I. INTRODUCTIDN

The effect of Coulomb forces on the phonon dispersion
curves of crystalline solids is well known. It is most
dramatic around k=0 where, in the absence of retarda-
tion effects, it leads to the longitudinal-optic (LO)
—transverse-optic (TO) splitting. This has been seen in
many crystals with ionic charges, and most clearly in
inelastic-neutron-scattering experiments as shown for ex-
ample in Fig. 1 for GaAs. '

The Coulomb force is difficult to handle because its
long-range nature is sensitive to the macroscopic shape of
the sample. These effects are manifest at k (1/L, where
L is a linear dimension of the sample. Throughout this
paper we neglect retardation, and hence polariton effects,

by setting the velocity of light equal to infinity. Even for
k) 1/L, the Coulomb force requires some special tech-
niques developed for crystals by Ewald. These involve
isolating the shape-dependent depolarizing terms that only
effect the spectrum at k=0. The remaining terms can be
judiciously arranged as rapidly convergent short-ranged
sums in both real and reciprocal spaces, by the appropri-
ate choice of a free parameter that is introduced. Such
lattice-dynamics calculations in crystals are now quite
routine.

The situation is much more complicated in glasses and
disordered crystalline alloys. For nearly 10 years there has
been experimental evidence of I.O-TO splittings in
glasses. The responses are broadened but the evidence
seems quite compelling and will be discussed in detail
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FIG. 1. Phonon dispersion curves for GaAs as measured by inelastic neutron scattering {Ref. 1). The lines are various theoretical
fits. The LO-TO splitting is clearly seen in the optic modes. [Reproduced from Bilz and Kress (Ref. 1).] Note 1 THz= 33.4 cm

33 8490 1986 The American Physical Society



33 COULOMB Err&CTS IN DISORDERED SOLIDS

later. On the other hand, we have found no adequate
theoretical treatment despite a number of interesting ap-
proaches to the problem. ' The reason for this is clear.
The problem is difficult because disordered solids have no
microscopic translational invariance, so that the Coulomb
sums cannot be split up into a part in real space and a
part in reciprocal space because the wave vector k is no
longer a good internal quantum label.

We have tried in this paper to give as comprehensive a
treatment as possible. In the next section we express the
response functions of interest in terms of the Green func-
tions of the system. Arbitrary displacements are expand-
ed in terms of orthonormal eigenvectors that form a com-
plete set of states but no use is made of reciprocal space
Formulas are derived for the various dielectric functions,
the density of states, and the inelastic-neutron-scattering
cross section.

In Sec. III, the Coulomb forces are discussed explicitly.
We regard a disordered solid as the hmit of a crystal with
a large unit cell (supercell) as the size of the supercell goes
to infinity. This concept allows the generalized Ewald ap-
proach to be easily adapted. It also permits actual numer-
ical computations.

In Sec. IV we discuss depolarization effects and show
that the longitudinal and transverse dielectric responses
are not independent but related. This is useful as the
transverse dielectric function can be viewed as the bare
response of the system in the absence of depolarization ef-
fects. We show that this result is consistent with electro-
statics

In Sec. V we derive various useful relations between the
moments of the longitudinal and transverse dielectric
response. The main features of the LO-TO splittings and
widths can be invoked from these second- and fourth-
moment relations. We also generahze the Lydanne-
Sachs-Teller (LST) relation to a form that is useful in
these systems. We show that the density of states is in-
dependent of the sample shape, as would be expected.

In Sec. UI we review the equation-of-motion technique
and relate it to the general formulism in Sec. II. Prescrip-
tions are given for the computation of the various
response functions of interest.

In Sec. VII we describe the building of a 1536-ion
periodic random network with 512 A atoms and 1024 X
atoms. This model of an AXz glass resembles vitreous sil-
ica. The computational difficulties associated with apply-
ing the equation-of-motion technique to such a large sys-
tem with Coulomb forces are discussed.

In Sec. VIII we present the results for the longitudinal
and transverse dielectric responses. We use this to verify
the various sum rules we have derived. %e also show re-
sults for the density of states and the neutron-scattering
law.

Finally, in the conclusion we make some general com-
ments about the analysis of experimental data in both
glasses and disordered crystalline alloys.

II. BASIC FORMULATION

V;;~a (i)up(j)

P =—gq;u~(i),1

0 (2)

where the q; are the ionic charges associated with the
point iona and 0 is the volume of the system.

We will now develop standard linear-response theory in
a way that is appropriate for disordered systems. s The
Coulomb forces are "hidden" in the VJ~ and will not be
considered explicitly until later. The equation of motion
from (1) is

m;ii (i)= —g Vg~up(j)+q;E, .
a, P

We look for the response at a frequency co, so setting

E EQ~ -i'
P =P~
u~(i }=u~(i)e

we can rewrite (3) as

(4)

These linear equations can be solved to yield

EO
u~(i)= g Pgf

(m, )'" '

where I g is the inverse of the matrix,

yaP
0rJ 1 g2

—~—~aiistJ'
(m;mj)

and we identify the first term in Eq. (7) with the usual
dynamical matrix of the system,

ypP
DaP

(m m. )'~2
'

i j
If we let the eigenvalues of D be A,„and the corresponding
eigenvectors g„(i,a), then

g D;,~g„(j,p)= A„g„(i,a), ,

j,p

—gq;u (i)E
i,a

The index i labels the ions and subscript a refers to the
Cartesian component. The first term is the kinetic energy
of the system, where the momentum pe(i) is the conjugate
variable of the displacement u (i}. The second term is
the harmonic part of the potential (including the Coulomb
terms) and the last term represents the coupling of an
external field E to the dipole moment of the system. The
polarization P of the medium is

We consider a solid in equilibrium. The fluctuations
from some given static structure are described by the
Hamiltonian

and the f„(i,a) form an orthonormal set,

g g„'(i,a)g~ (i,a }=5~, (10)
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g 4(i ass(i p) =5Nti5tj . It is convenient to absorb the masses by setting
' 1/2

In general, any displacement may be expanded in terms
of the eigenvectors, so that we may write

G~tt(i,j;to}= mi

mj
G~tt{i,j;t0), (20)

u~(i)= ga„g„(i,a),

where the a„are the amplitudes of each eigenvector
present in the displacement pattern. Inserting (12) into (5)
we find that

g D,J
t a„g„(j,P) nP g—a„g„(i,a )=,n E~,

so that

so that (19) becomes

5;,5 p
to G tt(i,j;a))= + g in G P(t',j;to) ~

~ (m;m }'n

(21)

Using the results of this section, it is easy to show that

g„(i,a)g(j,p)
G~ti( i,j;ai ) =

mi n
—

n

Eo

(m;)'~

and hence

qJEI g„(j,p)

J'P i
1/2 2 2

by substituting G tt(i,j;co}back into Eq. (21). Hence,

g„(i,a)g„'(j,p)
in &

(m;mi ) „co—I,„
and so Eq. (15) can be rewritten as

(23)

(24)
Inserting (13} in (12) and comparing with Eq. (6), we see
that

g„(i,a)g„'(j,p)

n )(n
(14)

q;qJ g„{i,a)g(j,p)
(15)

which accomplishes the appropriate matrix inversion and
allows the susceptibility X tt defined by

p~= X~Np tt
P

to be written9

which is the result we want.
Note that the formalism above makes no assumptions

about periodicity and thus applies to disordered as well as
crystalline solids. Examples of disordered, partially ionic,
solids are vitreous SiOi and the crystalline alloy
Ga, Ali, As. The only assumption made is that the
equilibrium position of the ions are well defined so that
the harmonic approximation can be made. '

Other quantities of interest can also be expressed in
terms of the Green functions. The density of states per
degree of freedom is defined as

p(to) =2top(aP) = g 5(to —)i,
2

)
3N

From here the dielectric response is defined by

+4m', (16)
g„(i,a }g„'(i,a)

which has the equation of motion

m;co'G~tt(i j;co)=5J5~tt+ g I' G~tt(t' j;ai) .
i', a'

(19)

which is interpreted as a matrix equation. The quantity
e„ is the high frequency di-electric response due to the elec-
tronic degree of freedom. It enters both here and in the
screening between the charges in the Coulomb terms
buried in the potential (1). This will be discussed in more
detail in the next section.

It is convenient to reexpress the result (15) in terms of
Green functions. Dropping the field term from the Ham-
iltoman (1) (it was only included in order to develop
linear-response theory), the system is described by the
Hamiltonian

2

H = g + —,
' g V~~u, (t)utt(j ) .

ia 2™' ij ap
I.et G~tt(i j;co) denote the usual thermal Green function,

(18)

Therefore,

(26}

It is also useful to define parallel and perpendicular k-
dependent susceptibilities by generalizing the result (24) so
that

y~~(k, ~)= ——g q;qtk ~~k g, (i j;co)e ", (27)
i,j,a,p

X'(k, co}=——g q;q;k 'kttG tt(i,j;to)e
&~J~'NiP

where k ~ is the ath component of a unit vector parallel
to the wave vector k, and k is the ath component of a
unit vector perpendicular to k. The vector 8; describes
the equilibrium position of the site i and R;1 =R; —RJ.
The k-dependent longitudinal and transverse dielectric
responses then become
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ei(k, cu) =e„(k)+4irX~~(k, co) .

We write

et(k, co)=e„(k)+4irX'(k, m),

(29)

(30)

where e„(k) is the low-frequency limit of the electronic
response of the system.

Finally, we can express the neutron-scattering law"
S(k,co) in terms of the Green function. The coherent
cross section is

S""(k,oi)= ——Im g k kiia;""af '"
i,j,a, P

ik R;
&&6 p(i,j;a))e (31)

where a; " is the coherent scattering length of the ion at
site i Th.e incoherent cross section is given by

S'"'(k,co)= ——Im g(k ) (a "') G (i,i;co), (32)
i,a

states and the various susceptibilities and dielectric func-
tions are temperature independent T. he neutron-scattering
cross sections (30} and (31) contain Bose factors n (co) or
n (oi)+ I (where n (co) =[exp(Pftco) —I] '} for phonon
destruction or creation. These thermal prefactors have
been suppressed. Thus we make the conceptual simplifi-
cation of working at zero temperature in this paper. This
simplifies the algebra and emphasizes that we are working
with essentially classical systems.

III. THE ELECTROSTATIC ENERGY

In this section we derive expressions for the electrostat-
ic energy of a supercell with periodic boundary condi-
tions. We consider a cubic supercell with volume Q=L
containing N ions of charge q; (i = 1,2, . . . , X) with in-
stantaneous positions r;. Electrical neutrality is assumed.
The electrostatic energy of the cell under periodic
boundary conditions is then given by

(34)

where a "' is the incoherent scattering length.
A number of reasonable simplifications have been made

in the theory developed in this section that we will now
discuss. We assume that we can make the Born-
Oppenheimer' approximation and treat the electronic and
vibrational degree of freedom separately. Because the
electronic excitations have much larger energy than the
phonons, we are at loio frequencies for the electrons, even
when well above the phonon absorption band. Therefore
it is reasonable to take e„, the electronic contribution to
the dielectric function, to be the low-frequency limit of the
electronic dielectric function. This treatment is applicable
to insulators and semiconductors.

In order to make progress possible, we have also
suppressed the k dependence in e„. This is reasonable for
wavelengths larger than the atomic size. Major changes
would have to be made in the current work to include the
k dependence of e„. This may be necessary in the future
when more detailed comparisons are made between theory
and experiment at shorter wavelengths. The distinctive
effects of Coulomb forces are manifest at very small
k~O, so that in this limit the k dependence of e„can be
safely ignored.

Another k-dependent effect is the Debye-Wailer fac-
tor."' Higher-order processes lead to a term

The sum is over all translation vectors n= (n i, nz, n& ) L
of the simple-cubic superlattice and all ions i and j inside
the cell. The prime on the summation symbol g indi-

cates that the term i =j is to be excluded in the sum when
n=o, and e„represents the screening by the electrons in
the ions, which is assumed to occur instantaneously.

As pointed out by de Leeuw et al. ,
' the right-hand side

of Eq. (34) forms a conditionally convergent series and is
thus meaningless without further specification. In partic-
ular, we need to specify the order of the various terms in
Eq. (34). This can be done by introducing an appropriate
convergence factor. For example, de Leeuw et al. em-

—SNployed a spherical convergence factor e '" in evaluating
Eq. (34}. They showed that the result in that case corre-
sponds to the electrostatic energy of a cubic cell at the
center of an array of replicas' arranged such that all re-
plicas form a macroscopically large sphere. Alternatively,

exp[ ——,
' k (u 2 (i) )„) (33)

being associated with the a degree of freedom of the ion
at i, where ( )„indicates the contribution to the thermal
average at a frequency co. These factors should be incor-
porated into Eqs. (27)—(32). They cannot be included
within the equation-of-motion method, although they can
be handled within more conventional molecular dynamics
where the complete, rather than the one-phonon response
is calculated. Again for small k, the Debye-%aller fac-
tors can all be set equal to 1, which we do in this paper.

Finally, we comment on the role of temperature. Be-
cause we are working within the harmonic approximation,
the temperature enters in a simple way. The density of

FIG. 2. Ellipsoidal macroscopic sample is covered by super-
cells whose centers fall inside the ellipsoid.
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we can consider a large but finite number of replicas and
sum over a specified set of translation vectors n (e.g., all
translation vectors for which ~n~ &K). Questions of
convergence then do not arise as one only considers a fi-
nite sum. One then tries to find an asymptotic series in
descending powers of E retaining the leading terms only.
In both techniques the shape of the system enters in a
natural way. This is to be expected since shape effects do
enter into the solution of electrostatic problems. It is pre-
cisely because of this that we can uniquely relate the

I

response of our system in an external field to the dielectric
function. '

For our purpose it is convenient to generalize the re-
sults of de Leeuw et al. ' and Smith' to systems having
an ellipsoidal shape. Each supercell is periodically repeat-
ed within the macroscopic ellipsoid as shown schematical-
ly in Fig. 2. The technique of convergence factors is
mathematically somewhat simpler, so that we use this
method. Accordingly, we introduce an ellipsoidal conver-
gence factor and seek a rapidly convergent expression for

N N q.q.
V, (s)= g g g exp —s

2E'~
1 j 1 ( rtj+Il

in the limit s ~0. We use the identity

oJ dt t —1/2e rit—

and Jacobi's transformation for e functions

Pl 1 7k 2 P$3

e

(35)

(36)

e
—(x+1)2t (~/t)1/2 g e tr lil—t+2trih (37)

The manipulations are exactly the same as described by de Leeuw et al. ' and will not be repeated here. The result is

V, (s)= V,'(s)+ V,"(s)+ V,
' '(s), (38)

V,'(0)= g g g erfc(2)
~
r;j+n

~
) — g q;,

2 2 N 2

n 1 y exp( —ir
~
k

~
/2)

m'Qe

expI st[xj/(a—t+s)+yj/(b t+s)+zj/(c t+s)] I

[(a t+s)(b t+s)(c t+s)]'/

(39a)

(39b)

(39c)

In Eqs. (39a) and (39b) we have set s =0. Here, erfc(x)
denotes the complementary error function

ertc(x(=(2/c x( f dx e

we then obtain

8„=—,abc
00 dU

(a'+ )'"(b'+ )' '( '+U)' ' (41)

The sum gz o is over all reciprocal-lattice vectors of the
simple-cubic lattice k=(k„k2,ki)/I excluding k=0.
The disposable parameter rj governs the rate of conver-
gence of the series. Its numerical value is chosen to op-
timize convergence. To obtain an asymptotic expression
for V,' '(s) we expand the exponential function in the in-
tegrand in powers of st. The first term [0(s ')] vanishes
because of charge neutrality. The second term can be
written as

which is the usual depolarization factor' ' along the x
axis for an elhpsoid with semiaxes a, b, c Equivalent . re-
sults are obtained for B„and 8, . All higher-order terms
are easily shown to vanish as $~0. Using the charge-
neutrality condition, we have that

N N
—g g qtqjxtj 2g qt&t. ——

i =1j=1

which gives

with

mabc N

g g q;qj(Bzxtj+8»y2j+B, z2j),
Qe i =1j=1

i ~2 vt8„=—,arcs dt
o (a2t +$)3/2(b2t +$)1/2(c2t +$)1/2

Viii( ())
Qe„

NB„gq~x; +8»
i=1

N

+8, gqz; (42)

and similar expressions for 8~ and 8,. The integral can
be transformed by the substitution t =s/U. Letting s ~0,

This is the generalization of the results of de Leeuw
et al. ' and Smith' to ellipsoidal geometry. For the case
a =b =c (spherical geometry), it is easily shown that
8, =8» =8,=—,', whereas in slab geometry ( a, b ~ oo ), we
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have B =B„=O and B,= l. As expected, our result for
the electrostatic energy is identical to the result obtained
by Ewald apart from the term V,'i containing the depo-
larization factors.

The dipolar contribution to the harmonic Hamiltonian
equation (17) can now be obtained by differentiating twice
with respect to the displacements u; of the ions from their
equilibrium positions R;. The result is

N

Vee
— $$$ q qj(u; —uj) F(

I R; —RJ+n I
)

I i=1j=1

g g g q;qj[(u; —uj) ~ (R;—RJ+n)] H(R; —R, +n)
n i=1j=1

~ exp( —m Ikl /il ) 2~l'RJ
qj uj'k e

i~p i=i
r

, -2~i.R,
qi i

N N N

Bx g 4'um +By g qtuty +Bz g qluu

2m1f. R.N

qje

(43)

where
r

F(x)= e " +erfc(rix)
1 2iix

x rr

and

&(x)= (2vgx +3)e ""+3erfc(gx)
1 2gx

x'
I J

We have used Eqs. (38) and (39) for the minimization of
the energy of our networks, whereas Eq. (43) was used in
the computation of the response functions with the
equation-of-motion technique. The practical implementa-
tion of these lattice sums in computer simulations has
been discussed elsewhere. ' Here we note the Ewald sum,
and particularly the part in reciprocal space, is eminently
suited for vector processing.

IV. DEPOLARIZATION EFFECTS

In this section we show that the dielectric response of
the system, with the shape-dependent terms included, can
be expressed in terms of the dielectric response function
with the shape-dependent terms excluded. A special case
of this theorem expresses the longitudinal dielectric
response in terms of the transverse dielectric response.
This is useful in saving computational time and leads to
useful insights. The theorem is proved by using the separ
ability2 of the shape-dependent terms in the potential.
The result is shown to be consistent with known electro-
static results.

From the work of the preceding section, we see that the
Hamiltonian [Eq. (17)]can be written as

a=~o+ U

where Hp is the part of the Hamiltonian that is indepen
dent of the shape of the macroscopic sample and U is the
shape-dependent part which may be vrritten

3
U= g B~ g q(u~(i) (45}a c a

where, from Eq. (41},the depolarizing factors B obey the
sum rule

8~=1 . (46)

The potential (45) is separable which allows the shape
dependence to be included in the dielectric function in
closed form.

We form the dynamical matrix Dp from &p [see Eq
(8)] and hence define P by

' —Do (47)

We also define the Green function for the complete Ham-
iltonian (44) via

G ' =Men Dp —U— (48)

where the matrix elements of U are the second derivatives
formed from Eq. (45}. Thus we have, from (47) and (48),

Q=P+P UG . (49}

+ g P~(& j ~) B.qj'qj"G~(J
J j oo

(50)

We multiply this equation by q;qJ and sum over i,j. The
separability of the potential means that we can solve to
obtain

. q(qJPXX(l, j;co)
1 (4mB~/Qe„—) g,. q;qJ.P~(ij;co)

(51)

This remarkable result relates the dielectric response of
the system with and uuthout the depolarizing terms. In

Consider for the moment only the B, term in Eq. (45),
and then in components,

G (ij;co)= P~(ij;tp)
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e(t0) e„—
E~(t0) —e~ =

1+(B„ie„)[e(t0) e„—]
(52)

It is useful to regard the usual dielectric response e(c0) as
the bare response Th. e response e (c0) includes the effects
of the macroscopic depolarization field through 8, .

From Eq. (46), we have the useful sum rule

calculating the response in the x direction, me have used
only the 8, terms. The 8» and 8, terms do not influence
the x response in systems with high macroscopic symme-
try Examples of such systems are vitreous silica, which is
macroscopically isotropic and the crystalline alloy
Ga„A1~ „As, which is macroscopically cubic. However,
lower-symmetry systems can be easily handled by going to
principal axes, in which the x, y, and z components
decouple.

Using Eqs. (16) and (24), the result (51}can be written

depolarizing factor 8 in the x direction, then the electric
field inside E;„ is reduced and given by

Eo ——e E;„+4rB„P. (57)

P= E;„.
4m

(58)

However, in our computations the polarization is define
in terms of the external applied field Eo,

&x —&wP= Eo.
4m'„

(59)

From (57)—(59), we see that

+&x
&x —&~

This comes from the continuity of the electric displace-
ment D. The polarization I' is defined by

e(co }+2e„
e(col }—e~ e~(to) —e„ (53)

which is the zero-frequency limit of the result (52). This
is not surprising since we assumed the speed of light to be
infinite; electrostatics becomes valid at al/ frequencies.

e(c0)—e„
e(co)+2e„

e„(co)—e„
3 E~

(54)

where e (t0) =e»(co) =e, (to) is the response including
depolarizing effects.

An especially important case is that of slab geometry,
where 8, =8» =0 and 8,=1. The transverse response is
the bare response e(ai) from Eq. (52),

e, (t0) =e(~) . (55)

The longitudinal response ei(to) is given, from Eq. (52), by

et(co) e„e„e(ai)
(56)

These are probably the most important results in this
paper. It means that the usual dielectric function e(r0}
can be calculated as the transuerse dielectric function of a
slab with no depolarizing effects and then the longitudinal
response can be found directly from Eq. {56}.Although
only the bare response need be calculated, this is by no
means easy. Even though the shape-dependent terms have
been eliminated, the short-ranged parts of the Coulomb
forces in real and reciprocal space still have to be includ-
ed.

The result (52) and hence those that follow, (53)—(56),
are consistent with electrostatics, which can be seen as fol-
lows. If an external field Eo is applied to a sample with a

For the special case of a sphere, this sum rule reduces to
the Clausius-Mossotti' ' form V. MOMENT SUM RULES

2

i,j,n (nilrnj }

2
4m a =COpQ,. m;

(61)

is independent of the depolarizing term 8 and therefore
the same for all directions. As we are most interested in
the transverse response ( e) roand the longitudinal
response et(to), we have

f Imeg(co)dco = f Imet{co)dc' =co, (62)

where the bare plasma frequency c0» is defined in (61).
The second moment can be found similarly,

In this section we prove a number of sum rules involv-
ing moments and we also find a generalization of the
I.yddane-Sachs-Teller ' (I.ST) relation that is suitable for
use in disordered systems which have a continuum rather
than a discrete dielectric response. We start with Eq. (44),
where the system is described by H =Ho+ U, where U is
the depolarizing term (45) and

PN(i)
Ho g. +———,

' g V; ~u~(i)utt(j) (60)
21tli ~

p

is everything else [see Eq. (17)].
From the results of Sec. II, it is clear that

f co Ime (t0)dto = g ',
&I g„(i,x)A,„p(j,x)= g '

i&I g„(j',a) Vj + "q;qj5 p(j,x)
j',a

'2
2 2

41' ~x 9'l. Qj j. ~ 2 2 ~x 4f t0 Ime~(co)dto + co» (63)
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(67)

where (c0 ),=(ai ) is the bare response. This result
shows that the variance is independent of the depolarizing
term B,. A special case of (67) is

(~'&I —&~'&i = &~'&g —(~'&i

The real part of the dielectric constant can be obtained
from the imaginary part via the Kramers-Kronig~ rela-
tion,

Ime, (co')
e'(co) =Res(a) )=e„+—J d (a)')

0 {~l)2 ~2 (69)

Defining the moments of Ime, (co) in the usual way,

(1/'n ) f r0"Ime, (a))da)

(1/m) J Ime»(cu)da)

we can immediately see that

(co )» —(cia ) =B»cop /6~ (65)

where (co ),=(co ) is the second moment of the bare
response with B„=O. Setting B,=1, we find the expect-
ed result,

&co'&i —&a)'), =a)~/e„,
which is a generalization of the result in a simple, partial-
ly ionic crystal like GaAs where the transverse and longi-
tudinal responses consist of single 5 functions. Note that
the bare plasma frequency is screened by e„ in (66).

The fourth moment can be evaluated in a similar way.
After some tedious algebra and using the result (65), we
find that

is very different from (73) when the number of terms in
the product is greater than one. We have found no useful
way to generalize (74). It is a quite unusual relationship
because it only involves the positions of the peaks and not
their weights.

The higher moments of Ime, {co) for n &4 can also be
found by the method at the beginning of this section.
However, it txmomes increasingly difficult for large n
For the longitudinal and transverse responses it can be
done more easily using the result (55). From the
Kramers-Kronig relation (69), it is easy to see by expand-
ing the energy denominator in the integrand that

e~(c0) co& ~ (co )&=1-
6'~N z p 6)

and similarly for the longitudinal response,

(75)

e'i(r0) =1— "&")
2 2Fe CO r=p

(76)

These high-frequency series converge at frequencies down
to the top of the phonon band when the dielectric
response becomes complex.

The relation (56}can be written

e'i(ai) e', (~)2— =1 (77)

Inserting the series (75) and (76) into (77) and rixirganizing
slightly leads to the moment-generating equation,

&
~0'")i —&

~"
&

X
r=0

Thus the zero-frequency dielectric constant e'0 is given by

GO 6~+69& 2

Similarly, for the longitudinal response we have a similar
relation,

Q) 00 00 Q) I Q)

2 Zf +2$
r =Os =O

Equation powers of co, we find the moment relation

CiP
2r) ( Zr) P g ( 2r —2—2p) (2p)

&~ p=P

(78)

(79)

E'O =6' +Q)p (71}

where ep is the zero-frequency limit of the longitudinal
dielectric constant. However, from the zero-frequency
limit of (69), we have

~1' =2- ",
&O

(72)

so that from Eqs. (77)—(79}we derive the important result

& 1/co'&,

&1/~'&i
' (73)

EO
(74)

which generalizes the LST result for a simple crystal like
GaAs to a disordered solid with a continuous spectrum.
We note that the LST form for an ionic crystal with a
large unit cell,

The first few of these are

r =1: (co')i —(co'), =r0~/e„, (80)

r =2: (co')i (co'), =—F0~2/e„((a)'&i+(co'), ), (8l)

r =3: &~')i &~'), =~—,'«„( &~')i+&r0')i(~'&g

+& '&, ).
We note that (80) is the same as (66) found earlier in this
section, while (81) and (82) together can be rewritten to
yield (68).

Finally, we comment on the density of states p(co) de-
fined via, say, Eq. (25). In a crystalline solid, p(co) is in-
dependent of the depolarizing terms B because only a
vanishingly small part of the spectrum with k (1/L is af-
fected by finite-size effects, where L is a linear dimension
of the sample. Thus as L~oo the density of states be-
comes shape independent. We would intuitively expect
this to be true in a disordered solid also. It is most easily
proved by noting that all the moments (co ') of p(rai) de-
fined by
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(co ) = I p(co )co dc'

are independent of the B . Using (25},we can write

( '")= y g„(, )&„"p(, ) .
n,i,a

(83)

(84)

Thus,

(co ') =Tr(DO+ U)', (85)

where the trace is over sites i and Cartesian components
a, and

V;J 4ttB q;qJ—0+—'I i/2 + II 1/2(m;mj ) e„II (m, mj )

Thus (co ) is independent of the BN because of charge
neutrality, and the higher moments contain the B~ terms
with the volume factor 0 and, so in the limit of large
volume we have the expected results that the density of
states is shape independent.

The B~ terms enter the moment expressions for the
density of states and the dielectric function in different
ways because the dielectric function involves sum over
off-diagonal terms in the Green function and has extra
weighting factors q; and ql. Thus we have the result that
the density of states is independent of the B,whereas the
dielectric function is not.

(86)

VI. EQUATION-OF-MOTION TECHNIQUE

The equation-of-motion technique ' is a variant of
conventional molecular dynamics that is useful in disor-
dered harmonic systems like those under consideration
here. Unlike molecular dynamics, the system does not
have to be left for some time to come into equilibrium be-
fore the response is monitored. Instead, the initial condi-
tions at t =0 are determined by the particular response
function it is desired to calculate, and the equations are
integrated forward in time with appropriate weighting
factors. The method is by now well known and we sum-
marize its use in the present context. This treatment and
notation follows Beeman and Alben. i

The harmonic equations of motion for the Hamiltonian
(17) are

m;u';~(t) = —g VP)~uip(t),
j,p

where u; is the displacement of the ith atom in the a
direction. Note that the u; in this section is equivalent to
the u (i) used previously. It is convenient to think of the
u; as classical displacements. The result is the same for
classical and quantum systems, except for the thermal
factors, as was discussed in Sec. II. These thermal factors
occur in a simple way in a harmonic systems as prefactors
and can be included later. The motion in this system can
be written as a superposition of normal-mode vibrations.
Thus,

u;~(t)=[1/(m;)' ] gq„g„(i,a)cos(ro„t+5„) . (88}
n

Here, co„ is the frequency of the nth normal mode and 5„
the phase shift; q„ is the amplitude of the nth normal
mode and g„(i,a) is the magnitude of the nth eigenvector
on particle i in the a direction. The dynamical matrix is

u;0 =[I/(m;)'/z] gq„g„(i,a), (90)

which can be inverted with the closure relations (10}and
(11):

q~ = g mj ultima~(l, Q) .1/2 0

i,p

Now compute

(91)

2 T —A(E/T)2G(t0) =—f dt cos(tot)e "/ ' g /I;Nu;~(t), (92)
i,a

where the amplitudes A;, will be chosen later to yield the
appropriate response function. Using (89) and (90}, we
obtain

1/2

g„(i,a)
ia ia jp n i

)&g„(j,p)A; ujttcos(ai„t) . (93)

' 1/2

g„(i,a)g„(j,p)

xA; ujtt[h(co —to„)+4(to+~, )], (94)

T —A,(t/T)2
b,(to}=— cos(cot)e "/ ' dt . (95)

Clearly,

lim lim b,(t0)~5(ri)) .
g~p+ T~oe

(96}

For finite T and lL, , h(co) is sharply peaked at to=0 with
small oscillations or ripples at other frequencies. Depend-
ing on our choice of A; and u;, G(co) represents a
weighted sum over the density of states and we can thus
compute various quantities of interest. A list of these is
given below.

A. Density of states

I.et u;0 =A; =W2cos8;, where 8; is a random angle
uniformly distributed in the interval 0&8; &2n.. Averag-
ing over many sets of random angles leads to

(cos8; cos8Jti),„=25;i5 tt .

Hence,

real and symmetric, so that its eigenvectors can be chosen
to be rea/ .They are orthonormal and obey Eqs. (10) and
(11).

Let the initial positions at t =0 be denoted by uia. The
initial velocities are set equal to zero. It follows immedi-
ately that ail phase factors vanish. Hence 50=0 for all n.
Therefore,

u; (t)=[I/(m, )'/i] gq„g„(i,ct}cos(co„t},



33 COULOMB EFFECTS IN DISORDEIMD SOLIDS

( G(co) ),„=g g g„(i,a)[b(co c—o„)+b(co co—„)]
n i,a

= g [b,(co —co„)+h(co+co„)], (9&)

which is the density of states p(co) defined by Eq. (26}. In
practice, large systems are self-averaging and it is un-

necessary to average over different sets of random num-

bers.

which is the dynamic structure factor $(k,co), with the
thermal Bose factors and Debye-Wailer factors suppressed
as discussed earlier. The coherent- and incoherent-
neutron-scattering laws can be found in a similar way by
incorporating the appropriate scattering lengths.

D. Longitudinal dielectric function eI{k, co)

Setting

Let

8. Dielectric constant q;k,
mg

(108)

iiia iraqi™i~

~ia=Eaa

(99)

(100)

—ikr
Aia =gika8 (109)

Then,

q;g„(ia}E
G (co)= g g, ~, [&(co+co„)+&(co co„)]—.

(m;)'"

(101)

q;k~g„(ia)e
G(co) =

n ia mi

X [&(co+co„)+4(co—co„)] . (110)

Here, E is a unit vmtor in the direction of the electric
field of the incident light. If we use slab geometry,

Im[e(co) —1]= G (co), E parallel to slab (102}
QN

Im[1 —e (co)]= G (co), E perpendicular
2

AN

The longitudinal dielectric function is

= 2~'
Imei(k, co) = G(co) .

QN

The real part can be obtained through a Kramers-Kronig
transformation like (104).

to slab . (103)
E. Transverse dielectric function e,{k,eu)

We write
The real parts of Eqs. (102) and (103) can be obtained

from the imaginary part through Kramers-Kronig
transformation:

~ cof"(co) coof"(coo)—
Ref (coo)=- dco,

0 N —N0

where f"(co) is the imaginary part of f (co} which stands
for either e(co) —1 or 1 —e '(co). This form of the
Kramers-Kronig transform conveniently avoids problems
when N =N0.

C. Dynamic structure factor 8{k,co)

A g
q;k l

mi

—ikr;
Aig=qik ge

where k is a unit vector perpendicular to k. Then,
2

A
qckafn(& a) ii r, .

G(co) =
i&i e

n i,a

(112)

(113)

Let

0 ka ikr;
Qia = e

mi

—ik r.A;=ke

Then

k~g„(ia)e
G( )=

n i,a

X [b,(co —co„)+b,(co+co„)],

(105}

(106)

(107)

X [&(co—co„)+&(co+co„)], (114)

VII. CONSTRUCTION OF PERIODIC
RANDOM NETWORKS

In this section we describe the construction of a random
network with periodic boundary conditions. Consider a
cubic cell containing a sufficiently large number (N) of
atoms (in our ease, 216 or 512) on a cubic diamond lattice.

= 2~'
Ime, (k, co) = G (co),

QN

and the real part can be obtained through the Kramers-
Kronig transformation like (104).
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FIG. 3. Construction proposed by %ooten and Weaire (Ref.
25) for building random networks in which the bonds from the
two unlabeled atoms in the center of the labeled exterior atoms
are reorganized as shown. Four six-membered rings are
changed into two pairs of five- and seven-membered rings.

Each atom is fourfold coordinated and the structure con-
tains six-membered rings only. Periodic boundary condi-
tions apply. It is possible to alter the topology of the net-
work and still retain fourfold coordination for all atoms.
This is done by introducing topological defects of the
kind shown in Fig. 3. Here we sketch how the local topol-
ogy can be changed by simply reconnecting two bonds. It
is easily checked that in this process four six-membered
rings are altered into two five- and two seven-membered
rings. Repeated introduction of these defects leads even-
tually to a structure which is no longer recognizable as a
crystalline solid. Eventually, the ring statistics settle to
values which are not unreasonable. For a fuller descrip-
tion we refer to the work of Wooten and Weaire, who
first proposed this construction, and He.

The advantages of this construction are clear:

(i) Fourfold coordination is maintained throughout the
construction of the network and no danghng bonds are in-
troduced.

(ii) Periodic boundary conditions can be maintained
throughout to obtain a random network with periodic
boundary conditions.

(iii) The local strain caused by the introduction of a de-
fect is expected to be small after relaxation.

The spontaneous formation of such defects has been ob-
served recently in a molecular-dynamics simulation on Ge
by Stillinger and %eber.

Periodic boundary conditions do impose some restric-
tions on the network. One would expect these restrictions
to become less important as the number of atoms in the
supercell increases. %e did observe a long-lived memory
of the original diamond lattice. We found some memory
of the original diamond lattice to persist indefinitely when
the network was not large enough. This could be seen
most clearly by monitoring the structure factors S(k),

(116)

as more and more defects are introduced. Because of the
periodic boundary conditions, S (k) can be computed only
at supercell positions k=(2m'/L)(ni, n2, ni), where the n;
are integers. Initially, S(k) vanishes unless the Bragg
condition for the original diamond lattice is met. As
more topological defects are introduced, some intensity is
observed at other points in reciprocal space and the inten-
sity in the Bragg refiections diminishes. For an amor-
phous network there should be no Bragg refiections. Thus
the intensity at points in k space corresponding to Bragg
reflections of the original diamond lattice should not be
radically different from other points in reciprocal space.
We used this as our criterion to judge whether the super-
cell had lost memory of the original diamond lattice. It
was impossible to meet this condition if the network did
not contain a sufficiently large number of atoms. Only
for networks containing 512 atoms or more could all
Bragg refiections be reduced in intensity to the general
level. To accomplish this it was necessary to introduce a
large number of defects ( —10 defects per atom). Note
that defects can be made on top of defects.

A Si02-like network was created by placing anions
along the bonds between the fourfold-coordinated atoms.
The resulting supercell contained 1024 twofold-
coordinated anions and 512 fourfold-coordinated cations.
The network was relaxed with a potential of the form

2 P (ri(~) —d )+ s P i(ra, 'ria' dcos'Oi) + P—~imexp( —
~
ri~

~
/p)+ g . (117)8d

&i,

The first two terms in Eq. (117) describe changes in en-
ergy due to bond stretching (a) and angular forces (P).
They have a form suggested by Keating. Here, ri(b, )
denotes a vector from an ion 1 to near neighbor b„d is the
equilibrium bond length and Hi the equilibriuin bond an-
gle. The third term describes the short-range repulsion
due to the overlap of the electron clouds of iona 1 and rn;
Ai refiects the strength of the repulsion and the steep-
ness parameter p its range. A repulsive potential is neces-
sary to maintain the stability of the network when
Coulomb forces are included. The last term describes the
Coulomb interaction between ions I and m with charge ql
and q~, respectively. The interaction is screened by the

TABLE I. Parameters in the potential, Eq. (116).

o.=8.5 & 10 dyn/em

p~ =p =3 X 10 dyn/cm
1=1.65 A
8+ = 109.5'
8 =155

A++ —A =0
A+ ——1.0174' 10 erg
p=0. 3 A

q+ = —2q =3.67e
e„=2.10

high-frequency dielectric charge e„. The angular brack-
ets ( ) denote that each pair or triplet is only computed
once. Values of the parameters in the potential are given
in Table I. They were chosen to correspond roughly to u-
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Si02. For later reference we mention that this potential
gives a LO-TO splitting of 160 cm for the highest split
pair in a-quartz, which is close to the experimentally ob-
served value of 163 cm '. To reproduce the lattice
dynamics of a-quartz a model more sophisticated than
(117}is required. ' Our main goal was an investigation of
the LO-TO splittings in vitreous materials. The agree-
ment with the observed splitting of the LO-TO pair in a-
quartz was deemed sufficient for our purpose.

The network was relaxed with the method of steepest
descents. i This method is equivalent to finding the
long-time solution to the equation of motion:

r= —V V. (118}

The Coulomb energy and forces were computed from the
results of Sec. III, the expression for the forces being ob-
tained by straightforward differentiation of Eq. (38). The
salient features of the network obtained are given in Table
II. The inolar volume at which the potential energy V is
minimal (27.2 cm /mole) was made to agree closely with
the experimentally observed value of 27.3 cm /mole for
U-SiOz. The mean nearest-neighbor distance 1=1.65 is
somewhat larger than experimentally'i observed 1=1.61,
and the spread 5,/=0. 04 A. The deviation 68=9.8' for
the silicon angle is much larger than experimentally ob-
served. This appears to be an endemic problem with net-
works generated by "amorphising" crystals. is'2 More
work needs to be done to understand this more complete-
ly. The mean value and spread of the angle at the oxygen
ions is reasonable.

VIII. DYNAMIC RESPONSE OF THE NETWORK

TABLE II. Details of the relaxed network discussed in Sec.
VII.

Number of cations: 512
Number of anions: 1024
Box length: 28.5 A
Molar volume: 27.2 cm3

0
Mean nearest-neighbor distance: 1.65+0.04 A
Mean angle at four-coordinated ion: 109.5'+9.8'
Mean angle at two-coordinated ion: 151.0 %12.5'

Mass of anion: 16 amu
Mass of cation: 28 amu

the displacement dipoles, we used Eq. (43) with a depolar-
izing factor corresponding to slab geometry with the z
axis perpendicular to the slab. Thus 8„=8„=0and
8,=1. The equations of motion were integrated numeri-
cally with Verlet's algorithm. Time step b, t =5 fsec was
chosen. The evolution of the initial state was followed for
600ht in the case of response functions at zero wave vec-
tor and 300ht otherwise. This leads to a resolution width
hco of 28 cm or 56 cm ', respectively, for the relevant
spectral functions.

A convenient unit of frequency is the bare plasma fre-
quency ai~ defined by Eq. (61). With the parameters of
our model, we find co& ——939 cm '. For the resolution
width b,co we find 0.03ai~ and 0.06ai~, respectively.

In Fig. 4 we show the imaginary parts of the transverse
and longitudinal dielectric functions e, (k,co) and el(k, ai)
at finite wavelength. They were computed for wave vec-
tors of the form k=2m(0, 0,a)/L, with ~=1, 2, 3, and 5.
The imaginary part of the transverse dielectric function
e,"(k,ai} has a well-defined peak at @i=1.16coz. The peak
position is seen to be almost independent of wave number
~, but its intensity decreases with increasing ~. For
ai &co~, e,"(k,ai} has a broad peak at co=0.74ai~. As the
wave number increases, this peak broadens until only a
broad band is observed for a=5. Note that the region
ai~1.05co~ remains well separated from the rest of the
spectrum.

The imaginary part of the longitudinal dielectric func-
tion ei'(k, ai) displays a strikingly different behavior. A

IP I
--IP'2

I ----JP 3--N I

2

a
m a mgggg

I -- -e--a I

We now discuss the dynamic properties of the network
described in the preceding section. Various response func-
tions, such as the density of states, the dielectric function,
and the dynamic structure factor, were computed numeri-
cally using the equation-of-motion technique. The results
serve to illustrate many of the ideas developed in the
preceding section. In addition, we give evidence for the
existence of well-differentiated long-wavelength trans-
verse- and longitudinal-optic modes in disordered net-
works. Finally, we present numerical evidence confirming
the analysis of the preceding section.

The potential (117)was expanded to second order in the
displacements u (i) of the ions from their equilibrium po-
sitions. For the computation of the dipolar interactions of

2

0 O. 2 0.4 0.0 0- 1.0

FIG. 4. Imaginary parts of the transverse and longitudinal
dielectric functions of ~ave vectors of the form
k=2&0,0,~)/L.
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negative dispersion is observed for the high-frequency op-
tic peak similar to that observed in many crystalline ma-
terials. This peak is sharp at long wavelengths but
broadens and decreases in intensity at shorter wave-
lengths. The broad peak observed in the region
m & 1.05m& at long wavelengths develops into an increas-
ingly well-defined peak at shorter wavelengths, in marked
contrast with the behavior of e,"(k,co).

We have checked that at finite wavelength the dielectric
functions ei(k, ni) and e, (k,ni) are independent of the mag-
nitude of the depolarizing field in Eq. (43). This was veri-
fied by computing ei'(k, ni) and e,"(k,r0) for the longest
wave vector accessible in a test network containing only
648 ions with and without the depolarization field. The
results came out to be identical within the numerical accu-
racy of the computation. This independence of boundary
conditions was noted earlier by de Leeuw and Perram in
their study of charge-density fiuctuations of molten salts.
It can be made plausible by noting that the depolarization
term in Eq. (43) is proportional to the square of the dipole
moment per unit volume. For plane-wave-like displace-
ment patterns the total dipole moment will be small, so
that this term has little effect on the response functions at
finite wavelength. For crystalline materials with a center
of symmetry the total dipole moment will be identically
zero for these displacement patterns.

Although at finite wavelength our results are indepen-
dent of the precise form of the depolarization field, this is
no longer true in the limit of infinite wavelength. This is
illustrated most clearly for the case of slab geometry, for
which 8, =8» =0 and 8, =1 in Eq. (43}. Thus the depo-
larization field acts in the z direction only. We now com-
pute ei'(O, co) and e,"(O,co), where I and t refer to the z
axis. The depolarization field acts to increase the restor-
ing forces for longitudinal vibrations but has no effect on
transverse vibrations. This is illustrated in Fig. 5, where
we have plotted e'i'(O, co) and e", (O, co). Note that both are
smooth extrapolations of the results at finite wavelengths.
Only for slab geometry is the extrapolation to k=O
smooth for both ei(k, ni) and e,(k,co). The transverse
dielectric function e,"(O,ni) has a well-defined peak at

ni=1. 17'», with a full width at half height (FWHH) of
0.09co» after deconuoltition, with the resolution function of
width duo=0. 03co» introduced by the finite-time trunca-
tion in our simulation. A much broader response is ob-
served centered at co=0.76co&. The longitudinal dielectric
function ei'(O, ni } has a remarkably sharp peak at
ni= 1 32. co» with a FWHH of only 0 04.tu» after deconuolti
tion. A weak broad response centered at co=0.88coz is
seen. These results, combined with the results at finite
wavelength, provide unambiguous evidence for the ex-
istence of well-differentiated longitudinal- and
transverse-optic response with wavelength much longer
than the nearest-neighbor separation. The splitting of the
highest LO-TO pair is 0.15'» (or 140 cm ), which is
only slightly less than the sphtting of the highest LO-TO
pair in a-quartz. The magnitude of the splitting agrees
well with the experimentally observed value.

In the limit of vanishing wave number, e, (k,co) and
ei(k, ni} are not independent. The arguments developed in
Sec. IV show that e, (O,co) can be identified with the bare
dielectric response function e(co), whereas Eq. (56) relates
ei(O, ni) to e(co). In Fig. 5, a plot of Im[ —e„/e(ni)] is
shown which agrees well, within the expanded computa-
tional limits, with ei'(O, ni)/e„. This confirms the useful-
ness of the analysis of Galeener and Lucovsky, who iden-
tified the peak in —Ime (ni) as longitudinal-optic excita-
tion.

For completeness we show the real part e'(co) of the
dielectric function in Fig. 6. A negative region is ob-
served for 1.21'» & ni & 1.31'». In this reststrahlen band,
electromagnetic radiation cannot propagate in the glass.
We obtain a value eo/e„=1.57 for the static dielectric
constant.

In Fig. 7 we show the variation of the peak frequencies
c0Lo and r0To for the highest LO-TO pair. The negative
dispersion of the LO response is clearly visible, whereas
the transverse response shows almost no dispersion. This
behavior is reflected in the variation of the second mo-
ments (co (k) ) of E'i'(k, r0) with wave numbers, also shown
in Fig. 7. In the long-wavelength limit we recover the
sum-rule equation (80):

8-

6-

e,"(o,~)]e

~;(, ~)I~

8~
F~Ctl)

lim [(co'(k) )i —(ni (k) ), ]=co'/e„.
k~O

t p co (119)

4»

If the optic responses were 5 functions, as in GaAs, then

2"

0' I
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CdICd
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3= 2-
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0 0.2 0.4 0.8 0,8 l.O l.2 l.4 l.S
FIG. 5. Long-wavelength limits of imaginary parts of the

transverse and longitudinal dielectric functions. Also shown is
the imaginary part of the loss function, Im[ —e„/e(m) ].

QJ/4J&

FIG. 6. Real part of the dielectric function e'(cd ).



COULOMB EFFECTS IN DISORDERED SOLIDS 8503

CL
Il

l+3

FIG. 7. Variation of the peak frequencies G(k) and second
moments (co2(k) ) of the imaginary parts of the transverse and
longitudinal dielectric response, where open circles denote
BLo(k), solid circles denote @To(k), asterisks denote
[(co (k))io]'+, and solid squares denote [(aP(k)rp)'~i and
k =240,0,a )/L.

the peak frequencies would be given by the second mo-
ments. This clearly is not the case, as shown by the re-
sults in this section and summarized in Fig. 7.

We have also verified that the generalized LST relation,
Eq. (73), is obeyed. Specifically, we find a value of 1.61
for the rhs of Eq. (73), which compares well with the ex-
perimental ratio ep/e„=1. 57. The computations lead to
a value for the ratio ep/e„. If we use the value of
e„=2.10 as in Table I, we fmd that ep=3. 38, which is
close to be experimental value of 3.30.

The density of states (DOS), p(tp), of the model is
shown in Fig. 8. It was computed by averaging over three
sets of random initial conditions with the prescription
given in Sec. VIA. The DOS is characterized by a broad
band ro & 1.05co~ and a peak at pi=1. 15ni~, i.e.. close to
the TO peak frequency. Thus the transverse-optic modes
produce a peak in the density of states. The longitudinal-

1 ik R;.
$(k,ni) = ——Im g kmkt)GNtt(i, j,pi)e

i,j,a,P

(120)

S(k,to) was computed for the same wave vectors as
e(k, co), i.e., k= m2( 00, »)/L, with»=1, 2, 3,5. The re-
sults are shown in Fig. 9. We note a well-defined acoustic
peak at co =0.1(koz with a FWHH of 0.09piz (after decon-
volution with the resolution function} for the longest
wavelength accessible in our system. Assuming a linear
dispersion in this region, we obtain a longitudinal sound
velocity U, =7.7 km/sec, approximately 25'///o larger than
the experimentally measured value in v-SiOz. This is
due to the deficiencies in our force constant model, where
we chose the parameters to give a reasonable description
of the higher-frequency modes. The acoustic response
broadens considerably at shorter wavelengths. For the
shortest wavelength studied (»=5) the spectrum is
characterized by a broad band in the region to ( l. leo~ and
a peak at co=1.16eiz. One expects S(k,co) to become in-

creasingly similar to the density of states as the wave-

length is decreased, because the phase factors exp(ik R;i)

optic peak, on the other hand, merely serves to define the

upper band edge. These observations agree with experi-
ments on u-Si02 and u-Ge02. Experimentally, an addi-
tional peak is seen in the weighted density of states in the
region between the LO and TO frequencies. This is prob-
ably due to optically inactive modes of the kind known to
exist in crystalline quartz in this frequency region. Our
rigid-ion model places these modes near the TO mode at
1080 cm ' (i.e., 1.15ni& } in a-quartz .The parameters of
our model would have to be further refined to move this
peak to a higher frequency.

The result for the density of states is seen to be rather
noisy in the low-frequency band, but very smooth for
ni)to&. This is due to the fact that the network is not
large enough for the random phases to completely cancel,
even when averaged over three sets of initial starting
values.

We have also computed the dynamic structure factor
S(k,co). It is closely related to the coherent cross section
defined in Eq. (31), and is obtained from it by setting the
coherent scattering lengths a; " equal to unity, i.e.,

I.o-.
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FIG. 8. Density of states p(u) for the random network with
LO and TO marking the peak positions of the dielectric
response from Fig. 5.

FIG. 9. Dynamic structure factor S(k,co) for the random
network for wave vectors k=2m(0, 0,x )/L.
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in Eq. (119) will effectively become randomized. Finally,
we note that in the long-wavelength limit S(k,co) shows a
(small) peak at the longitudinal-optic frequency. As in

crystalline materials, a coupling to transverse vibrations is
only observed when the wavelength is sufficiently short
(in crystalline materials one has to choose k outside the
first Brillouin zone).

IX. CONCLUSIONS

We have shown how to include Coulomb forces in cal-
culations of the vibrational responses in disordered solids
like glasses and mixed crystals. The formalism is quite
general and can be applied to any disordered solid. A
number of interesting general relations and sum rules have
been derived. These should be of considerable value in
analyzing experimental data. The weight under the imag-
inary part of the dielectric function was shown in Eq. (62)
to be

Eq. (73), also involves the static dielectric constant Ep alid
can be used as a consistency check. Care inust be used
with the low-frequency part of the average (1/to ). Fi-
nally, the independence of the "width" (to ) —(to ) to
whether the longitudinal or transverse response is in-

volved, Eq. (68), provides another consistency check.
Early numerical attempts to study LO-TO effects in

glasses did not treat the long-range part of the Coulomb
interactions correctly and thus led to misleading results.
Attempts to develop analytic theories have not been very
successful to date. Hopefully, this work will encourage
more efforts in this direction to increase our understand-
ing and aid in the interpretation of experiments.

In this paper we have illustrated our general approach
with numerical computations for a network glass. Pre-
liminary accounts of this work has been published else-
where. ' In the future we hope to apply this technique
to mixed semiconductor crystals and also to include polar-
iton effects.
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