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The recently developed first-principles linear-muffin-tin-orbital method for calculating the elec-

tronic structure of helical polymers is applied to polyacetylene. Total energies, charge densities, and

energy bands are calculated for five different geometries of trans- and eis-polyacetylene. The dimer-

ization of trans-polyacetylene is furthermore investigated and the configuration coordinate uo is

determined. It is analyzed whether the results can be explained with simple model Hamiltonians of
the Su-Schrieffer-Heeger type.

I. INTRODUCTION

The discovery' that polyacetylene upon doping can in-
crease its conductivity by many orders of magnitude has
led to an enormous growth in the interest in this com-
pound and many attempts to explain this property have
been undertaken.

The situation is complicated by the irregularity of
polyacetylene. A typical sample consists of disordered
fibers, which by stretching the sample can be made some-
what parallel. Each fiber contains many shorter and
longer almost parallel macromolecules. The outcome of
an experiment will accordingly be a superposition of inter-
fiber, intrafiber, and intramacromolecular effects.

A theoretician, on the other hand, is forced to consider
idealizations of this structure: isolated, finite, or infinite
macromolecules, or some three-dimensional, regular struc-
ture. The most common idealization is a single, isolated,
infinite polyacetylene polymer.

This polymer is made up of carbon atoms each bonded
via cr bonds formed by planar sp hybrids to two neigh-
boring carbon atoms and to a single hydrogen atom. The
last valence electron of carbon is in n. bonds perpendicular
to the plane of the three sp hybrids. The polymer is ac-
cordingly considered to be planar. Depending on how the
carbon-carbon bonds are oriented with respect to each
other different polyacetylene geometries can be generated
of which the trans and cis isomers are the ones of highest
symmetry.

Su, Schrieffer, and Heeger (SSH) proposed a model for
explaining the conductivity properties of the trans isomer.
Their model is based on a model Hamiltonian for the car-
bon backbone, which is the sum of three terms: a
kinetic-energy term for nuclear motion, a tight-binding
term for n-electron interactions, and a harmonic term
describing the o-electron bonding energy expanded to
lowest order about the undimerized state. Excited states
of the total system, the so-called solitons, are according to
their model responsible for the conducting properties of
trans-polyacetylene.

This model has been improved and investigated by
many authors (for a recent review, see, e.g., Ref. 3), but it
is still not clear whether the explanation offered by Su,
Schrieffer, and Heeger is correct (see, e.g., Ref. 4).

Before being able to attain a deeper understanding of
the excited states of a polyacetylene polymer, it is impor-
tant to have a good description of the ground state, and
compare it with some of the assumptions behind the SSH
model Hamiltonian. Some of the questions that should be
answered are the following:

Is a model treating only tr electrons reasonable' ?

It might be expected that a quasi-one-dimensional sys-
tem with one electron per CH unit will undergo a Peierls
distortion, leading to alternating carbon-carbon bond
lengths. Is this behavior also found for a more detailed
model treating all the electrons?

How well do parameters for a model Hamiltonian ex-
tracted from detailed analysis agree with those of the SSH
model Hamiltonian?

How important are longer-range interactions between
the n electrons neglected in the original SSH model but to
some extent included in later improvements?

Furthermore, detailed investigations should be able to
compare the trans and cis isomers.

A large number of detailed calculations on ground-state
properties of polyacetylene have been reported ranging
from semiempirical calculations, ' via Hartree-Fock
calculations, 's 2 to Hartree-Fock calculations improved
with inclusion of some parts of correlation effects, 2 '

and to calculations within the framework of the local-
density approximation. The interest has mostly con-
centrated on calculating the geometries and the one-
electron energy bands. All parameter-free calculations on
both trans and cis isomers were performed at the
Hartree-Fock level with a minimal basis set, except for
the Hartree-Fock calculations by Kirtman et al. ' and by
Teramae et al. ,

i and the density-functional calculations
by Grant and Batra. ' Of the exceptions, only Grant
and Batra included correlation effects, but, on the other
hand, they did only consider one fixed trans and one fixed
ns geometry.

The aim of the present paper is to present results of
self-consistent calculations on different geometries of both
trans- and cis-polyacetylene. The method, recently
developed, is based on the local-density scheme (i.e.,
correlation effects are included}. The linear tnuffin-tin or-

bital (LMTO} basis set used is better than minimal but not
completely of double-g quality. Our analysis will be
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separated into two parts. First, we will examine the one-
electron energy bands and the electron densities for dif-
ferent geometries of trans- and cis-polyacetylene. Second,
we will utilize energy bands and total energies from the
trans isomer to try to answer some of the questions raised
in connection with the SSH model Hamiltonian.

The outline of the paper is as follows. A very detailed
description of the method applied is given in Ref. 37, so
Sec. II will only contain a short introduction sufficient to
clarify the terminology used later. In Sec. III we describe
the gcemetries we have considered. Section IV contains
our one-electron energy bands and electron densities for
the trans and eis isomers, and, in Sec. V, these are com-
pared with results of other calculations. The dimerization
of trans-polyacetylene and the SSH model Hamiltonian
are examined in Sec. VI, and, finally, Sec. VII contains
the conclusion.

II. METHOD

p(r) = g pI, (r) &i, (r) . (3)

In the interstitial region we approximate the calculated
electron density using a least-squares fit. This step is
necessary to obtain the potential generated by the intersti-
tial density used for the total energy and for the next
iteration in a self-consistent scheme.

By comparing densities for different compounds, some
information on the similarities and differences between
them can be obtained. The multipoles

Within the usual Born-Oppenheimer approximation
and in the local approximation to the density-functional
scheme, we seek the one-electron eigenfunctions to the ef-
fective Schrodinger equation (in Rydberg atomic units},

g,fr/;(r) =[—P' +v(r)]P;(r) =s;P;(r),
where the potential u (r) is the sum of the Coulomb poten-
tial from the nuclei, u„(r), and from the electrons, v, (r),
plus the exchange-correlation potential in the local-density
approximation, u„,(r). u, and v„, depend on the electron
density

p(r) = g ~
P;(r) (

1 =occupied
states

Equations (1}and (2) are to be solved self-consistently.
The eigenfunctions g;(r) are expanded in LMTO's,

which requires some description. Inside nonoverlapping
atomic spheres, placed such that each nucleus occupies a
center, the basis functions are described analytically as
solutions to numerical, one-dimensional, effective
Schrodinger equations of the form (1) obtained by consid-
ering only the spherical symmetric part of the potential
inside the sphere. In the interstitial region outside all
spheres the LMTO's are given analytically as spherical
Hankel functions of the first kind times spherical har-
monics. The functions are defined such that they are con-
tinuous and differentiable everywhere.

Inside the atomic spheres the electron density calculat-
ed from (1) and (2) can easily be expressed as a one-center
expansion as

qi ——&4m I r'pi (r)dr (4)

obtained from (3) are here particularly useful.
Our method can, in principle, be used for any system,

but the present computer codes we have made are restrict-
ed to calculating the electronic distribution of the ground
state of a single isolated, infinite, periodic, helical poly-
mer. Polyacetylene is considered to have these charac-
teristics.

The primitive symmetry operation that maps such a po-
lymer onto itself can be described as a combined rotation,
U, around the symmetry axis and a translation, h, along it.
The two parameters (h, u) uniquely define the symmetry.

Two sets of coordinate systems are appropriate for such
a system. First, a global right-handed one with the z axis
along the syminetry axis. In this coordinate system, the
ith atom in the nth unit cell is placed at

x =r;cos(u„;),

y =r;sin(u„;),

z = ( h /u)u„; +z;,
with

u„ i nv+Q——;,
and where the parameters (r;,P;,z;) are unique for the ith
atom. Second, local right-handed coordinate systems with
the z axes parallel to the symmetry axis and the x axes
pointing away from it are placed on each nucleus. Bloch
functions for k in the Brillouin zone, k E[—m/u, n./u],
can then be formed from the local basis functions.

III. GEOMETRY OF POLYACETYLENE

The high-symmetry forms of planar polyacetylene, the
trans and cis isomers, may be considered in two different
forms depending on whether all carbon-carbon bonds have
the same length or alternating lengths (i.e., whether the
polymer is dimerized). For the dimerized cis isomer, there
are two possibilities, each differing in which carbon-
carbon bonds are taken to be shorter and which longer.

In Fig. 1 we schematically depict the five different
geometries using a simple bond-order picture in which the
dimerized isomers have alternating single and double
carbon-carbon bonds and where the nondimerized isomers
have 1 —,

' carbon-carbon bonds. Geometries I and II corre-
spond to the trans isomers and III—V to the cis isomers.
Geometries II, IV, and V are the dimerized polymers. For
all geometries, the global z axes are defined as pointing to
the right. In the figure, we have furthermore shown the
unit cell used and the numbering of the atoms inside it.
For the undimerized trans isomer a unit cell with only one
CH unit had been sufficient, but with two units, we obtain
identical treatments of all geometries.

The parameter u describing the helical symmetry is for
the trans isomers with translational symmetry U =2m, and
for the eis isomers with zig-zag symmetry u =n The rest.
of the parameters describing the geometries is to be found
from the bond lengths and bond angles.

From x-ray diffraction analysis combined with crystal-
packing analysis, Baughman et aI. have obtained the
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With those values of the bond lengths and angles, we
can determine the parameters (r;,P;,z;} and (h, u) for the
five geometries of Fig. 1. The results are displayed in
Table I in atomic units.

In studying the dimerization of trans-polyacetylene we
use the following one-parameter approach. In the sim-

plest bond picture one of the four valence electrons of the
carbon atom will in a sp hybrid participate in a o bond
with the hydrogen 1s electron. The other three valence
electrons will be involved in bonds with the two nearest
carbon neighbors. Hence, the sum of the bond orders of
the two carbon-carbon bonds per carbon atom will be 3.
By choosing the bond orders to be 1+x and 2 —x, we can
use the bond lengths given by Pauling,

D, +„—1.504—0.170X
1.84x A,

D2-x= 1S04—0 170X
4

1.84(1 —x) A.
J

0

The hydrogen-carbon bond length is kept fixed at 1.09 A
and all bond angles are set to 120'. Su, Schrieffer, and

Heeger followed a different path. They chose the length
of the unit cell and the distance between the helical axis
and the carbon atoms to be constant. Furthermore, ef-
fects of the positions of the hydrogen atoms were neglect-
ed. We believe, however, that had we chosen the path of
SSH our conclusions would have been unaltered.

Finally, it can be mentioned that the bond lengths 1.35
and 1.46 A used in the comparison between trans and-
cis-polyacetylene correspond to x =0.16 (+0.0005).

FIG. 1. Schematic representation of trans- (geometries I and
II) and cis- (geometries III—V) polyacetylene. Carbon (hydro-

gen) atoms are symbolized with solid (open) circles. The single,

double, and 12 bonds are represented with —,=, and =-,

respectively. Also drawn are the unit cells used in the calcula-
tions. The numbering of the atoms inside the unit cell is indi-

cated. Finally, the helical symmetry axes are shown. The posi-
tive direction is assumed to be towards the right.

geometries of the two alternating cis isomers. The
carbon-carbon bond lengths were found to be 1.35 and

1.46 A, and the angles deviated only little from 120'. The
carbon-hydrogen bond length was 1.09 A. For the dimer-
ized cis isomers, we will use those values, and for the
dimerized trans isomers we will use the same bond lengths
but set all angles identical and equal to 120. Also, for the
nondimerized polymers (geometries I and III) the angles
are set to 120'. The hydrogen-carbon bond length is kept
at 1.09 A, whereas the carbon-carbon bond length is
chosen as the optimized value on the cis nonalternating
isomer by Yamabe et al. , i.e., 1.39 A. In agreement with
the semiempirical results of Pauling, this value is small-
er than the average of the values for the alternating bond
lengths.

IV. RESULTS

Strictly speaking, the energy bands calculated within
the density-functional scheme are not to be identified with
excitation energies, except for the highest occupied level
which corresponds to the ionization potential. However,
experience has shown that interpreting the energy bands
as one-electron excitation energies is a good approxima-
tion and it will therefore also be done here.

In Fig. 2 we show the self-consistent one-electron ener-

gy bands for the five geometries of Fig. 1 and Table I.
As is to be expected, the trans and cis isomers show

both similarities and differences. For all geometries the
valence bands consist of four bands of a symmetry (i.e.,
the eigenstates are even with respect to the polymer plane}
and one band of n symmetry (odd). The states closest to
the Fermi level (sF) are for all geometries of m symmetry.
The n i bands have for the trans geometries their maxima
at k =flu, whereas for the cis geometries the maxima
occur at k =0. The situation is reversed for the m2 bands.
This difference between the trans and cis isomers is solely
caused by our definitions: For the zig-zag symmetry (the
cis isomers, u =n) the local p~ orbitals are antiparallel in
neighboring unit cells, whereas for the translational sym-
metry (the trans isomers, u =2m) they are parallel.

All isomers have o i bands of mainly carbon s and p na-
ture. The other three o valence bands are more compli-
cated and are of carbon s and p and hydrogen s and p na-
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TABLE I. Geometries used for the five different types of polyacetylene. For further explanation see
text.

1

Zf

f2

2

Z2

f3

3

Z3

f4

4

Z4

4.550
2m

0.658
0
0

2.717
0
0

0.658

0

2.717

0

4.600
2m

0.663
0
0

2.722
0

—0.047

0.663

0.120

2.722

0.167

Geometry
III

3.940

1.138
0
0

2.922
0

—1.030

1.138
0

2.627

2.922
0

3.657

IV

4.223

1.097
0
0

2.881
0

—1.030

1.097
0

2.551

2.881
0

3.581

4.222

1.045
0
0

2.829
0

—1.030

1.045
0

2.759

2.829
0

3.789

0.0 0.0

-04-

~ -0.8

"-1.2-

~ -0.8
CL

Q -1.2
LJ

—1.6-

-2.0 -2.00 Tt;/y

0.0 Q0 0.0

CL
~ -GB

K
Ldz —12

—1.6- —1.6-

00 m/v
2.00 -2.00

Tt'/y

FIG. 2. Self-consistent one-electron energy bands for the five symmetries of Fig. 1 and Table I. Panels (a)—(e) correspond to the
geometries I—V, respectively.
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2
I Pi Pz+P4I . — (10)

Since p) &0 decreases with increasing interatomic dis-
tance, we have

p)(III) =p2{III),
p)(IV) &p2{IV),

P)(IV)=Pi(V),

pi(V)=p2(IV),

P)(IV) &P)(111),

P4(IV) &Pg(III) &P4(V) .

This explains the observed behavior. The long-range p4
cannot be neglected. If done, geometry Ill would have
corresponded to a zero-gap semimetal and the gaps of
geometries IV and V would have beam identical. %e vrill
come back to the long-range hopping integrals in Sec. VI.

ture. For the trans isomers, the o2 and )»q bands show an
avoided crossing, as the mrs and )»4 bands do for the cis iso-
mers. We suggest this difference be used in distinguishing
between trans- and ris-polyacetylene. For example, x-ray
photoelectron spectroscopy measuring essentially the den-
sity of occupied states should give different spectra for
the trans and cis isomers. We have not been able to find
experimental verification of this prediction: The cis-rich
films tend to change into trans-rich films at normal ex-
perimental conditions, ~) which explains why we only have
been able to find spectra for the trans isomer.

For undimerized trans-polyacetylene (geometry I}a unit
cell with one CH unit had bosn sufficient. Therefore, the
bands in Fig. 2 for this geometry are all doubly degenerate
at k =)r/U. When dimerizing (passing to geometry II),
the bands will essentially remain unchanged, except near
k =n'/u where gaps will show up. In contrast to this, un-
dimerized cis-polyacetylene (geometry III) does not have
such a higher symmetry, which causes degeneracies.

The decrease of the direct n )-)r2 gap at k =0 for the cis
isomers when passing from geometry IV via III to V can
be explained as being partly due to long-range effects. A
simple tight-binding Hamiltonian only treating the carbon
p„electrons will illustrate this. Using the numbering of
Fig. 1 for the atoms and letting {n, i) denote a local carbon

p» orbital on atom i in unit cell n, we will introduce the
following hopping integrals (see Fig. 3):

((0,1) i
h

i (0,3) ) =Pi,
&{0 1}

I
h

I { 1,3))= —Ps,

((0 1)~~ ~( 1~ 1}) p3

((0,1)
i

I)
i ( —2, 3) ) =P4,

plus the analogues.
The k-dependent 2 X2 Hamiltonian matrix is then

H))(k) =Hqs(k) =—2Pscos(k))),

H)2(k)=H2)(k)=p) —p2e'""+pge '

giving a direct gap at k =0 of

FIG. 3. Schematic representation of the m-electron hopping
integrals used for the cis isomers.

In Table II we have collected some of our calculated
bandwidths and band gaps. The comparison with the re-
sults from other calculations is left for the next section.
We see in the table that especially the band gap depends
on the geometry. This value should therefore be taken
with some caution, keeping in mind that our geometries
have not been optimized.

Geometry III, which has the smallest unit cell, has, to
some extent, larger bandwidths than the other cis isomers.
Especially the )r) bands corresponding to carbon-carbon
bonds are accordingly expected to show this tendency.
Similarly, the more-closely-packed cis-polyacetylene has,
in general, broader bands than trans-polyacetylene

The relative total energies given in Table III show that
we find the commonly established picture that dimerized
trans-polyacetylene is the most stable isomer, but it
should be kept in inind that we have not optimized the
geometries. We believe that an optimization will especial-
ly affect the more-closely-packed cis structures. As
demonstrated for the gap in the cis isomers, the one-
electron eigenvalues for these depend somewhat on
second- and third-nearest-neighbor interactions. For the
trans isomers, these neighbors are farther apart and
should accordingly be less important. Also; the conver-
gence of the lattice summations is expected to be more
important for the more-closely-packed cis isomers than
for the more open trans isomers. Our total energies in
Table III show the largest fiuctuations for the cis isomers
that might be interpreted in this way.

That the cis isomers are more closely packed than the
trans isomers can be seen in Fig. 3, where we show for the
five geometries the approximate electron density p(r}
described in Sec. II. Strictly speaking, p(r) is only valid in
the interstitial region, but in Fig. 4 we have continued it
into the outer parts of the atomic spheres. Geometries II,
IV, and V clearly show the dimerization when compared
with geometries I and DI. Although the hydrogen atoms
become much closer in the cis polymers than in the trans
polymers, it is seen that there is only little interaction be-
tween them.

The electron densities are seen to be well localized
within the polymer, justifying treating only a single, iso-
lated macromolecule.

Inside the spheres we expand the electron density ac-
cording to (3). Since the results depend only slightly on
geometry, we have chosen to present only one set of fig-
ures, namely those for geometry III. The s, p„and p,
components of the electron density inside the atomic
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TABLE II. Bandwidths, fundamental band gap, and ionization potential in eV as obtained by different theoretical methods. The
calculations of Refs. 5—12 are semiempirical, of Refs. 13—26 of Hartree-Fock type, of Refs. 27 and 28 of Hartree-Pock type with in-

clusion of some correlation effects, and the rest of local-density type. The values marked with an asterisk correspond to optimized
geometries. For more details, see text.

cr~ bandwidth

o2 bandwidth

03 bandwidth

a4 bandwidth

m~ bandwidth

Total
valence-band

width

3.88

3.95

4.83

2.47

6.02

17.49

5.01
6.78
3.39

3.16,3.46
4.00
2.54

5.0
7.95,7.76

6.50
6.23
5.31

25.36,24.68
25.66
19.2
21.08
16.74

Geometry
III

4.64

5.66

5.76

2.73

6.31

18.23

3.87

5.58

5.19

3.42

6.42
6.45
5, 18

16.91

11.54, 11.48

6.50

13.85,16.50

6.57,6.27

10.24, 10.32

3.63

4.87

2.42

6.53
6.34
6.39

18.15

References

9
15*
18

This work

9
This work

9
This work

9
15*
18

This work

9
11
15
18
21'

This work

15'
18
34
35

This work

spheres around carbon atom 1 (see Fig. 1) and hydrogen
atom 2 are—multiplied by r 4epic—ted in Fig. 5. The
sphere radii were 1.274 a.u. for the carbon atom and 0.784
a.u. for the hydrogen atom.

The s component for the carbon atom clearly shows the
1 s core electrons and the valence electrons in the outer re-
gion. The p„component describes the difference in the

strength of the bonds to the nearest hydrogen atom and to
the nearest carbon atom of the neighboring unit cell. The
p, component can similarly be interpreted as comparing
the strength of the bond to the nearest carbon atom in the
same unit cell with the strength of the bonds to the two
above-mentioned atoms.

The p components for the hydrogen atom almost solely
describe the bonds to the nearest carbon atom.

For the trans isomers, the p components of the carbon
atom need to be interpreted slightly differently. The p,
component mainly describes the dimerization, whereas the
p„component compares the strength of the bond to the
hydrogen atom with that of the bonds to the two nearest
carbon atoms.

It should be noticed that for an isolated atom the total
electron density from the three ideal sp hybrids will give
rise to no p components in the plane of the hybrids.

In comparing the different geometries, we will use the
multipoles defined in Eq. (4). They are tabulated in Table
IV.

The s components and the hydrogen p components
differ only slightly for the five geometries. The largest
differences are found for the carbon p components. These
differences are easily understood with the just-described
interpretation and Fig. 1 in mind.

V. COMPARISON %'ITH OTHER CALCULATIONS

Before comparing with the other calculations for poly-
acetylene, we will briefiy describe the methods applied.

Whangbo et al. reported extended Huckel calculations
on all the geometries of Fig. 1, except geometry III.
Yamabe et al. ' used the semieinpirical CNDO/2 (where
CNDO denotes complete neglect of differential overlap)
method on optimized geometries for all five structures of
Fig. 1. %ith this approach, they calculated energy bands
and total energies.

Young et a/. reported semiempirically calculated band
structures for two different geometries of alternating
trans-polyacetylene within the EHCO and MNDO
methods (EHCO, extended Huckel crystal orbital;
MNDO, modified neglect of differential overlap). In Ref.
9 Young demonstrates the simplifications obtained when
using the helical symmetry for the ri isomer. He presents
results calculated both for the translational and for the
helical symmetry for cis-polyacetylene within the EHCO
method.
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TABLE II. (Continued)

Geometry
III References

Smallest
lT I 1T2

band gap

Ionization
potential

4.09

0.21

11.56
5.22

0.96
7.46

0.8,3.5

4.9
7.24
8.05
9.74
1.4

11.64
8.71
4.43
6.88
2.98

0.8
1.6
0.6
0.6
1.6
1.3
1.10

7.82
7.8
7.13
5.31
5.27
6.61
4.7
6.19
4.98

5.75

8.74

5.21

4.63

1.34

5.75

2.81

4.45

1.23
8.43

3.95

8.19
1.5

11.70
8.98

1.2
1.7

2.31

4.56

4.8
6.24

5.84

3.79

0.71

10.39

7.83
1.3

11.62
8.98

1.2

0.09

4.54

4.7
6.21

4.53

5

6
8

9
11
13
is*
16
20
2i'
22
zs*
26
28'
29
30
31
32
33
34
36

This work

11
i4'

16
18
20

28'
29

This work

The helical symmetry was also used by Elert and
White, ' who optimized the geometry for the cis isomer
within the MNDO method. They find a nonplanar
geometry with energy only slightly above the planar
ground state. A spectroscopically parametrized CNDO
method has been applied on dimerized trans-polyacetylene
by Ford et al." Al-Jishi et a/. ' report tight-binding
bands for the alternating trans isomer In con.trast to
most other works, they find m bands well separated from
the valence o bands.

Some of the first Hartree-Fock calculations on polyace-
tylene were reported by Kertesz et al. '~ for all five
geometries of Fig. 1 for fixed (i.e., unoptinuzed) bond
lengths and angles. Their calculations were performed
with the minimal STO-36 (Slater-type orbital described
by three Gaussians) basis set. From calculations on finite
molecules, they demonstrated that such a basis is far from
being converged.

Karpfen and Petkov' ' optimized the geometry for the
alternating trans isomer using the Hartree-Fock method
with a minimal STO-36 basis' and with a minimal

STO-36 basis set as well as the better Ss4p/4s basis. '

The improved basis set lowers the total energy per C2Hz
unit by approximate 25 eV. They reported the band struc-
tures for the optimized geometries.

Suhai' performed Hartree-Fock calculations on exactly
the same structures as we have. He used a minimal STO-
3G basis and investigated cutoff errors introduced by un-
converged lattice summations.

Karpfen and Holler' optimized the five geometries
with a minimal STO-36 basis set within the Hartree-Fock
approximation Bredas et. al. ' ' used a valence effective
Hamiltonian (VEH) technique in which model Hartree-
Fock calculations on smaller molecules with double-g
basis sets define effective Hamiltonians for the polymers.
They calculated the energy bands for all the alternating
structures (geometries II, IV, and V).

From Hartree-Fock calculations ~ith both the minimal
STO-36 and the better 3-216 basis set on finite mole-
cules, Kirtman et al. ' made extrapolations to the poly-
mers. The geometries @vere optimized. Results were re-
ported for all the alternating structures.
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TABLE III. Relative total energies in eV per C282 unit found by different approaches for the struc-
tures I—V of Fig. 1. Only the values for references marked with an asterisk correspond to optimized
geometries. The calculations of Refs. 5—12 are semiempirical. For the Hartree-Fock calculations
(Refs. 13—26) and the Hartrce-Fock calculations with inclusion of some correlation effects (Refs. 27
and 28), the total energy in Ry per C2H2 unit has been included in parenthem for a single geometry.
These values can be compared with the free-atom values of —1 Ry for hydrogen and —75.679 Ry for
carbon [F. Sasaki and M. Yoshimine, Phys. Rev. A 9, 17 (1974)], giving —153.358 Ry per CiH2 unit.
For the density-functional calculations (Refs. 29—36 and present work), the binding energies in eV per
C2H2 are given for a single geometry. Mintmire and %hite (Refs. 32 and 33) use atomic energies calcu-
lated with the same basis set as used in the polymer calculations and neglect spin-polarization energies,
thereby overestimating the atomic energies. Our atomic energies have been calculated from numerical
solutions to the effective Schrodinger equation with addition of the spin-polarization energy.

References

5
6
7

13

16

27,28~

32,33

This work

0.08
0.16

—0.63

0.31

0.38

0.09

0.03

0.10

0
( —151.903)

0
( —153.728)

0
(—153.737)

0

( —151.896)
0

( —151.896)
0

( —151.892)
0

(—154.336)
0

(18.55)
0

(11.15)

Geometry
III

0.24
0.21

—1.38

—0,70

0.23

0.36

0.84

IV

0.47
0.07
0

—0.68

0.08

0.09

0.08

0.10
—1.72

—1.00

0.09

0.09

0.09

0.60

Also, Dovesi i carried through Hartree-Fock calcula-
tions with a minimal STO-36 basis set. He was mainly
interested in convergence properties of the calculations,
and reported total energies for optimized geometries for
all structures in Fig. 1.

Teramae et al. calculated vibrational structures of all
the alternating structures of polyacetylene. They used the
Hartree-Fock method with both STO-36 and 4-316 basis
sets. They reported optimized geometries.

Rao et al.2 2s were interested in the possibihty of heli-
cal nonplanar forms of polyacetylene. With both the
minimal STO-36 basis set and the improved 4-316 basis
set, and with the Hartree-Fock method they found evi-
dence of nonplanar structures of the alternating isomers
which were low lying in energy.

The last Hartree-Pock calculations we will consider
were made by I'Haya et al. for the alternating trans iso-
mer. They examined the role of the quality of the basis
set. Furthermore, they also carried out calculations using
the model-potential method where only valence electrons
are treated. For a geometry optimized with a STO-36
basis they performed calculations with basis sets ranging

from STO-36 to double-g 10s5p types. As found by
Karpfen and Petkov, the calculated binding energy can-
with improved basis sets be increased by as much as 25
eV per CzH2 unit.

Suhai included part of the correlation effects using
a method based on Hartree-Fock calculations and
second-order Mtiller-Plesset (MP) perturbation theory.
For both structures of the trans isomer, Suhai optimized
the geometries with different basis sets with and without
inclusion of the MP perturbation. The correlation energy
he found gives a reduction of approximately 5 eV in the
total energy per C2H2 unit.

To the author's knowledge, the first local-density calcu-
lations on polyacetylene were performed by Falk and
Fleming on the undimerized trans isomer. They used a
crude muffin-tin approximation in which the potential
was assumed to be spherical symmetric inside the atomic
spheres and constant in the remainder of space. This ex-
plains why for the trans isomer they obtained energy
bands quite different from results of other parameter-free
calculations; one has to conclude that this approximation
is not justified.
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FIG. 4. Contour curves for the approximate electron density ptr) for the five geometries of Fig, 1. Contour values are 0.8, 0.4, 0.2,
0.1, and 0.05 a.u. The densities are shown in the planes containing the nuclei. Panels (a)—(e) correspond to the geometries I—V,
respectively.

Some of the only calculations on three-dimensional
crystalline polyacetylene have been carried through by
Grant and Batra ' on the crystal structures for
geometry IV of Fig. I proposed by Baughman et al.s

(Ref. 30}and for geometry II on the structure proposed by
Fincher et al. (Ref. 35). The calculated energy bands
show only slight dispersion along directions perpendicular
to the chains, as should be expected. Furthermore, in Ref.
30 Grant and Batra report semiempirically obtained bands
for single tmns isomer chains. For the calculations on the
three-dimensional structures, in Ref. 30 they used a non-
self-consistent, first-principles, LCAO method, and in

Ref. 35 the self-consistent pseudopotential method.
Kasowski et al. ' also considered three-dimensional po-

lyacetylene, but reported mainly the one-dimensional
behavior. Their method has similarities with ours, but
they used a minimal basis set. It is not clear how impor-
tant this approximation is when considering three-
dimensional structures. For one-dimensional structures,
we have found that the changes arising from passing from
minimal to extended basis sets are certainly not negligible.
Kasowski et al. reported energy bands and charge densi-
ties for the highest occupied state for the alternating
structures.



MICHAEL SPRINGSQRG 33

I. CS
CD

III. H S

CD
CD

CD

lh

CD
I

CD
LA

e

I

Pd
CD

CD

III. C X III. H X

CD

a CD

N
CD

CD
I

N

CD
I

bJ
CD

III. C Z

CD

CD

N
CD

I

CV
CD

O
I

FIG. 5. Different angular components of total electron densities inside the atomic spheres multiplied by r for geometry III. Car-
bon atom 1 (labeled C in the figure) and hydrogen atom 2 {labeled H) of Fig. 1 were considered. s, x, and z denote the s, p„, and p,
components, respectively. (sc——1.274 a.u. , sH ——0.784.) Note the different scales on the y axis for the s and p components.

Mintrnire and White ' used a self-consistent LCAO
method on trans-polyacetylene with the Xa approxima-
tion for exchange and correlation effects. The geometries
were partly optimized.

A similar method, but employing the local-density ap-
proximation instead of the Xa approximation, was used
by von Boehrn et al. ' non-self-consistently and self-
consistently, but without geometry optimization and
only for the dimerized isomer.

In Table III we have collected relative total energies as
reported by different authors. Of the results only those of
Refs. 17, 21, 22, and 27 are first-principles results on op-
timized geometries. Among those there seems to be agree-
ment that the dimerized trans isomer is the most stable
isomer. This trend is not found in all the calculations for

nonoptimized geometries. However, as is seen, there is
general agreement that the energy differences for the dif-
ferent geometries are small. Finally, we would like to
point out that our calculations show polyacetylene to be
stable. Our binding energy is approximately 11 eV per
C2H2 unit upon comparison to decomposition into neu-
tral, isolated atoms. The atomic energies are calculated
numerically within the local-density scheme with the ad-
dition of the spin-polarization energy.

Table II shows some well-known trends for the band-
widths, band gaps, and ionization potentials: Hartree-
Fock calculations tend to overestimate widths and gaps,
~hereas local-density calculations underestimate the gaps.
The semiempirical methods depend crucially on the quali-
ty of the parametrizations and give varying results. With
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TABLE IV. Multipoles of the electron density inside the atomic spheres for carbon (atom 1 in Fig.
1—here denoted C) and hydrogen (atom 2 in Fig. 1—here denoted H). s, x, and z are the s, p„, and p,
components, respectively. The radii of the atomic spheres are 1.274 a.u. for carbon and 0.784 a.u. for
hydrogen.

C
C
C
H
H
H

3.99
—0.06

0
0.33

—0.05
0

3.98
—0.05
—0.07

0.33
—0.05

0.00

Geometry
III

3.99
—0.07

0.03
0.34

—0.04
0.02

IV

3.96
—0.01

0.07
0.33

—0.04
0.03

3.92
—0.09
—0.05

0.33
—0.04

0.03

VI. DIMERIZATION OF TRANS-POLYACETYLENE

As described in the Introduction, the model Hamiltoni-
an by Su, Schrieffer, and Heeger '47 (SSH) is widely used
for describing the excited states of trans-polyacetylene.
However, since the model Hamiltonian can also be used
for the ground state, a comparison with parameter-free
calculations can throw some light on the approximations
and the parameters in the SSH Hamiltonian.

Su, Schrieffer, and Heeger assume that the only allowed
distortions of the perfect, undimerized polymer are those
in which the nth carbon atom with its hydrogen atom
move rigidly together parallel to the polymer axis by an
amount u„. Furthermore, they assume that in the perfect,
dimerized polymer we have

u„=(—1)"uo . (12}

this in mind, our bandwidths seem to be in good agree-
ment with others. As mentioned in the preceding section,
the band gaps of the cis isomers depend not only on the
positions of the nearest neighbors but also on those of the
second- and third-nearest neighbors. For the trans iso-
mers, the band gap is expected to be mainly determined by
the nearest-neighbor positions and therefore do not vary
so strongly with geometry as for cis polyacetylene. The
experimental value of the gap is 1.4—1.8 eV for trans-
polyacetylene and slightly larger for cis-polyacetylene. ~s 46

The calculated ionization potentials given in Table II
show when compared with the experimental values for
trans-polyacetylene, 4.6—4.7 eV (reported in Refs. 20 and
28), that our calculations are fairly trustworthy. The per-
fect agreement obtained by Bredas et al.io is found by
more or less arbitrary adjusting by 1.9 eV due to "polari-
zation energy and possible shortcomings of the model. "

better fulfilled: The distance between the carbon atoms
and the axis, r„is found to change from 0.349 to 0.353 A
(cf. Table V).

Neglecting the kinetic energy of the nuclei, the original
SSH Hamiltonian consists of two terms:

(14)

Assuming rigid o bonds between adjacent carbon atoms
and only small u„'s, the energy contribution from the o
bonds is expanded to second order in u„as

H = —, QK(u„+i —u„) (15)

A tight-binding Hamiltonian with only nearest-neighbor
interactions is assumed for the n electr-on contribution to
the total energy,

~ tII, II+1(CR+I,SCn,s+CII,scn+l, s } I
N, S

(16)

t„„+i——to —a(u„+i —u„) . (17)

The n i bands of geometries I and II treated in the preced-
ing sections can give us information on the m-electron

Hamiltonian H . A generalization of {16),

with c„, (c„,} being the creation (annihilation) operator
for a n electron on site n with spin s (=+—,

' ).
A further simplification was introduced by Su,

Schrieffer, and Heeger: The hopping integrals t„„+iwere
linearized around the value for the undiinerized polymer,

Simple geometry gives that uo then is related to D~+„and
D2 of {7}through

HIF g g nta+ ( IIICII+SIIISCII+n, sC~CIISI)III
ns m=1

(18)

Di+» —D2 «-4cos{30')u0=2v 3uo (13)

when neglecting the fact that (12) is not exactly fulfilled
in our analysis: the length of the unit cell, h, increases
from 2 414 A for x =0.5 to 2A59 A for x =0.0 {cf.Table
V, where most of the key quantities for the calculations
for the examination of the dimerization are collected).
That the carbon atoms move parallel to the he1ical axis is

where also second-nearest-neighbor interactions are in-
cluded, will give an occupied m i band of the form

e(k) =2to 2cos(ku} —[to i+ to i +2to i to icos(kU)]

(19)

except for a constant. With a least-squares fit to the mi

bands at geometries I and II in Fig. 2, we can determine
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TABLE Y. Key quantities in the examination of the dimerization of trans-polyacetylene. x defines

the carbon-carbon bond orders, D~, and D2 „the lengths. h is the length of the unit cell, r
&

the dis-

tance from the helical axis to the carbon atoms. uo describes the dimerization, E„, is the relative (Rel.)

total energy per C2H2 unit. Furthermore, the values of the five valence bands are given at the zone

center and the zone edge. The t~o values of the energy gap EG are the values from the first-principles

calculations (first value) and that from the tight-binding Hamiltonian (second value). qc„qc„, and

qc, give the s, p„, and p, multipoles at the electron distribution inside the carbon sphere (radius 1.260

a.u. ) of atom 1, geometry II in Fig. l.

D)+„(A)
D2 „(A)
h (A)
r) (A)

uo (A)

Rel. E$ g (eV)

o'~(0) (eV)

o,(~/v) (.V)
cry(0) (eV)
oq(n/u) (eV)

o3(0) (eV}
o3(~/v) (eV)

o~(0) (eV)
oq(m/v} (eV)

n)(0) (eV)
~~(~/v) (eV)

Eg (eV)

Eg (eV)

gc,s

gc,x
gc,s

0.00

1.504
1.334

2.459
0.353
0.049

0.286

—22.45
—19.74
—15.73
—18.20
—9.23

—11.35
—8.03

—10,67

—11.05
—6.24

1.71
1.86

3.92
—0.04
—0.10

0.10

1.475
1.344

2.442
0.351
0,038

0.093

—22.52
—19.65
—15.80
—18A4
—9.20

—11.29
—8.20

—10.80

—11.11
—6.13

1.37
1.50

3.93
—0.05
—0.08

0.20

1.450
1.355

2.430
0.350
0.027

0.005

—22.61
—19.57
—15.83
—18.71
—9.20

—11.26
—8.34

—10.89

—11.20
—5.91

0.97
1.12

3.93
—0.05
—0.06

0.30

1.429
1.367

2.421
0.349
0.018

—22.65
—19.43
—15.85
—18.85
—9.11

—11.18
—8.38

—10.95

—11.22
—5.76

0.64
0.74

3.93
—0.05
—0.05

1.410
1.380

2.417
0.349
0.009

0.156

—22.67
—19.31
—15.86
—19.01
—9.02

—11.13
—8.44

—11.04

—11.25
—5.50

0.31
0.37

3.94
—0.05
—0.03

0.50

1.394
1.394

2.414
0.349
0.000

—22.67
—19.18
—15.86
—19.08
—8.97

—11.07
—8.48

—11.06

—11.24
—5.41

0.01
0.00

3,94
—0.05

0.00

the hopping integrals as a function of interatomic distance
D. %e obtain

D (A)

1.35
1.39
1.46
2.41
2.43

t (eV)

4.06
3.78
3.42
0.38
0.38

(20)

&vs=
I
to i+to, —

& I I to i to —& I 4to2

&ca= I to, i+to, —i I
—

I to i
—to —i I +4to z

eG =2
I to i

—to, —i I
~

(21)

Since it is well known that the local-density approxima-
tion for exchange and correlation effects might produce
considerable errors in conduction energy levels, me have
chosen to consider only the occupied states in obtaining
the parameters in (20).

Equation (19) will predict the following valence- (avis)

and conduction- (ecis) band widths and a gap (eG) of
to ——3.78 eV, a=5.45 eV/A . (22)

Those values are fairly different from those of Su,
Schrieffer, and Heeger. From the semiempirical calcula-
tions by Grant and Batra, they estimate a total m-

electron bandwidth of 4to ——10 eV~ giving to=2. 5 eV.
Experimental values for K (21 eV/A ), uo (0.04 A), and
eG (1.40 eV) are then used by SSH to obtain a =4. 1 eV/A.

It is interesting to note that with this approach the gap
of geometry II is estimated to be 1.28 eV, comparable
with the 1.10 eV reported in Table II, suggesting that the
local-density approximation does not underestimate the

gap for the quasi-one-dimensional systems as much as is
common for the three-dimensional systems.

In (20) it is seen that the second-nearest neighbors are
not to be neglected. The hopping integrals are about 10%
of those for the nearest neighbors. Furthermore, in Sec.
IV we stated that the third-nearest-neighbor interactions
were important in explaining the variations in the gap for
cis-polyacetylene. Since the third-nearest-neighbor dis-
tance is about 3 A, ~e can estimate the corresponding
hopping integrals to be of the order of 0.3 eV.

From the first three values in (20), we estimate to and a
of (17) tobe
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E...=E +E (23)

For general nearest- and second-nearest-neighbor hop-
ping integrals a generalization of the method by Su,
Schrieffer, and Heeger gives

4E = ——(tp1+tp 1)E
«O, ito, -i

(tP, 1+tP —1)
(24)

E(t}being the elliptic integral. (Note that E is indepen-
dent of tp 2.) Furthermore,

E~ =4Ku o (25)

Different parameters have been reported by Mele and
Rice ' and Baeriswyl et al. They agree essentially with
each other and are tp ——3 eV, a=6.9 eV/A, and E =50
eV/A.

The total energy per CzH2 unit can be found from (19),
(15), and (18),

u„=(—1)"up+ C(0.5 —x)'n, (26)

as giving the positions of the carbon atoms. The form
(26) with C+0 corresponds to the geometries we have
considered better than with C =0, as assumed elsewhere.

E is a decreasing function of up, whereas E is an in-

creasing function of up. The sum of the two is, with use
of the parameters of SSH, found to have a minimum for
Op+0.

%ith the ~-electron hopping integrals obtained in the
preceding analysis, E changes by 0.11 eV when passing
from x =0.5 to x =0.0, but since the total energy de-

creases 0.24 eV for x changing from 0.5 to 0.2 (see Table
V and Fig. 6}, we have to conclude that the form {25}of
the tr contribution of the total energy is not correct:
E„, E—as a function of up will not give a parabola cen-
tered at up ——0. The conclusion is not changed by includ-

ing the different unit-cell lengths, i.e., by using

rel.
Etot
(eV)

0.3

20
EG
(eV)

1.5

0.2

0.1

0 0.01 002 003 0.04 0.05
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' 0 0.01 0.02 0.03 0.04 0.05
Up(A)
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l) z;(o)

(aV)

(c)
1.0

6z;{1t/v)
(eY}

05-

00 00

0 001 0,02 0.03 0.04 0.05
Up{A}

Tt;i

0 001 0.02 0.03 004 0.05
Up{A}

FIG. 6. Different quantities as a function of the dimerization parameter uo. (a) relative total energy in eV per C282 unit; (b) the
calculated gap in eV; (c) and (d) relative one-electron energy bands in eV at the zone center (c) and at the zone edge (d). In this figure
all levels have bow set to 0 for uo ——G. The optimized geometry corresponds to uo ——0.025 A.



MICHAEL SPRINGBORG 33

The total energies in Table III support this conclusion:
The energy difference between dimerized and undimerized
polyacetylene is larger than the 0.03 eV predicted by the
SSH Hamiltonian for almost all calculations.

On the other hand, we still believe that the SSH Hamil-
tonian can be used to describe trans-polyacetylene, but it
has to be interpreted differently. Dimerizing trons-
polyacetylene will, of course, increase the electron density
in the shorter bonds and decrease it in the longer bonds.
This effect is appropriately described by a tight-binding
Hamiltonian of the form. (16) [or (18) when more accuracy
is needed], where the creation and annihilation operators
are not restricted to m electrons any more but now create
or annihilate electron densities of both e and m types at
the same time. A repulsive interaction between the atoms
can, similarly, to lowest order, be written in the form (17).

This also means that the parameters for the "m" part
cannot be found from values of the energy gap and the n-
electron bandwidth. The parameters can only be found
from the total energy, e.g., by fitting the total energies ob-
tained in procedures similar to the present one.

That the o' electrons are also affected by the dimeriza-
tion can be seen in Table V and Fig. 6, where the values of
the bands at the zone center and zone edge are given. In
particular, one can notice that the sum of the one-electron
energies for the. occupied o bands is not constant. (The
calculations reported for x =0.50 were not performed for
x exactly equal to —,, causing the gapa at k =zulu seen in
the Table V.) The calculations of this section and those of
Sec. IV are not identical and the results differ slightly.
The differences can be taken as estimates of the uncertain-
ties of the method. In Table V we have also collected the
energy gaps calculated with the parameter-free method
and that obtained from (21). They differ fairly slightly.

Finally, the multipoles of the electron distribution in-
side the carbon atomic sphere (in those calculations the
sphere radii were chosen to be 1.260 a.u. for carbon and
0.795 a.u. for hydrogen) are similar to those of Table I.
The changes in qc, are most likely related to the changes
in the size of the unit cell. The near constancy of qc can
be interpreted as being related to the near independency of
the hydrogen-carbon bond on the dimerization. On the
other hand, the dimerization is directly connected to the
changes in qz, .

We will close this section by estimating some of the

equilibrium parameters. We find D i+,—D2, ——0.086 A,
or uo ——0.025 A. This corresponds to x =0.23 and to
bond lengths of 1."~" and 1.358 A, in good agreement
with the experimental values [1.46 and 1.35 A (Ref. 38),
1.44 and 1.36 A (Ref. 50)]. The gap is then calculated to
be 0.93 eV (quite underestimated compared with the ex-
perimental values of 1.4—1.8 eV) and the ionization po-
tential to be 5.84 eV (experimental value of 4.7 eV).

VII. CONCLUSION

The present analysis of the ground state of ideal
polyacetylene has split into two parts: A comparison of
the electronic distribution of five fixed structures of both
trans- and cis-polyacetylene, and an examination of the
dimerization of the trans isomers.

The one-electron energy bands for the trans and cis iso-
mers differed mainly in the position of an avoided cross-
ing: for the o2 and cri bands for trans-polyacetylene, and
for the cri and 04 bands for cis-polyacetylene. The elec-
trons were well localized near the nuclei, thereby justify-
ing making a single-polymer approximation. Not only
contour plots for the electron distribution but also the
multipoles of the electron densities inside the atomic
spheres were useful in analyzing the bonds.

Furthermore, for trans-polyacetylene it was found that
a dimerized geometry with lower symmetry was energeti-
cally favored when compared with the undimerized
geometry with higher symmetry. In describing the dimer-
ization of trans-polyacetylene, a model Hamiltonian con-
taining a repulsive and an attractive term like that of Su,
Schrieffer, and Hceger seems appropriate, but since both
cr and n electrons are responsible for the dimerization, the
parameters entering the model Hamiltonian can only be
found from values of integrated quantities like the total
energy and not from one-electron properties.

Finally, we showed that our method seems to be able to
pred'ict ground-state properties in good agreement with
experimental ones.
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