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X-ray refraction through a prism was recently revived as a technique for measuring the

anomalous x-ray scattering factor f', but deviations between theory and experiment were seen which

were accentuated above absorption edges. %e show these to arise from absorption effects on the an-

gle of refraction and derive an expression demonstrating that they can increase dramatically as the

angle of incidence approaches the critical angle. This refinement markedly improves agreement be-

tween theory and experiment. Further, we derive an expression for the profile of the refracted x-ray

beam, finding a Cauchy distribution (Lorentzian) and suggesting thereby a possible means to obtain

I. INTRODUCTION

A recent paper by Fontaine, Warburton, and Ludwig'
(FWL) showed that the refraction of x rays through the
corner of a GaAs prism could be employed effectively to
measure the real dispersion correction f' to the x-ray
atomic scattering factor f. Their error analysis suggested
that the technique could be both sufficiently accurate and
easy to use to become a more generally applicable method
for obtaining accurate f' values for use in anomalous
scattering experiments. In practice, ho~ever, an observa-
tion was made which F%L were unable to entirely ex-
plain. This was that, while there was good agreement
below the Ga edge between the prism f' values and f'
values computed by a Kramers-Kronig transformation of
f" data from an extended x-ray absorption fine structure
(EXAFS) type of experiments (hereafter denoted as KK f'
values), a significant deviation of about 0.5e was found
above the Ga edge. Near the As edge this deviation was
more extreme, being 1.9e below the As edge and 2.7e
above the edge. In both cases the prism values were more
negative and the deviation increased in crossing the ab-
sorption edge. Theoretical estimates of f' made using the
technique of Cromer and Liberman showed essentially
similar results.

Since the only experimental parameter changed in mak-
ing the measurement across the edge was the input photon
energy and since several points across the edge were taken
disjunctively, we have concluded that the F%'L analysis
was insufficiently accurate in its treatment of the infiu-
ence of absorption, and hence of the imaginary dispersion
correction f", on the angle of refraction. Because recent
work on x-ray reflection from multilayers has shown that
classical optical theory works very well in the x-ray re-
gime, provided that appropriate values of the optical con-
stants are employed, we applied this method to the present
problem. This treatment produces a concise relationship

between the angle of refraction and f" and shows that the
corrections involved can become quite large as the angle
of incidence approaches the critical angle 8, for total
external reflection. Including these correction terms, the
agreement between the prism and KK f' values is im-

proved, and a significant fraction of the deviation differ-
ences across the two absorption edges is removed, particu-
larly at the As edge. We further derive an expression for
the refracted beam profile, showing its dependence on the
f' and f" values and so suggesting an alternate technique
for their determination.

II. THEORY

A. Propagation through the prism

The physical situation is as shown in Fig. 1. An in-
cident plane wave falls on the prism's top surface at
glancing angle 8;. Entering the prism, it is refracted at
angle 8', ineasured to the top surface. Leaving the prism,
it is refracted again, emerging with angle 8" to the top

FIG. I. Schematic of the x-ray experiment. The beam im-
pinges on the prime at angle I9;, is refracted at complex angle 8',
and departs the prism at complex angle 8". The refracted beam
is measured externally at angle v.
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surface, which is parallel to the face normal, and making
the experimentally measurable angle v (unfortunately
called P by FWL. P should be reserved for the imaginary
part of the index of refraction) to the input beam of x
rays. The refractive index of the outside air (vacuum) is
unity, that of the material is n =1 a—i—P, a complex
number, where a and P are typically very small compared
to unity, usually of order 10 or less. Our treatment will
follow Stratton's, although that of Born and Wolf is
similar.

Applying Snell's law at the two interfaces, we have

cosH; =n cos8',

n sin8'=sin8" . (2)

Because cosH; is real and n complex, 8' must also be
complex, showing that in the medium the wave is inho-
mogeneous, meaning that its planes of constant amplitude
and constant phase are nonparallel. We can now solve
formally for sinH" using the relationship 1 =cos28'
+sin 8'. Thus

sinH" =(8; —2a —2i P) ' = (Hd —2i P) '~

where we have defined 8~=8; —2a, which is the differ-
ence between the squares of the angle of incidence and the
critical angle for total external reflection, 8, =2a.

Since sinH" is complex, we may set it equal to P+iy
and solve for P and y by equating real and imaginary
parts of

P'+2i A )—"=Hq 2—iP,
giving

y'=—Hg and ((y= —P.
These are solved by substituting for y and choosing the
sign of the root for P such that /=8& when P=O and the
sign of the root for y such that Py= —P as per Eq. (7).
Thus,

(1+4P'/8')' '+1

and

and

sinH" = (n ~ —cos28; )'~

(3)

(1+4P'/8')'" —1
y= —8d

2

and

cosH" =1+a —8; /2+i P (4)

cosH" =(1 n+co—s 8;)'i

showing that sin8", and thus 8", are clearly complex.
This implies that the wave departing the prism is inhomo-
geneous as well, even though it is propagating in a medi-
um with a real index of refraction. Figure 2 demonstrates
the meaning of this conclusion. Two rays, A-A" and
8-8", pass through the prism. Clearly ray 8 8" ha-s a
longer path length in the absorbing medium and so must
have a smaller amplitude when it emerges. Since the final
medium is nonabsorptive, neither ray can have a further
change in amplitude in its direction of propagation. Thus
amplitude decreases from A" to 8", showing that the em-
erging wave is indeed inhomogeneous with its planes of
constant amplitude orthogonal to its planes of constant
phase. We will demonstrate this mathematically shortly.

Next, to obtain explicit complex representations for
both cos8" and sinH", we will use the small angle expan-
sion cosH;=1 —8;/2, dropping a and P terms in n
Thus

Possessing these expressions for cosH" and sinH", we
can finally write an expression for the wave fields associ-
ated ~ith our inhomogeneous exit beam. This beam is
described by exp[i (k" r o.it—)], and the spatial term in the
exponent is

i k".r= i—(x cosH" +z sin8")
C

= ——I(xP+zy)+i [x(1+a—8;/2)+z(()]I, (9)

where we have used the x-z coordinate system shown in
Fig. 1. Planes of constant amplitude are given by the real
part of Eq. (9) (i.e., xP+zy =const) and planes of
constant phase are given by the imaginary part
xp +zP =const, defining p = 1+a —8; = 1 —8~/2 for
convenience. Our solutions for the planes are simplified
by noting that p »P and y »P.

The direction of propagation of the exit beam is found
as the normal to a typical plane of equal phase:
xp+zg= l. Shown in Fig. 3, this normal forms angle Ho

to the top of the prism, i.e., z=O. Notice that 80 is the

&p/ ) x

FIG. 2. Incoming x-ray beam with its planes of constant in-
tensity perpendicular to the direction of propagation. In the
outgoing beam they are parallel as a result of absorption inside
the prism.

FIG. 3. Planes of equal phase in the emerging x-ray beam, by
definition perpendicular to the direction of propagation at angle
80, which intercept the x and z axes as shown.
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real angle of emission and must be distinguished from 8",
the complex angle of emission, which is a mathematical
construct. The plane's x and z intercepts are 1/p and

1/P, respectively, found by setting z and x equal to 0 in
its defining equation. Since p &~/, we have

Hc =- tan8c —P/p -=P,
since the difference terms between p and unity are 0(tz)
and may be dropped. Thus we obtain the refined equation
equivalent to Eq. (2) of FWL:

1 + ( «+ 4P2/g4 )1/2

80—8g
2

where Hc is the angle of propagation of the beam coming
out of the prism.

We note that planes of constant intensity are found
similarly by reference to the plane xp+zy =1, whose nor-
mal is at angle g to the x=0 plane. The x and z inter-
cepts are 1/p and 1/y, respectively, so that

g=- tang =p/y,

and we may substitute for p from Eq. (7) to obtain

g = 41'/1'—= —4 = —~o

This demonstrates that the planes of constant intensity aie
i~deed orthogonal to the planes of constant phase, in
agreement with our intuitive picture. We can therefore
further conclude that the intensity profile of the emerging
radiation depends only on its projected path through the
prism corner.

FIG. 4. Schematic of the integration scheme for computing
the field QP, t} at remote location P, whose x and z coordinates
are L and H and which makes angle 8 to the x axis. A sur-
face integral is taken over the plane at 0+ and over a hemi-
sphere whose radius R approaches infinity. Shown is the contri-
bution via a typical surface element dz at position z of the re-
fracted wave field f,. The incident wave field rP; is ignored.

B. Propagation beyond the prism

1((P t) = f1 1 Bg
4~ s r gtt

—illa 1

Bn r

We will now consider the propagation of the x-ray
beam once it departs the prism corner. This radiation
source, as described by Eq. (9), is quite unusual, being
both nonuniform (decays exponentially in the z direction)
and spatially small. With typical estimates of a and p,
most of the observed radiation emerges from the upper
1000 A or less. Interference effects will therefore be im-
portant in determining the shape and possibly the direc-
tion of the observed beam.

This problem is one of relating electromagnetic fields to
their sources and is readily approached by the Kirchhoff
method of integration of the field equation. As Fig. 4
shows, we place the prism in the left half-plane and con-
sider propagation in the right half-plane, where we must
solve the homogeneous wave equation in an isotropic,
source-fr+ region of zero conductivity. Under these con-
ditions, if P is a scalar potential or field vector com-
ponent, then its value at point P and time t is given by

ar al(
ur Bn Bt

(14}

The terms in square brackets [ ] are retarded (i.e., func-
tions of t r/u), —u is the velocity of propagation (here
equal to c), and r is the vector from dS to the point P,
whose coordinants are L, and H, as indicated in Fig. 4.
The integral may be taken over any surface enclosing the
point P Knowing .the field emerging from the prism at
x=0, we choose S to be bounded by a plane at 0 + (infin-
itesimally close to x=O) and by a half-sphere of radius 8
centered on the prism. Letting R become infinite, the
fields and integral on this surface go to zero, leaving only
an integral on the 0+ plane.

Two fields penetrate the 0+ plane: the incident beam
tP; and the refracted beam g, . Assuming that these beams
are well separated in space, we neglect the former, setting
the surface integral on 0+ to zero for z & 0. Thus, from
Eq. (9) above, we may write

r

—N g2
p ~ c+ =exp — '(xp+z1'}—t x 1 —a —— +zp ict '—

C 2
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and

r = [L.'+(H —z)']'" . (16)

The partial derivatives in Eq. (14) are then easily written and substituted to obtain

[g]0+——exp —( z—y+i[zp c—t+ IL +(H —z) ]'~ ]}
C

(17a)

Btg co
g2

=—' —P+i 1 —a-
nn 0 c 2

'[Plo+ (17b)

(17c}

1 ~dz u. iI.2

f( p, t) = f [g]0+ ' p+—i
2A, o r 2n.r

(18)

Before proceeding, several simplifying approximations are appropriate. First, AL/2rrr is O(10 '
) and may be

neglected compared to the remaining terms. Second, since H/L is O(10 ) and z &&H over the range of appreciable

[p]0+ values, we have as a good approximation

L/R =-1 H /2L— (19}

So we have

1 ~dz 82 0
g(P, t) =

0 r [4]0+ P+i 1——a — +
2

(20)

L

We can now neglect terms like a, 8;/2, and H /2L compared to unity to get the relatively simple integral equation
4

p(P, t) =K [g]0+, where K =
r 2A,

(21)

Next we expand r to second order in z to obtain r =Ro —Hz/Ro+z /2R0, and then note that only the deviations of r
from Ro in the exponential will seriously influence the integral s value. Thus

T

CO N Hz z
P(P, t)=K' dzexp ——zy+i zP — +0 C Ro 280

(22)

where

K'=KR0 'exp[ito(R0/c —t)] .
If we consider the z term in the exponential, we see that it is very small and that we can make a small angle expansion
to first order:

l&Z . KZ
exp -=1+i

0 0
(23}

where we have replaced co/2c by n /A. and H/Ro by 8, the angle of measurement. Thus we finally obtain

= f dz exp [y+i(8 —P)] + f dzz expK' Ro, t C
Ill ~ 0 [y+& (8 —(()1

C
(24)

Both of these integrals are available in standard handbooks, so we are able to write
T

f(P, t) = 2' y+i (8 —P)
1+ [y+i(8. 4»]— (25)

The measured intensity is obtained by squaring f(P, t), so we thus obtain as our description for the diffracted beam

I(8 }=
(2nR0) y +(8 —(i))

2A,(8~ —P)A,

~Roly'+(8m —4')']' (26)
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where smaller terms have been dropped and P has been
neglected compared to unity in E'. The second bracketed
term arises entirely froin z in the expansion for r in Eq.
(20).

In broad terms, then, the diffracted beam is predicted
to have a Cauchy distribution whose mode is P, the direc-
tion of propagation of planes of equal phase of the emerg-
ing x-ray beam [see Eq. (10}],and whose FWHM is 2y,
the constant for the exponential decay versus depth of the
emerging x-ray beam [see Eq. (9)]. For fixed Ro and A, ,
the shape of this distribution is determined entirely by P
and y, the real and imaginary parts of sin8", the x-ray
beam's complex angle of emergence from the prism face.
The Cauchy distribution C(x), which is familiar to physi-
cists as the Lorentzian, is peculiar in that it does not pos-
sess a well-defined expected value [since the integral of
xC(x) behaves as log(x) as x goes to +oo and as
—log(x) as x goes to —00], but is well behaved in other
respects. The genesis of this Cauchy distribution lies ex-
plicitly in the decaying exponential nature of the emerging
beam, as opposed, for example, to its small size. As a
computational check, for example, we repeated our
derivation with a constant source of width 1/y, and
checked that I(8 ) displayed the multilobed diffraction
pattern typically observed from slits.

To test the validity of this treatment, we computed re-
fracted beam shapes at the five energies near the Ga edge
shown in Fig. 3 of FWL, using their reported f' and f"
values. We neglected the small bracketed correction tecum

in Eq. (26) and set the overall scale at each energy by
matching peak heights. In Figs. 5(a) and S(b) these calcu-
lations are compared to curves of FWL. The general
agreement is excellent, although a few small discrepancies
remain. The most obvious is that the real data appear to
sit on a small background which has not bo:n included in
the calculation. Less obvious, but harder to explain, is the
observation that the computed curves are noticeably nar-
rower than the real data for the two lower energies (about
25% narrower at 10345 eV}. Approximately half of the
discrepancy can be accounted for by convolving the
curves with the diffractometer 25-p exit slit of FWL. If
the slit used by FWL was actually wider than reported
(i.e., 50 /i) or slightly skewed, the computed and measured
curves would come into essentially exact agreement.

Finally, we can estimate the amount by which the small
correction term, introduced by z into Eq. (26), skews the
Cauchy distribution. In the absence of the shift, the dis-
tribution has a full width at half maximum (FWHM} de-
fined by 8 —P=+y. The FWHM is thus —2y. We
next ask how these points are moved as a result of the z
skewing. In doing so we can replace the correction term's
Cauchy denominator, which we expect to be small, by its
approximate value 2y . We thus require values of 8~ to
solve

2~~op
(28)

C. Solution for the anomalous scattering factor f '

Temporarily neglecting the small z error term between
the direction of our output beam and 8O ——P, as represent-
ed by Eq. (29), we can now solve for the anomalous
scattering factor f' in terms of our experimental parame-
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meaning that the two FWHM points are P+y+y5 and

P —y+y5. Thus the peak center has essentially shifted
(to smaller angles, since y is negative) by

b.80—— A—/(2, PRO
i y i

) .

27'.0
(27)

If we approximate 8~ —P=+y+y5, expand in small 5,
and drop second order terms, we find

QQ P ~ I

0.08 0.09 0.'t 0 0.11
1

0.12
v (degrees)

FIG. 5. Comparison between (a) five measured x-ray beam
profiles (Fig. 3 of FWI., replottcd) and (b) Cauchy profiles com-
puted using the f' and f" values of FWL at these energies.
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ters, starting from Eq. (11). First, we recall that f' is part
of the index of refraction term a, which is hidden in 8d.
Explicitly,

fects contribute an additional term to Eq. (34), reducing
the effective value of f' measured. This term, hf,', is
found from a first-order expansion of Eq. (31) as

8; —2a
1+ 1+

4~'
(82 2 )2

(3O)
bf,'= C—AQ/(2m. RO i y i

),
where we have replaced 8O by the measured value P.

(37)

or

a= —,
' [8;—80+P /8u] . (31)

III. DISCUSSION AND ANALYSIS

f'= (8,' 8('))+bf—,' —Z—T, (34)

where

(35)

is the correction term introduced by absorption effects. In
terms of the experimentally accessible angles 8; and v, this
gives

f'= —(28;v —v )+ —Zz .
C (f")'

2C(8; —v)
(36)

Repeating this analysis including the error term EOO

from Eq. (29) shows that the source shape interference ef-

The relationships between the optical constants a and P
and the anomalous scattering factors f' and f" are, as
shown by James

f'= Ca ZT a—nd f"=CP,

where

C=(2mmc )/(M, 2e ), (33)

in which all the terms have their usual meanings, includ-
ing N, the number of point groups (e.g., gallium atoms)
per unit volume, and ZT ——Zo, +Z~„ the total number of
electrons in the two atoms making up the point group. In
this notation, of course, f'=fo, +f'A„ the sum of the
anomalous scattering factors of the atoms in the point
group, and similarly with f". Substitution of Eqs. (31)
and (33) into (32) gives 6f,' = A(8; —2a, ) /(—4nRO f "),. (38)

showing that in our current material, GaAs, hf, ' will be
largest just below the Ga absorption edge. While bf,' will
be small in the present problem, it can potentially become
large when f" is very small, as in low-Z materials, for ex-
ample.

To illustrate these effects on the data of FWL, we
present values of bf,' and hf,' above and below both the
Ga and As edges. To clarify the comparison, the two
points at each edge were chosen with equal deflection an-
gles v (P in Figs. 4 and 5 of FWL). The resultant values
of f", 8;, 8O, f,', and bf,' are listed in the first half of
Table I. We see immediately that bf,' is much larger at
the As edge than at the Ga edge both because the f"
values are larger there and because the As measurement
was performed about three times closer to the critical an-

A. Features of the theory

Compared to the equation 2 of FWL, Eqs. (34) and (35)
demonstrate the nature of the absorption-dependent
correction term bf,', which varies as the square of the ab-
sorption f", and as the inverse square of 8o. This latter
term causes hf,' to become large as the incident beam ap-
proaches the critical angle 8„since, to first order, 8u
equals 8d, the difference between 8; and 8, =2a [see Eq.
(11)]. In the limit, as 8;=8„both higher-order correc-
tions and the square-root term in Eq. (11) prevent bf,'
from diverging. In practice, bf,' is usually less than 25%
off'.

The source shape correction term bf,' is also interesting
in that it becomes larger as the absorption term P (and f")
becomes smaller. For example, in the small f" limit

TABLE I. Values of correction terms to f' and sensitivities to error at four points above and below
the Ga and As absorption edges in the measurements of FWL.

Quantity

E (eV}f" (e )

0; (deg}
8;—8, (deg}
Oo {deg}
bf,' (e )

hf,' (e )

df'/d8 (e /deg)
Bf'/Bv (e /deg)
Bf'/88, (e /deg)
Bdf,'/880 (e /deg)

10338
1.2
0.298
0.069
0.191
0.009

—0.021
220
400

—520
0.1

10400
44

same
same
same

0.124
—0.005
same
same
same

1.3

As

11845
3.6
0.223
0.025
0.102
0.222

—0.002
350
300

—450
44

11875
7.0

same
same
same

0.84
—0.001
same
same
same

16.4
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gle. The source shape correction, df,', is largest below the
Ga edge, as predicted, but is always negligible compared
to the magnitudes off' being measured.

Also shown in Table I are estimates of the sensitivities
of f' to various sorts of measurement error, as discussed
in FWL. 8, is the experimentally determined zero of an-
gle. The last term is new, being the error in the correction
term which results from uncertainties in the measurement
of 8o and which is negligible in the present case. In fact,
the direct errors in f associated with uncertainties in 8
8„and v are two to three orders of magnitude larger and
still constitute the source of the major uncertainty in f'.

(a)

8. Effect on the data curves

%e shall now examine in detail the changes produced in
the f' curves of FWL by the inclusion of the absorption
term df,' from Eqs. (34) and (35). Figure 6(a) shows the
anomalous scattering factor f" near the Ga edge, as ob-
tained by FWL from EXAFS data, and the computed
correction term df,'. The dependence of df,' on f"
squared is most clearly seen at the white line on the ab-
sorption edge. Figure 6(b) shows the corresponding data
from the As edge, where the largest corrections are found,
in accordance with the numerical example of Sec. IIIA.
The maximum corrections found are over le and are
clearly nontrivial in nature.

Figures 7(a) and 7(b) show the corrected f' curves, to-
gether with the uncorrected data and KK f' estimates of
Figs. 6(a) and 6(b) of FWL. The changes produced at the
Ga edge are in the right direction but only 25—30% of
the magnitude required to bring the prism and KK f'
values into good agreement. The changes at the As edge
are much larger, but also insufficient to create agreement
with the KK curves. The inequality betwo:n the
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FIG. 6. Correction terms df,' and the f" values from which
they are derived at «',a) the Ga edge and I,'b) the As edge.
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FIG. 7. f' values at (a) the Ga edge and (b) the As edge. The
three curves shown are the KK f' values, f' values from the
prism experiment of F%'I, and these same values after correc-
tion by the df,' values of Fig. 6.
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discrepancies above and below the As edge have been sub-

stantially reduced, however. As was noted in FWL, a uni-

form discrepancy between prism and KK results is readily
explicable in terms of measurement errors in the fixed an-

gles 8; and H„so the reduction of that inequality is a sig-
nificant improvement. It is particularly interesting to
note that, if the As data are shifted uniformly upward to
superimpose the below-edge data with the KK data, then
the above-edge differences are nearly identical for both As
and Ga. This suggests that some further, absorption-
dependent mechanism may be operating which still
remains to be identified. The still sizable differences
remaining at the white lines may arise from the same
source but could also be due to monochromator energy
resolution differences between the EXAFS data used to
produce the KK f' values and the data of the experiment
of FWL.

D. Alternative approach to accurate f' values

a = —,
'

(8,' —P'+ y') (39)

or

A different approach to obtaining accurate f' values in
the presence of f" perturbations might be found in Eq.
(26) for the shape of the output beam, which is completely
determined by the values of only two constants, P and y,
for given wavelength A, and distance Ro. (To simplify the
discussion, we ignore the z and slit convolution terms. )

We previously used the exit beam only to obtain a value
for P, which is Ho. If, however, by curve fitting, both P
and y were determined, then we could solve Eq. (8) direct-

ly for

C. Experimental considerations for accurate f ' values

In selecting 8; for an experiment, the implications of
Eqs. (34) and (35) must be carefully considered if accurate
f' values are to be obtained. The choice will be decided
by balancing two factors. First, since both 8; and Ho have
experimental uncertainties, the maximum accuracy in a,
which varies as the difference of their squares, would nor-
mally be obtained when both are as small as possible.
This situation would occur as 8; approaches 8„the criti-
cal angle, and Ho goes to zero. Second, there is now also a
second factor to be considered, bf,', which varies inuersely
as 8& and becomes large in this case. Thus the value of 8;
which gives the minimum total error must depend upon
the accuracy with which f" is known or can be deter-
mined. A further consideration, of a practical nature, is
that as 8; becomes smaller, both a larger fraction of the
prism surface and a smaller depth at the edge are sam-
plai. Thus the requirements for surface and edge perfec-
tion increase as I9; decreases, another argument against ap-
proaching 8, too closely.

If accurate f" values are known, from an EXAFS ex-
periment or otherwise, then they can be used with Eq. (35)
to obtain accurate f' values as well If, howe. ver, f"
values are either unknown for the material composition of
interest or are only available from either free-atom or
theoretical curves which do not include edge related struc-
ture, then this procedure is less satisfactory. In particular,
both near edge and EXAFS modulations will be superim-
posed, squared, on the data. In this situation, one ap-
proach might be to employ measured f' values in an itera-
tive self-correction scheme, using KK transforms to gen-
erate succeeding f" approximations for insertion into Eq.
(35). The situation is much simpler if f' values are only
required below an absorption edge (e.g., for application in
anomalous scattering experiments). Here f" is a smoothly
varying function which can usually be computed with ac-
ceptable accuracy either from theory or tabulated absorp-
tion coefficients, thus allowing bf,' to also be determined
with acceptable accuracy, provided 80 is not too small. In
many practical cases, then, we can expect to increase the
accuracy of the f' determination without unduly increas-
ing the effort of performing it.

This approach would entail only a single measurement,
with automatic correction for exactly the right value of
f". Estimates of P and y obtained from Fig. 3 of FWL
suggest that y will typically be 10—15% of P and, there-

fore, a small correction term after the squares are taken.
We estimate that, for typical values for P and y, to obtain
f' accuracy of 0.le will require about 0.1% accuracy in

both 8; and P. The y correction term only exceeds O. le
for y greater than about 2.0X10 (i.e., above the Ga
edge). It is negligible for y values less than 1.0)&10
meaning that the unexplained differences between com-
puted and observed curve widths (see Sec. IIB) seen for
smaller y values will not be significant. Whether (r} and y
can indeed be extracted by curve fitting routines from real
data with sufficient accuracy to make such an approach
successful is a question which we shall address in another
paper.

IV. CONCLUSIONS

The refraction of x-rays through a prism was analyzed
in detail and expressions were derived both for the depen-
dence of angle of refraction on absorption and for the pro-
file of the refracted beam. The angle of refraction was
found to include a term bf,' which varies as the square of
the anomalous scattering factor f" and as the inverse
square of the real angle of emergence Ho. This correction
term can become significant above absorption edges and
when the incidence angle is close to the critical angle,
making 8& sinall. The effect is small for the Ga data of
FWL, being only about —,

' e above the Ga E edge, but
was substantial above the As edge, approaching 1 e . The
remaining inexplicable discrepancies between prism f'
values and KK transformed EXAFS f' values are now
comparable at both Cxa and As edges and are presumed to
arise from some as yet unidentified absorption mecha-
nism.

The x-ray beam refracted by the prism was found to
have a Cauchy profile described by two parameters, P and

y, the real and imaginary parts of the complex sine of the
emergent be un angle. Recognizing that f'

may be
evaluated directly from P and y, we suggested a technique
for extracting f' values from curve fits to measured beam
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profiles. If implementable, it would avoid those difficul-
ties in making the bf,' correction which arise from the
need for an accurate knowledge of f".
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