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Using perturbational, variational, and Feynman-path-integral techniques, we have calculated
shifts in impurity binding energies of shallow hydrogenic donor levels in two-dimensional semicon-

ductor systems due to the electron —LO-phonon interaction. %e find that polaron shifts in donor

energy levels are of the order of 1—10% in weakly polar Al„Gal „As-GaAs quantum wells, and
10—20% in a more polar CdTe-Hg Te system. %e find Lamb-shift corrections due to the electron-

phonon interaction to be negligibly small. Different theoretical techniques and their quantitative
implications for experimental measurements are critically discussed.

I. INTRODUCTION

A number of theoretical' and experimental ' papers
in recent literature have discussed the issue of the "hydro-
genic" binding of an electron to a donor impurity in a
semiconductor quantum well or heterostructure. This
problem is the two-dimensional (2D) analog of the well-
studied shallow impurity-bound state problem in bulk
thro:-dimensional systems. Existing theoretical work has
so far considered~ effects of impurity position in the well,
well size, finite potential barrier at the interface, and finite
barrier size on the shallow-donor-level energies. Only
Ga, ,A1„As-GaAs-Ga, ,Al„As quantum-well struc-
tures have been experimentally (and theoretically) studied
so far. There is, in general, fairly good agreement be-
tween theory and experiment for a GaAs quantum well-
the disagreement of about 5% (calculated energies being
slightly deeper than the experimentally measured binding
energies} can, perhaps, be explained by uncertainties in the
precise knowledge of various parameters (e.g., size of the
well, position of the dopant atom, band-gap discontinuity)
entering the calculation.

In this paper, we report on our calculation of the effect
of the electron-phonon interaction on the binding energy
of shallow hydrogenic donor levels in two-dimensional
semiconductor structures. Since the III-V (or the II-VI)
materials used in producing typical quantum-well struc-
tures are polar in nature, an electron, weakly bound to a
hydrogenic donor impurity in this system, interacts with
the LO phonons of the host semiconductor via the well-
kno~n long-range polar Frohlich interaction, and this in-
teraction tends to increase the donor binding energies.
Thus the impurity-bound electron is really a 2D Friihlich
polaron, which carries with itself the lattice polarization
due to the dipolar interaction between the lattice ions and
the electron. It turns out that since GaAs is a weakly po-
lar material (with Frohlich coupling constant a-0.07),
the correction to the impurity binding energy, due to the
electron —LO-phonon interaction, is small ( & 10%%uo) for the
well-studied GaAs-Al„Gal „As quantum-well structure.

However, the effect we are discussing (namely, the renor-
malization of the hydrogenic binding energy in a semicon-
ductor by the electron —LO-phonon interaction} is general
and, being a lattice effect, is always present in a system.
In more polar materials like HgTe-CdTe quantum wells
or he'terostructures, the correction, due to the Frohlich in-
teraction, could be of substantive quantitative signifi-
cance. The corresponding effect has been studied in bulk
three-dimensional systems by a number of authors.
We note that the phonon-interaction effect considered in
this paper increases the donor binding energy and, nomi-
nally, worsens the slight disagreement between theory and
experiment in GaAs quantum wells. However, the
disagreement is still within the experimental uncertainty
in our knowledge of material parameters in GaAs quan-
tum wells. Thus the direct experimental consequence of
our theoretical considerations remains unclear at the
present time.

Hi = gb~bk

and

1/2

k
(4)

Ho describes the one-electron Hatniltonian for the bound
electron with its kinetic energy p and the attractive
Coulombic potential term —P /r, where the impurity is

II. THEORY AND RESULTS

The basic Hamiltonian for the single conduction-band
electron coupled to a Coulombic impurity and interacting
with the LO-phonon field can be written within the
effective-mass approximation as

H =Ho+Hl+H2,
where
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supposed to be at the origin and P =e /eo, eo being the
static background dielectric constant. We neglect any im-
age effect arising from the small difference in background
dielectric constants of the two materials (e.g., GaAs and
Al, Gai, As), and take eo to correspond to the well ma-
terial (e.g., GaAs}. We choose units such that
2m =A=coL ——1, where m is the electron band mass
(without polaronic renormalization), and coio is the LO-
phonon frequency. Hi is the kinetic energy of the LO
phonons, which are assumed to be dispersionless Einstein
oscillators. H2 is the long-range Frohlich interaction be-
tween the electron and the LO-phonon field in two dimen-
sions with k as a two-dimensional wave vector. The
Hamiltonian, as written in Eqs. (1}—(4}, is valid only in
the strictly 2D limit for zero quantum-well thickness.
The modifications necessary for the actual quasi-2D sys-
tem will be discussed later in the papex. In our units P is
the 2D Rydberg (i.e., the magnitude of the ls ground-
state energy of the 2D hydrogen atom). In Eq. (4), the
Frohlich coupling constant a is the effective dimension-
less electron-phonon interaction parameter.

No exact solution for the total Hamiltonian defined by
Eq. (1) is known. For small a (and the III-V and II-VI
systems we are interested in are weak-coupling systems
with a & 1), one can treat the electron-phonon interaction
term H2 [given by Eq. (4)] as a perturbation to the rest of
the Hamiltonian (Ho+Hi). The ground-state energy
shift in the leading-order perturbation theory' is given by

E E
l&n IH210)l'

(5)

where the sum over the intermediate states n must cover
all the hydrogenic states (including the continuum) and
Eo is the unperturbed ground-state energy. Substituting
Eq. (4} in Eq. (5) we get

( ~~ (n [e'"'[0)(0~e '"'(n)
k(Eo —E.—1)

There are a number of ways of evaluating the expression
on the right-hand side of Eq. (6). We follow Bajaj' and
write Eq. (6}approximately as

bE=(2na) g z
l&0lq)l'

(7)
qj, k( —ki+2k q —1)

where
~ q) is the plane-wave state with wave vector q

(i.e., (r
~ q) =e'q') and

~
0) is the ground state of the 2D

hydrogen atom. The approximation given by Eq. (7) for
the energy shift is equivalent to summing over all the
plane-wave states q, weighting each term by the probabih-
ty I (0

~ q) I
of finding the particular plane wave in the

unperturbed ground-state wave function
~
0) .

In Fig. I, we show the calculated ~& as a function of
the unperturbed ground-state energy Eo=P (the unit of
energy is coi o) for a strictly 2D GaAs quantum well (for
GaAs, a=0.07). Results for other systems are obtained
trivially by scaling with the proper Frohlich coupling con-
stants (a=0.03, 0.07, and 0.4 for InSb, GaAs, and CdTe,
respectively).

One can also obtain " the polaronic shift to the
bound-state energy by using a simple effective-mass argu-

ment which gives

EE=P —1 +sr, (8)

z mHo=
m&

(10)

This effective-mass approximation [Eq. (8) or (10)] is in-
tuitively expected to work well for small a and for small

P (i.e., P « ficoio), since in this weak-binding limit one
can think of the electron dressed with the phonon cloud to
be adiabatically bound to the Coulombic impurity
center. ' We note that the two curves in Fig. 1 are in fact
very close to each other for small P~.

For larger P~ (with small a), Eq. (7) is not a valid ap-
proximation since, for tightly bound electrons, the plane-
wave summation becomes increasingly meaningless. Thus
both the results depicted in Fig. 1 fail as P becomes
larger. However, an exact calculation" of Eq. (6) in three
dimensions shows that the effective-mass approximation
[i.e., Eq. (8)] has a much larger regime of validity than the
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FIG. 1. Ground-state binding-energy shift Et' shown as a
function of the 2D Rydberg P2 for the perturbation theory {solid
line) and the effective-mass approximation (dashed line). We
take the Frohhch coupling constant a=0.07 (GaAs} and the re-
sults are for the strict 20 limit (the unit of energy is the LO-
phonon energy Aco~o }.

where m& is the renormahzed polaronic mass of the free
polaron (with m as the bare band mass). In Eq. (8), e~ is
the bound-state energy of a free polaron which for a 2D
system is given' by e~=naj2. F.or 2D systems, it has
been shown' that mz

——(1+mal8)m, and therefore,
within the effective-mass (strictly) 2D approximation, we
get

p2
'$7a ira
8 2

The result of Eq. (9) [which is linear in both Pi and a] is
shown in Fig. 1 as the dashed line. The rationale behind
the simple effective-mass approximation defined by Eq.
(8) is that in the "leading-order" theory, the "bound"-
polaron problem is equivalent to a "free" polaron (with
mass mz) bound to a Coulombic impurity center. Thus
the effect of the perturbation Hi on the Hamiltonian Ho
is approximated by changing Ho to Ho, where Ho has the
bare electron mass m replaced by the polaron mass m~:
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approximate perturbative result of Eq. (7). We contend
that the same is true' in two-dimensional systems (in
fact, arguments leading" to this conclusion can be shown
to be equally valid in two dimensions). Therefore, we take
the effective-mass result (the dashed line in Fig. 1) to be
the best perturbative result (in the small-a limit} for a/1

values of P (except at resonances of energy E„such that
E„Eo—is a multiple of ficoLo, a situation not considered
in this paper). We also conclude from Fig. 1 that the ap-
proximate result defined by Eq. (7) is valid for Pi&0.4.
In actual systems of interest, the polaronic corrections to
the ground-state binding energy (according to Fig. 1) are
given by EEIAcoLo ——0.13 (GaAs), 1.0 (CdTe), and 0.05
(InSb). This translates into a relative shift of the ground-
state binding energy b,EIP by 21%, 40%, and 42%,
respectively, for GaAs (P =0.61), CdTe (P =2.47), and
InSb (P =0.12). These large calculated polaronic shifts
of ground-state donor level energies in 2D systems are,
however, misleading, since the calculated shift includes
the polaronic binding energy, ez (tr/——2)a, which (being
the shift in the nominal conduction-band edge) cannot be
observed experimentally and, therefore, should be sub-
tracted out from the theoretical result. '5 By doing that,
we get an "observable" correction 4&& due to
electron —I.O-phonon interaction in the donor-level
ground-state energy of a 2D system given by

4E~ =hE —e~ = P'—=
8

m& —m bm&P= P . (11)
m m

Calculated values of EE&/13 for GaAs-, CdTe-, and
InSb-based 2D systems are 3%, 16%, and 1%, respective-
ly.

All our discussions so far have been based on strictly
2D systems with zero quantum-well width. Generahza-
tion to a finite-width system is easily done within the
effective-mass approach [Eq. (11}].In an earlier paper, '

we have reported on our calculation of the polaronic ef-
fective mass in realistic 2D systems. From Eq. (11), we
conclude that b E~ IPi =km~ Im in the leading-order
theory. In Fig. 2 we show our calculated b,mzlma for a
finite-width quantum well syst-em as a function of the well
width a (obv'iously the result, ' being leading order in a, is
valid only for a weak-coupling electron-phonon system).
The result interpolates smoothly between the strictly 2D
result' bm~/ma=m/g, and the well-known 3D result
bm~/ma= —,

' as the well thickness increases from a=0
to large values of a. It should be noted that these calcula-
tions assumed an infinite square-weil potential which can-
not accurately describe very narrow quantum wells.
When the subband energy becomes appreciable compared
to the real well depths (below about 30 A), other tech-
niques are needed. From Fig. 2, we can obtain the pola-
ronic shift of the donor-level ground-state energy of a
quantum well of arbitrary thickness by using the formula
bE&IP =5m~/m =(hmz lam)a For exa.mple, in a
GaAs quantum-well system with a=100 A, we get a po-
laronic shift of 1.6%, which is much smaller than the
strictly 2D result of about 3%%uo. Similarly, in a CdTe
quantum well with a=100 A, we get &Fz/P =10%.
Figure 2 is the most important result of our paper because
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FIG. 2. The polaronic effective-mass correction km~ in units
of am (where m is the band mass) is shown as a function of the
quantum-well width (a). The result gives directly the effective
binding-energy shift EE~/f3'={A,m~/am)a [see Eq. {11)]due to
the electron —LO-phonon interaction.
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FIG. 3. Ground-state binding-energy shift hE shown as a
function of 2D Rydberg Pi {for a=O.Q7) for three different ap-
proximations: (1) Coulombic variational calculation; (2) Gauss-
ian variational calculation; (3) Feynman-path-integral calcula-
tion. The unit of energy is the LO-phonon energy.

it enables us to obtain directly the polaronic correction to
binding energies in various realistic quantum-well struc-
tures without actually worrying about the details of the
impurity-bound state calculation in the finite-size quan-
tum wells. Our results should be approximately valid for
all the known III-V and II-VI quasi-20 structures.

Since our systems of interest are weak-coupling (a & 1)
polar semiconductors, the above results based on perturba-
tion theory suffice for our purpose. For larger a (&1),
however, perturbation theory is not expected to be very
good and we have carried out variational and Feynman-
path-integral calculations of the binding-energy shift.
The variational calculations are expected to be well valid
for larger P (as well as for larger a} where the electron is
tightly bound to the impurity. The Feynman-path-
integral calculation is expected to be fairly well valid for
all a. In Fig. 3, we show our calculated shifts &F-/ci)i o to
the ground-state donor-level energy as a function of the
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unperturbed binding energy p in a strictly 2D system due
to three different theories: Curves 1 and 2 are both varia-
tional results calculated with Coulombic (exponential} and
Gaussian variational wave functions, respectively, whereas
curve 3 is the result of a Feynman calculation. All the re-
sults in Fig. 3 are for a fixed a (=0.07) corresponding to
GaAs heterostructures. The variational calculations are
standard and use a linearly shifted phonon wave func-
tion,

l.25
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and a Coulombic (curve 1) or a Gaussian (curve 2) elec-
tronic wave function. The total energy is then minimized
variationally and the calculation for the bound polaron
problem follows rather closely our earlier work on the free
2D polaron. ' In this case,

FIG. 4. Ground-state binding-energy shift A,E shown as a
function of the Frohlich coupling constant a using the
Feynman-path-integral technique for (1) p~ =2.47 (Hg Te-CdTe),
(2) P =0.61 (GaAs), (3) P =0.12 (InSb). The unit of energy is
the LO-phonon energy.

(12)

where
~
4) is the total ground-state wave function of the

system. This approximation method is found to be better
for the bound-polaron problem than the free-polaron'7
case for small a since the binding makes the localized
wave function ~%') a good approximation for the elec-
tronic wave function. For p2-+ao, curve 1, based on a
Coulombic wave function, gives the best result, whereas
the free-polaron limit (P ~0) is not correctly reproduced
in either of the variational theories, since these are based
on bound-state wave functions, whereas in the p ~0 limit
the polaron is free. We should point out that the varia-
tional parameter in these calculations is P which is basi-
cally the effective 2D-Bohr radius in polaron length units.
Also, the Gaussian variational calculation is better for
larger a (and, smaller P), whereas the Coulombic calcula-
tion is better for larger p (and smaller a}. In the limit of
small a and P, both the variational calculations fail since
in that limit (a,p~O), the polaron is basically free.

The path-integral calculation (curve 3 in Fig. 3) follows
standard techmques and smoothly interpolates between
the weak-coupling perturbative results at small P and the
strong-coupling variational results at large P. A major
problem with the path-integral result (and this applies to
the Gaussian variational result as well} is that the a-+0
(or, equivalently, p ~ 00 ) limit is wrong since it is based
on a 2D Gaussian hydrogen atom with ground-state ener-

gy Eo ——n.p2/4, rather than pi, which is the exact result.
Thus the binding energy based on the Feynman (or, the
Gaussian variational calculation) is wrong by 20% in the
weak-coupling (a~O} limit. This problem can be fixed
by using a Coulombic Feynman-path-integral formalism.
We are, however, interested in the binding-energy shift
due to the polar interaction and, therefore, the results
presented here for hE measure the shift by defining
hE =E(a)—E(a=O), with E(a) and E(0) calculated
urithin the same theory. Thus the shifts bR' for curves 2
and 3 in Fig. 3 are measured with respect to the Gaussian
approximation to the ground state of the 2D hydrogen
atom. A comparison of the path integral results with the
perturbative results for sma/i a and p shows that the
values of && defined this way are quite good. In Fig. 4

(solid curve in Fig. 5), or (13)

E =[E„(a,P) —E„(a,P)]

—[E»(a=O,P) —Ei,(a =0,P) ]

we show the binding-energy shift b,E as a function of the
Frohlich coupling constant a for three different values of
the unperturbed binding energy P =2.47 (CdTe), 0.61
(GaAs); and 0.12 (InSb). Results are based on the
Feynman-path-integral calculation and, for these values of
a and Pi, perturbative results of Fig. 1 are almost the
same. As stated earlier, we get polaron shifts EE/p of
the order of 20% for GaAs (a=0.07) to 39% and 42%
for CdTe (a=0.4) and InSb (a=0.03), respectively.
When corrected for the shift in the band edge of the free
polaron {as explained earlier}, we again get 3% and 16%
observable shifts in the ground-state energies of 2D hy-
drogen atoms in GaAs and CdTe, respectively.

So far we have only discussed the ground-state energy
shift due to the Frohlich interaction. One expects some
shift in the excited-state energies as well, and, consequent-
ly, transition energies will be modified due to the
electron-phonon interaction. Since transition energies can
be directly measured spectroscopically, 's it is of some in-
terest to obtain the polaron correction to the unperturbed
energy-level differences. We show these results in Fig. 5.
Using the perturbation theory described in the beginning
of this paper, we have carried out a calculation of the po-
laron corrections to the 2s and 2p levels of the 2D hydro-
gen atom in addition to the ls level that we have
described above (Figs. 1—4) in detail.

In Fig. 5, we show our calculated corrections to the
low-lying excitation energies for donor levels 2s and 2p,
compared with the ground ls level of a strictly 2D hydro-
gen atom. The solid line shows the polaronic correction
to the s-level transition energy, whereas the dashed line
shows the corresponding p-level result. %'e calculate E by
perturbation theory where

E =[Ei,(a,P) —Ei,(a,P)]

—[Ei,(a=0,P) —Ei,(a =O,P))
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FIG. 5. Phonon-induced shifts in the low-lying donor-level
excitation energies are shown as a function of the 2D Rydberg

P (for a=0.07). Results for the s transition (Ei;E~,) and the

p transition (E2~-E&, ) are shown, respectively, by the solid and
the dashed lines within the perturbation-theoretic calculation.
The unit of energy is the LO-phonon energy. The difference be-
tween the sohd and the dashed line in the figure is a measure of
the phonon-induced Lamb shift in a two-dimensional system.

(dashed curve in Fig. 5). We emphasize that the perturba-
tive results presented in Fig. 5 can be trusted only for
p (0.4 (as was discussed earlier). We should point out
that the unperturbed result for the excitation energy be-
tween the Is and Zs (or 2p) level is 8p /9 in our units.

Simple effective-mass arguments give

('pi) (14)

and this result is independent of the azimuthal quantum
number (i.e., the s and the p levels are shifted equally
within the effective-mass theory). In the strictly 2D hmit
mz/m =m'a/8, and hence E2 Ei ——,' P (ma—)/8,—which is
approximately consistent with the results presented in Fig.
5. For a finite-size quasi-2D system, we conclude from
Fig. 2 and Eq. (14) that polaronic corrections to transition
energies will be of the order of 1—3% in the GaAs system
and 10—20% in the CdTe system.

One very important aspect of Fig. 5 is that the small
difference between the solid and the dashed lines is a mea-
sure of the phonon-induced Lamb shift in the 2D hydro-
gen atom. The accidental degeneracy between s and p lev-
els in the unperturbed situation is lifted by the electron-
phonon interaction, and the splitting between the two
curves in Fig. 5 is a measure of this effect. This is the
solid-state analog of the well-known Lamb shift effect in
quantum electrodynamics. We conclude from Fig. 5 that
Lamb shift for realistic systems is extremely small (less
than 1% of the binding energies). We also point out that
the effective-mass theory, while predicting fairly accurate
values for the ground-state energy shift (Fig. 1), fails to
give any Lamb shift (which is a higher-order effect) at all.

Finally, within the Feynman-path-integral technique,
we investigate whether a 2D bound polaron exhibits a
sharp self-trapping transition' as a function of the cou-

-20
0 IO

FIG. 6. Ground-state binding energy of a bound 2D polaron
is shown as a function of the electron-phonon coupling a for a
fixed va1ue of the unperturbed Rydberg (P =1). The calcula-
tion utilizes the Feynman-path-integral technique. The energy
unit is the LO-phonon energy.

III. CONCLUSION

In conclusion, we have calculated the electron —LO-
phonon-interaction-induced corrections to the donor-level
binding energies in two-dimensional semiconductor quan-
tum wells. We find that the electron-phonon interaction
increases the binding energy and the calculated shift in
GaAs heterostructure is only about 1—3% (depending on
the quantum-well width). This is not yet an experimental-
ly observable effect, since some of the experimental pa-
rameters are not known to better than 5%. On the other
hand, in more polar materials (e.g., CdTe) the correction
could be of the order of 10—20%, which should be exper-
imentally significant once experimental results on more
polar heterostructures are available. We have also calcu-
lated the Lamb shifts due to electron-phonon interaction
in these systems and find it to be negligibly small (less
than 1% of the binding energies). Within a Feynman-
path-integral calculation, we have also investigated the
possibility of a sharp self-trapping transition in a bound
2D Frohlich polaron. Our conclusion is that there is no
such self-trapping transition for the long-range polar in-
teraction.
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pling constant a. In Fig. 6 we show the calculated
ground-state binding energy of a 2D bound polaron as a
function of a and for a fixed value of p=1. Since the en-

ergy is a smooth function of a (without any cusp), we
conclude that there is no self-trapping transition' for the
lang-range polar interaction in a 2D impurity-bound elec-
tron. This is in agreement with our earlier work. '
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