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This is the second of a two-paper series in which we present a complete k p theory of semicon-
ductor superlattices. In the first paper, the formal theoretical results are presented. Here, the nu-
merical implementation of these results is described and they are used to investigate the electronic
structure of Ga~, ln„As-AI~ «InsAs superlattices grown along the [1001 direction. Three alloy
composition pairs are considered: a lattice-matched case (x =0.53, y =0.52), a case where the Ga-
containing layers are in biaxial tension with a l%%uo lattice mismatch {x=0.53, y =0.67) and a case
where the Ga-containing layers are in biaxial compression with a 1% lattice mismatch (x =0.53,
y =0.37). Our results for the superlattice energy band gap of the lattice-matched system are in good
agreement with available experimental results. Calculations of subband energy dispersion for super-
lattice wave vectors both parallel and perpendicular to the growth axis are performed. These calcu-
lations show band-splitting and -mixing features not embodied within current envelope-function
models which do not correctly describe the superlattice symmetry. However, these features are
present in tight-binding models which do properly account for the superlattice symmetry. The ori-
gin of these band splitting and mixing features in the present k.p theory is discussed.

I. INTRODUCTION

The recent technical achievement of precisely con-
trolled epitaxial-growth techniques has motivated detailed
investigations of the electronic properties of layered struc-
tures formed by the alternating deposition of approxi-
mately lattice-matched semiconductors. ' The inherent
flexibility at tailoring the electronic band structure of
these semiconductor superlattices according to controlled
variations in the growth parameters is enhanced relative
to that afforded by alloying. In addition to this tunability
of the electronic band structure, the emergence of novel
electronic and optical properties has led to intensive
research activities focused on the potential use of such
systems in various technological areas: semiconductor
lasers, detectors, new transistor design, ' etc.

The present study is concerned with the application of a
new k p theory of the electronic structure of semiconduc-
tor superlattices described in Ref. 6 (hereafter referred to
as paper I). For illustrative purposes, we consider
Ga& zInzAs-Al& yInyAs superlattices grown along the
[100] crystallographic axis. The motivation for studying
this system lies in its potential application in the field of
optical communications. Moreover, Ga& „InzAs-
Al } y Iny As superlattices are currently being epitaxially
grown on InP[100] substrates for an alloy composition
which exhibits lattice matching with this substrate, i.e.,
x=0.53 and y =0.52. ' Thus, an opportunity exists for
comparing our calculations with experimental measure-
ments of parameters characterizing the electronic band
structure of this system.

A description of the superlattice wave function is for-

mulated in terms of a linear combination of propagating
and evanescent bulk Bloch states of the constituent semi-
conductors. These bulk Bloch states are associated with
complex values of the component of the crystal wave vec-
tor parallel to the superlattice growth axis. A single ex-
pansion set of zone-center basis functions, derived from a
reference pseudopotential Hamiltonian, is used to describe
the bulk Bloch states of the constituent semiconductors.
Since the pseudopotentials associated with the constituent
semiconductors are different, the zone-center eigenstates
of the two materials are not identical and are therefore
described by different linear combinations of the basis
functions forming the expansion set. In previous models
based on the k p formalism, ' ' the zone-center energy
eigenstates of the two constituent materials were assumed
to be the same. This assumption builds more symmetry
into the model than the physical system actually has. As
a result, energy band splitting and crossing features are
not properly described. In our theory, the superlattice
symmetry is correctly accounted for. Moreover, good
correspondence is found between our results and experi-
ments performed on Gai «In„As-Alt sin„As superlat-
tices.

For alloy compositions such that only approximate lat-
tice matching at the superlattice interfaces is realized, the
effects of the resulting internal strain on the superlattice
electronic band structure are also investigated. This is ac-
complished by extending our model to encompass a
description of the bulk band structure of each constituent
seiniconductor under the influence of a lattice-mismatch-
induced internal strain.

The paper is organized as follows: In Sec. II we
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describe the numerical implementation of the general k p
theory described in paper I. Detailed numerical calcula-
tions for Gai „In„As-Ali „In~As superlattices are
presented in Sec. III and compared with available experi-

mental data. We conclude with a synopsis in Sec. IV.

II. ELECTRONIC-STRUCTURE CALCULATION

The purpose of this section is to indicate the computa-
tional procedure used for the calculation of the electronic
structure of semiconductor superlattices within the frame-

work of the k p theory discussed in paper I. We proceed
by first describing the empirical pseudopotential model
which serves as the basis for the calculation of the bulk
electronic structure of the constituent semiconductors.

TABLE I. Symmetric and antisymmetric empirical pseudo-

potential form factors. V~{6) and V"{6), respectively, for

GaAs, AlAs, and InAs. Energy units are eV and the modulus

of the reciprocal-lattice vector, 6:—
~
G ~, is in units of 2sr/ao,

where ao is the bulk lattice constant and is also indicated for

GaAs, AlAs, and InAs.

InAs

We then examine how the bulk k p Hamiltonian of each
semiconductor is obtained from this pseudopotential
description. We give the empirical parameters used in the
calculation and describe propagating and evanescent bulk
Bloch solutions for fixed energy and component of the
wave vector parallel to the interface, k~~. Methods to
solve the superlattice eigenvalue problem are then present-
txl.

The single basis set used to describe cell-periodic func-
tions' of each semiconductor is derived from a reference
pseudopotential Hamiltonian constructed by averaging the
pseudopotentials of the constituent materials [Eq. (1) of
paper I]. The empirical pseudopotential approach of Ref.
18 is used. In the present application, we describe the
bulk electronic structure of the alloys Ga& „In„As and
Al& ~ln„As. We use a virtual-crystal approximation and
perform the following weighted average of the pseudopo-
tential form factors:

V'"(G)=
I ( [(1—x)Q(A') Vg"(G)

1

Q(A I,B„)

+xQ(8') V,'"(G)],

where A—:GaAs, 8'=InAs for the alloy Ga& In„As,
and A =—A1As, 8 —=InAs for the alloy Al~ In As. In
Eq. (1), the terms Q(&), Q(8), and Q(A

& „8 ) represent
the volumes of the unit cell of semiconductors A, B, and
of the alloy && „8„,respectively. Empirical pseudopo-
tential form factors which provide a good description of
the bulk electronic band structure of GaAs, A1As, and
InAs are indicated in Table I. These form factors are ex-
tracted from Refs. 18 and 20 and are modified by varying
the symmetric form factor Vs(G =v 11) to yield good
agrcenent with low-temperature direct-energy-band-gap
values. We use a set of 113 plane waves in the expansion

TABLE II. Numerical values {in Rydberg atomic units) of various matrix elements used in the

evaluation of the bulk Hamiltonian and current-density matrices for Ga~ „In„As-A1~ ~In„As superlat-

tices. The matrix elements are defined in Appendix I of paper I and are evaluated using the zone-center

energy eigenstates and eigenvalues of the reference Hamiltonia. Energy band gaps are expressed in eV.
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for the cell-periodic basis functions [Eq. (2) of paper I).
The ceil-periodic functions are taken to be real, orthonor-
mal, and to transform according to standard irreducible-
representation conventions.

From the zone-center energy eigenvalues and eigenvec-
tors, the k p momentum matrix elements, as defined in
Appendixes A and 8 of paper I, are calculated. For this
calculation we retain the 27 lowest-energy zone-center
eigenstates. The I ~5 valence-band states and the I ~

conduction-band state are combined with a spinor and
treated explicitly. Moreover, the 23 zone-center states
nearest in energy are included in I.owdin perturbation
theory and are used to calculate the k p momentum
matrix elements. Results applicable to the system
Gai In, As-Ali «In~As are shown in Table II. We ex-
plicitly consider three alloy composition pairs (x,y) for
which the constituent alloys have a direct energy gap
occurring at the center of the bulk Brillouin zone. In pa-
per I, 16- and 12-band superlattice models are described.
The 12-band model is obtained by setting the second-order
matrix elements A' and L' equal to —1 a.u. in Table II.

Empirical parameters describing the stress Hamiltoni-
ani (deformation-potential constants and elastic con-
stants) and the spin-orbit Hamiltonian are listed in Table
III. The deformation potentials and elastic constants of
A1As are unknown and we have set them equal to GaAs
values. The virtual-crystal approximation is used to ob-
tain the deformation potentials, elastic constants, spin-
orbit splittings, and lattice constants for the alloys from a
knowledge of the corresponding quantities in GaAs,
A1As, and InAs.

The energy lineup (energy band offset} constitutes
an empirical input to our model and is extracted from
recent current-voltage —profiling measurements on
Gai „In,As-Ali „In~As heterojunctions' at the lattice-
matched alloy composition, x =0.53 and y =0.52. This
work shows that the ratio of the conduction-band offset
(b Eg ) to the difference in band gap between
Gap 471np 53As and Alp 4sIllp g2As (&E& ) is of the order of
0.71+0.07. For the present purposes, a value of
AE„=b,Es —&R, =0.315h.hs was adopted for the magni-
tude of the valence-band offset for all alloy compositions
studied. In the determination of bE„, the quantity bR'g

represents the band-gap difference between the unstressed

where the expansion coefficients C' are defined by Eq. (5)
of paper I. We adopt a phase convention such that the
coefficient C~& is real for the component dp for which

C~z has a maximum modulus. In zinc-blende-structure
compound semiconductors, symmetry-induced degenera™
cies (two energy eigenstates with identical k's) occur only
for k along a [100] or [111]direction. If the k p momen-
tum matrix element 8 vanished, as occurs in the diamond
structure, 2 a twofold degeneracy occurs at each k point
throughout the bulk Brillouin zone. Degenerate states are
orthogonalized, in the sense of Eq. (22) of paper I.

From a knowledge of the bulk Bloch eigenstates in the
two materials, the current-density matrices are construct-
ed in the fashion indicated in Appendix 8 of paper I. The
superlattice eigenvalue equation has the form

g MJJ AJ v exp[iQ&(a——+b)]AJv, (3a)

where

alloys. The valence-band maximum of Gai, In, As is
raised by an energy AE„relative to the valence-band max-
imum of Ali „In~As. The deformation potentials have
been taken so that (+2m =0 in each material. This
choice fixes the "center of mass" of the zone-center
valence-band states under the effect of the applied stress.
It is a prescription for treating stress dependence of the
valence-band offset. The zero of energy is chosen to be
the valence-band maximum in the unstressed
Gao 47Ino 53As alloy.

From the calculated k p momentum matrix elements
and the various empirical inputs discussed above, bulk
Hamiltonians for the two materials are constructed. For
these calculations the 12-band model described in Sec. II
of paper I is adopted. We solve [paper I, Eq. (12}]for the
bulk eigenvectors and eigenvalues k (component of the
bulk wave vector normal to the interface). The propaga-
ting and evanescent bulk Bloch states of the two materials
are expanded in terms of a single basis of cell-periodic
functions. The expansion amplitudes are normalized for
each eigenvalue kj so that

g (C~., )*Cgj ——1, (2)

MJJ =exp(ikj a) g .J., ex(pj kb) ~ J.», ,

J J
(3b)

TABLE III. Numerical values of deformation potentials

(c,m, l), elastic constants ( C&~, C12), and spin-orbit splitings (4)
for the alloys Gal „In„As and All ~In~As. The notation

adopted here is consistent with that used in Appendix A of pa-

per I.

and a (b) is the thickness of semiconductor a (b) within
the superlattice unit cell. Solution of Eqs. (3} yields the
complex superlattice band structure. In many cases one is
only interested in real superlattice wave vectors. In this
case, it is numerically more convenient to rewrite the su-
perlattice eigenvalue problem in the trigonometric form

C» (10" dyncm-')
C&2 {10" dyn cm )

—c (eV)
m (eV)
—I (eV)

GaIIn„As All yInyAs

11.81(1—x)+8.»x
5.32(1—x)+4.53x

8.23{1 —x)+5.80x
1.70
3.40

'MJ)I&~'],J'AJ'~= sin[Q„(a +b)]A. (4)

where the adjoint operation indicated by an overtilde is
defined by Eq. (62) of paper I. For real superlattice band
structure, a real wave vector Q„ is input and the matrix

F= [(M J'MJ)I—2i] sin[Q&(a—+b)]l (5)
6 (eV) x)+.38x 0.28(1 —y)+0-38y

is constructed. The eigenvalues of the matrix E are found
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as a function of energy for fixed wavevector k~~. Solu-
tions to the eigenvalue equation [Eqs. (3)] for an input
wave vector occur when F has a zero eigenvalue. For all
energies and k~~, the matrix I' has a real determinant and
the eigenvalues of F come in complex-conjugated pairs
when Q„ is real. As a result, zeros in the eigenvalues of F
are easily located numerically as a function of energy.
For this reason the trigonometric form of the eigenvalue
equation [Eq. (4)] is used when only real superlattice
bands are of interest. The superlattice wave functions, ex-
pressed in terms of the bulk Bloch eigenstates of the two
constituent semiconductors, are found from the eigenve:-
tors of the matrix M (or equivalently I') and from the
interface-matching condition [Eq. (30}of paper I].

In constructing the matrix M in Eq. (3b), factors of the
form xep(ik~'a) appear. For bulk evanescent states, kj is
complex and such exponential factors can be very large or
very small. It is difficult to handle such factors numeri-
cally. This problem is more acute for superlattices with a
large unit cell. In the Appendix ~e describe the physical
origin of this numerical problem and discuss its solution.

The main difference between the 16- and 12-band
models lies in the presence of four bulk states with large
imaginary parts of k. In the Appendix we show that such
states modify the matrix M [Eqs. (3}] by terms of the
form ( J'f, /J', ), where p labels the physically signifi-

cant states, I labels the large Im[k] evanescent states
which are not physically significant, and J refers to ma-
trix elements of the current-density operator defined in
paper I. Numerical calculations show these terms to be
typically of order 10 . Thus, the 12- and 16-band
models give essentially identical results.

III. APPLICATION TO Gai „In„As-Ali „In„As
SUPERLATTICES

details of this electronic structure depend, however, on the
nature of the model used to describe the bulk band struc-
ture of the constituent semiconductors and on the form of
the interfacial boundary conditions imposed on the super-
lattice solutions. In the case of Ga, „In„As-Al& «In«As
superlattices, the energy band alignment is such that both
electrons and holes are spatially confined within the
(smaller-band-gap) Ga, „In„As layers. The single-
particle energy eigenvalue spectrum of the superlattice
solutions takes the form of a series of quantized subbands
whose dispersion relations are sensitive functions of the
superlattice growth parameters (layer thickness, alloy
composition, etc.).

We now examine the dependence of the subband energy
levels as a function of the size of the superlattice unit cell.
Figure 1 displays the superlattice energy gap (it occurs at
the center of the Brillouin zone} as a function of the total
number of layers in the superlattice unit cell for three ra-
tios

« =Nb(Alp 4sIiip 52As)/M+(Gap 4pino s3AS)

where M, (Nb) is the number of monolayers of the semi-
conductor a (b) within the superlattice primitive cell.
Hereafter, the label a (b) refers to the alloy Gai „In,As-
Al~ «In„As). As is clearly demonstrated in Fig. 1, it is
possible to adjust the superlattice band gap, for fixed su-
perlattice period, by modifying the thickness of one con-
stituent semiconductor relative to that of the other. This
flexibility at varying the superlattice energy gap with
layer thickness is well documented. 3 As the thickness of
the smaller-band-gap material is increased, for fixed total
layer thickness, the superlattice band gap decreases. This
occurs because the wells in which the carriers are confined

In this section we apply the theoretical formalism
described in paper I to a detailed study of Gai „In,As-
Al] ~In~As superlattices epitaxially gro~n along the
[100] crystallographic direction. Specifically, we consider
three alloy composition pairs (x,y): one for which the
system is lattice-matched to an InP [100] substrate
(x=0.53, y=0.52), one for which the interfacial lattice
mismatch is b,ap/ap ——1% (x=0.53, y=0.67), and one
for which the interfacial lattice mismatch is
hap/ap ———1% (x=0.53, y=0.37), where

hao/ao:—[ao(Ali «In«As)

—ap(Ga& „In„As)]/ap(Ga, ,ln, As)
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and ap is the bulk lattice constant of the alloy. We first
discuss the lattice-matched system and then generalize the
discussion to the lattice-mismatched cases.

A. Lattice-matched superlattices

The basic features governing the electronic structure of
semiconductor superlattices are determined by two physi-
cal effects: (1) the spatial confinement of electrons and
holes, and (2) the resulting quantization of their single-
particle energy eigenvalue spectrum. The quantitative

700
0 I 0 20 30 40 50 60 70 80

(Ma+ Nb)

FIG. 1. Superlattice energy gap plotted as a function
of the total number of monolayers (M, +Nb) contained within
the superlattice primitive cell for three ratios
Xp(A1O 4SIno 52As)/M, {Gao 47Ino 53As). For superlattices grown
along the [100] orientation, the thickness of a monolayer in ma-
terial a (b) is ao/2, where ao is the bulk lattice constant of the
alloy a (b). Experimental points are from Refs. 8 (0) and 9
(0 ). The wavelength A, is defined as Eg =2m'� /k~.



8364 C. MAILHIOT AND D. L. SMITH 33

increases in size. For fixed r, the superlattice energy gap
Es is a monotonically decreasing function of the total
length of the superlattice period as indicated by Fig. 1.
As the size of the superlattice period is increased, the
conduction-subband level approaches the conduction-band
minimum of Gac 471nc 53As, whereas the heavy-hole sub-
band level approaches the maximum of the valence band
of the same alloy. The net effect is a reduction in the
band gap. Aho shown in Fig. 1 is the measured energy
gap of a

Iooo—

Gao $71nc 53As ( 35 A)—Ala zsIno 52As {35 A)

(r= 1) (Ref. 8) superlattice and a
0 0

Gac 471no g3As (49 A)—Ale 4slnc s2As (23 A)

( r ——,
'

) (Ref. 9) superlattice as extracted from recent pho-
tocurrent responsivity measurements. Examination of
Fig. 1 shows that a good correspondence exists between
our calculations and experimental observations of super-
lattice energy band gaps.

We now examine the subband energy dispersion of

88Q —Ga047 In055 As

AI048 In052 As

K 0 - Ma=I6
4J

-40

-80 LHI

2

I IOO -i60
2 I 0 I

I060-

I020-

FIG. 3. Electronic energy band structure of a superlattice
consisting of 16 layers of Gap 47Inp53As alternating with eight
layers of Alp 48Inp 52As. The superlattice wave vector is defined
as Q—:k~l+'RQ with kl~ =Rk, +$'k» and 2 oriented along the su-
perlattice growth axis. The energy zero coincides with the
valence-band maximum of the Gap 47Inp $3As alloy.

940 GOO47 I005p As

A 1048If1052As
K
tLJ Q—
4A —Ma=N =l2

-40

-80
LHl

= HH 2

-l60

k„(~) o($)
FIG. 2. Electronic energy band structure of a superlattice

consisting of 12 layers of Gap47I11p53As alternating with 12
layers of A1048InoqqAs. The superlattice wave vector is defined

as Q—:k[~+RQ with k~l ——Rk„+$'k» and 'k oriented along the su-

perlattice growth axis. The energy zero coincides with the
valence-band maximum of the Gap 47Inp 53As alloy.

Gac 47ln(| 53As-Ale 4slnc qqAs superlattices for wave vec-
tors parallel to the [100] growth axis (kll=0) or perpen-
dicular to it {kll =xk„). We consider the cases
M, /Eb 12/12 an—d—16/8, which correspond approxi-
mately to the experimental situations described in Refs. 8
and 9, respectively. The electronic band structures for the
lowest-lying conduction and a few valence superlattice
subbands are shown in Figs. 2 and 3. In the discussion
hereafter, we refer to superlattice states by labeling them
according to their dominant bulk-state component: con-
duction {C„), heavy-hole (HH„), light-hole (LH„), or
spin-split-off hole (SOH„), where n orders the states by
increasing energy.

At the center of the Brillouin zone, four twofold-
degenerate pairs ' of states are shown. These states are la.
beled Ci, HHi, LHi, and HHz in order of decreasing en-
ergy. In Table IV the relative admixture of the bulk
eigenstates in the superlattice wave function for the four
pairs of states are shown for the M, /Nb —12/12 case.
The labehng of the superlattice solutions is clearly unam-
biguous. The energies reported here for the subbands Ci
and HHi are compatible with those extracted from an
effective-mass model extended to include band nonpara-
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TABLE IU. Relative admixture, in percent, of various bulk

states in the superlattice wave functions at the center of the Bril-

louin zone. The bulk state components are labeled by C-LH

(conduction —light hole}, HH (heavy hole), and SOH (spin-split-

off hole). The superlattice consists of 12 layers (35 A) of
Gao 47Ino $3As alternating with 12 layers (35 A) of A1048Ino &2As.

For each energy, the top (bottom) entry refers to the adrnixtures

in the superlattice wave function localized within the

Gao 47IBO $3As {AID 481no q2As) layers.

Energy (meU)

—126

C-LH HH SOH

—78

—33

12
16

99.1
99.3

0.03
0.3

0.87
0.4

bolicity effects. ' '

As Q increases from zero, the conduction and light-
hale bands show appreciable dispersion, whereas the
heavy-hole bands are fairly dispersionless. There is an ex-
ception in the M, /Nb =16/g case for the HHz band near
the superlattice Brillouin-zone edge. In this case, strong
hybridization between the HHz and LH, superlattice
bands occurs. For superlattice wave vector parallel to the
[100] growth axis (k~~ =0), the small point group is Cz„.
The double group contains a single two-dimensional repre-
sentation ' and all subbands are double degenerate. Since
all superlattice solutions belong to the same double degen-
erate representatian, crossing of the subbands is forbidden
as a function of Q for K~~=0. The k p theory present-
ed here correctly describes the symmetry of the physical
system and thus does not allow band crossing in this
direction. The mixing of heavy-hole- and light-hole-like
states originates from the difference-potential terms (lb V}
in the current-density matrices J' and J (i.e., the ma-
trices b~ in Appendix B of paper I} which enter in the
interfacial boundary conditions. If the zone-center states
in the two constituent materials are assumed to be the
same, ' ' this mixing does not occur.

We now examine the subband dispersian for superlat-
tice wave vector oriented perpendicular to the superlattice
[100] growth axis, i.e., k~~

——xk, and Q=0. A detailed
knowledge of the subband dispersion relation in the plane
of the layers is of considerable interest with regard to the
calculation of density of states, optical absorption,
transport properties, motion of carriers in an externally
applied magnetic field, etc. Degeneracies are lifted for
all the bands. In all cases the band splitting is small. For
the conduction band the energy splitting is too small to be
resolved on the energy scale used here. At small

~
k„~,

the heavy-hole subbands show somewhat larger dispersion
than the light-hole subbands in the direction parallel to
the superlattice layers. At larger

~
k, ~, the heavy- and

light-hole subbands hybridize. For superlattice wave vec-
tors in this direction, the little group is C2. In the limit of
very large periods, so that the layers have the characteris-
tics of the corresponding bulk material, the little group is
extended to C2„. C2 has two one-dimensional representa-
tions compatible with spin. ' These two representations
are also compatible with the single two-dimensional repre-
sentation of the C2„double group. ' The band splitting
occurs because of the reduction in symmetry in going
from the bulk materials to the superlattice structure. It
decreases as the layer thickness of the smaller-gap materi-
als increases. If the III-V compounds considered here
were replaced with group-IV compounds (necessarily even
numbers of group-IV atomic layers), the superlattice
would have inversion symmetry. In this case a combina-
tion of inversion and time-reversal symmetry would en-
sure a twofold degeneracy of the bands everywhere in the
superlattice Brillouin zone. In k p theory, the difference
between the symmetry of the group-III-V and -IV materi-
als appears in the k p momentum matrix element 8
which is zero in group-IV materials. k p models in
which the parameter 8 does not appear' ' will not show
the energy band splittings observed in Figs. 2 and 3.

The valence-band energy splitting at the center of the
superlattice Brillouin zone is produced by the spatial con-
finement of the states in the smaller-band-gap
Ga0471n053As. Because this confinement is in the z
direction, the zone-center states are well separated into
heavy- and light-hole states, where heavy and light hole
refer to k and 0 (growth axis) direction. However, when
k is in the x direction, the zone-center states are mixed
combinations of "x-direction heavy- and light-hole"
states. 3 '3s Indeed, by considering spin-3/2 rotation ma-
trices one finds that the HH states have a larger "x-
direction li ht-hole" amplitude than the LH states by a
factor of 3. This accounts for their greater dispersion at
small

~
k„~ . At larger

~
k„~, there is strong mixing and

hybridization between these bands, leading to complex
and very nonparabolic dispersion. The symmetry of
these bands is the same even when perturbation terms in
hV are neglected. Thus, the mixing between them is
strong.

The squared envelope functions of the four zone-
center states for the M, /Nb ——12/12 superlattice are
shown as a function of position for one superlattice cycle
in Fig. 4. The nodal structure of these envelope functions
shows the particle-in-a-well nature of the superlattice
solutions. The HH states have equal

~

x ) and
~ y ) com-

ponents and virtually no~ s) or
~
z) components. The

C& state has primarily a
~

s ) component with some
~
z)

and small amounts of
~
x) and

~
y) components (not

shown) mixed in. The LH~ state has primarily a
~
z)

companent with lesser amounts of
~
x),

~
y), and

~

s).
The interface-matching conditions described in paper I
ensure envelope-function continuity to zeroth order in the
AV perturbation. For the 16-band model the envelope-
function derivatives are also continuous to zeroth order in
the hV perturbation term. However, in the 12-band
model used in these calculations there are no conditions
on the continuity of the envelope-function derivatives. '

But from Fig. 4, one sees that both the envelope functions
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Qa& „In„As-AI, In„As semiconductor superlattices has

not yet been made.
%'e consider the cases where the alloy composition in

Gai „In„As is kept fixed at the value x=0.53, whereas

the alloy composition in Al& „In~As is varied to produce
a relative lattice mismatch of dao/ao ——1% (y=0.67) and

ban/ao ———1% (y=0.37). For finite lattice mismatch,
the material with the smaller lattice constant expands in
the interface plane as a result of biaxial tensile stress,
~hereas the material with the larger lattice constant con-
tracts in the interface plane due to a biaxial compressive
stress of equal magnitude. For the material with the
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FIG. S. Effect of biaxial stress on the complex-k bulk electronic structure of Gao 47Ino 53As and A1& ~In„As. The energy shift cor-
responding to the valence-band offset (AE„) has been incorporated into the calculation. The zero of energy coincides with the max-
imum of the valence band of unstressed Ga047In053As. The strain is calculated for a superlattice consisting of 12 layers of
Ga047In053As alternating with 12 layers of Al& „In~As. The real and imaginary parts of k (component of the crystal wave vector
parallel to the [100] growth axis) are in units of 2n /ao, where ao is the bulk lattice constant of the alloy. (a) For the alloy composi-
tions x=0.S3 and y=0.67, the Gao 47Ino 53As layers are under biaxial tensile stress, ~hereas the Alo 33Ino 67As layers are under biaxial
compressive stress due to a lattice mismatch dao/ao ——1%. (b} For the alloy compositions x=0.53 and y=0.37, the Ga047IHQ 53As

layers are under biaxial compressive stress, whereas the A1063lll037As layers are under biaxial tensile stress due to a lattice mismatch
6 ao/ao ———1%.
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smaller (larger) lattice constant, this situation can be
analyzed in terms of a combination of a hydrostatic dila-
tion (coinpression) plus a uniaxial compression (dilation}
along the superlattice [100] axis. The net result on the
bulk electronic band structure is twofold: the hydrostatic
dilation (compression) produces a decrease (increase) of
the energy band gap, whereas the effect of a uniaxial
compressive (tensile) stress is to lift the degeneracy of the
fourfold valence-band at the center of the bulk Brillouin
zone by lowering (raising) the heavy-hole state with
respect to the light-hole state. The presence of a uniaxial
compressive (tensile) stress also leads to an increase (de-
crease) of the band gap.

In a superlattice systein, the magnitude of the strain is
related to the layer thickness of each material, the thinner
of the two materials having the greater internal strain.
Explicit formulas applicable to the case of [100]-growth-
axis superlattices are given in Appendix A of paper I.
The effects of stress on the bulk electronic band structure
o the alloys Gaa 4qlna 53As and Ali «In«As are illustrat-
ed in Fig. 5 for different compmitions y corresponding to
lattice mismatches of magnitude haa/aa ——1% [panel (a)]
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FIG. 6. Electronic energy band structure of a hao/ao ——1%

lattice-mismatched superlattice consisting of 12 Layers of
Gso 47IBO 53As alternating with 12 layers of Alo qqluo 67As The
superjattice wave vector is defined as Q=k~~+RQ with

k~~=xk„+9k„aud '2 oriented along the superlattice growth
axis. The energy zero coincides with the valence-band max-
imum of the (unstrained G~ 47In053As alloy. (a) Stress effects
included. (b) Stress effects not included.

FIG. 7. Electronic energy band structure of a
h,ao/ao ———1% lattice-mismatched superlattice consisting of 12
layers of Gao ~7Ino 53As alternating with 12 layers of
Alo 6qln0. 37As. The superlat tice wave vector is defined as
Q—=k~~+RQ with k~~

——Rk„+9k„and 0 oriented along the su-
perlattice growth axis. The energy zero coincides with the
valence-band maximum of the (unstrained) Ga047In053As alloy.
(a) Stress effects included. (b) Stress effects not included.

and gaa/aa ———1% [panel (b}]. The strain is calculated
foi an ~N /Ns ——12/12 superlattice.

Electronic band structures of Gaa. 471na, 53As

A) Al, „In„As (35 A) strained-layer superlattices are

shown in panel (a) of Figs. 6 and 7 for y =0.67
(baa/aa ——1%) and y=0.37 (baalaa —1%), respective-——
ly. The presence of a uniaxial stress can induce a reversal

in the ordering of the superlattice subbands HHi and LH,
by lowering the first heavy-hole subband (HHi) below the
first light-hole subband (LHi). However, for the cases
iBustrated by Figs. 6 and 7, such a reversal is not ob-

served. The k~~
——0 portion of the band structure, in the

case where stress-induced effects are neglected, is also
shown in panel (b} of Figs. 6 and 7. Comparison between

panels (a} and (b) of Figs. 6 and 7 shows the significance
of including stress-induced effects in the description
of the electronic band structure of semiconductor super-

lattices. In Fig. 6, where the smaller-band-gap

Gao47Ino q3As is under biaxial tension, the splitting be-

tween the HH& and I.H& states is reduced compared to the
case where stress is ignored. If higher-stress cases are
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considered, a reversal in energy position of these states
is found. In Fig. 7, where the smaller-band-gap
Gap 4'7Ino 53As is under biaxial compression, the splitting
between the HH~ and LH& states is increased by stress.
The qualitative features of the electronic band structure
discussed in Sec. IIIA are also observed for lattice-
mismatch superlattices, as suggested by comparison of
Figs. 2, 3, 6, and 7. The strong hybridization of the hole
subbands for k~~&0 results in strikingly nonparabolic sub-
band dispersion and, in some instances, in a positive value
of the in-layer hole effective mass at the center of the su-
perlat tice Brillouin zone.

IU. SYNOPSIS

This paper has two main purposes: to describe the nu-
merical implementation of the formal results presented in

paper I and to use these results to investigate the electron-
ic structure of Gai „In,As-Ali „In~As superlattices
grown along the [100] direction. A reference pseudopo-
tential Hamiltonian is used to construct a basis set of
zone-center states which is used in the description of all
the superlattice constituents. The I'iz valence-band states
and the I i conduction-band state, determined from the
reference Hamiltonian, are combined with a spinor and
treated explicitly. Moreover, the 23 zone-center states
nearest in energy are included in Lowdin perturbation
theory. The perturbation operator is Sr. pim+b, V,
where b, V is the difference between the pseudopotentials
of one of the constituent semiconductors and that of the
reference material. The perturbation is included through
first order in wave functions and to second order in ener-

gies. Inclusion of the b, V perturbation through these or-
ders (to be contrasted with calculations to zeroth order in
wave functions and to first order in energies) causes the
description of the superlattice to have the correct symme-
try and to produce correct energy band splittings. The
k p momentum matrix elements and the parameters
which result from the dLV perturbation are calculated us-

ing the zone-center energy eigenfunctions and eigenvalues
of the reference Hamiltonian. Spin-orbit interaction pa-
rameters, stress-interaction parameters (for strained-layer
superlattices), and the valence-band offset are included
empirically. In many cases, some k.p momentum matrix
elements are empirically known. It would be possible to
include these empirically determined values, rather than
computed values, into our formal structure and thereby
save a step in the implementation of the theory. Not all
of the parameters which appear in the theory are likely to
be known empirically, however, and care must be taken to
treat things consistently. One should ensure fiux conser-
vation at the interface, for example. "

%'e have used our formal results to investigate the elec-
tronic band structure of the Gai In As-Ali &Ini, As su-
perlattice. We first considered the lattice-matched case
(x=0.53 and y=0.52}. Results for the band gap of this
superlattice are in good agreement with available experi-
mental results. Our analysis was extended to the study of
Gai „In„As-Ali „In~As superlattices in a range of alloy
compositions where lattice-mismatch-induced internal
strain is present in the layers. Calculations of subband en-

ergy dispersion for superlattice wave vectors parallel and
perpendicular to the growth axis were performed and re-
vealed features not embodied within current envelope-
function models which do not correctly describe the su-
perlattice symmetry, but are present in tight-binding
models which do correctly describe the superlattice sym-
metry.
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APPENDIX: TREATMENT OF LARGE-
i Im[ k] i

SULK SLOCH STATES

In the construction of the matrix M appearing in the
superlattice eigenvalue equation [Eq. (3)], factors of the
form exp(ikja) appear. For bulk evanescent states with
large values of ~1m[k] ~, such factors can be extremely
large or extremely small. It is difficult to handle such
factors numerically. The problem is more acute for su-
perlattices with large unit cell. In this appendix we
describe the physical origin of such factors and show how
to treat them analytically so that numerical difficulties as-
sociated with very large or very small numbers do not ap-
pear.

We start by writing our basic superlattice equations
[Eqs. (57) and (60) of paper I] and also equivalent inverted
forms [see Eqs. (31) of paper I],

Jab
(Ala)J ~g g

J J

a;=g ', 'A, , (A lb)Jb
l

gab

Ajexp[ig (a +b)]= g exp(isa), exp(ik;"b)B;,
J'J

(A 1c)

8;exp[ ig (a +b—)]= g exp( ik; b)
&

ex—p( ik'a)A- ,
J i*i

(A 1d)

where j(i) labels the Bloch propagating and evanescent
states in material a (b) and AJ (8;) is the amplitude of
the jth (ith) bulk eigenstate in material a (b) in the
zeroth-cycle superlattice wave function [see Eq. (50), pa-
per I]. Equations (Ala) and (Alb) are equivalent and Eqs.
(A 1c}and (A 11) are equivalent. Combining nonequivalent
sets of these equations gives the superlattice eigenvalue
equation.

Equations (Ala} and (Alb) are derived by considering
the interface containing the origin of coordinates. They
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and

i if
( Im[k; ] ( & y'/b,

i~ ~ g if Im[k; ]& —y'/b,

if 1m[k( ])y'/b.

(A2d)

(A2e)

do not contain exponential factors and pose no numerical
problems. Equations (Alc) and (Ald) are derived by con-
sidering the interfaces at z=b and z= —a and using
superlattice periodicity. They contain the factors
exp(ik; b)B; and exp( —i' a)AJ, which can cause numeri-
cal problems. (We assume that there is no interest in solu-
tions for which ~lm[Q) ~

is a large number. ) Physically,
the factors exp(ik; b)B; and exp( —ikj'a}AJ are the ampli-
tudes of bulk periodic states at z =b and z = —a, respec-
tively, in the superlattice wave function. Thus they can-
not be extremely large numbers. However, the factors
exp(iki b) and exp( ik—j') can be extremely large by them-
selves. The solution of the problem for B; and AJ must
be such that the amplitudes at z =b and z = —a are of, at
most, modest size. Although this will indeed happen if
the problem is solved exactly, numerical problems can
arise in practice.

Recognizing the origin of the large factors, it becomes
clear how to treat them. For the states with large ex-
ponentials, take exp(ik; b)B; and exp( ik'—a)A as the un-
known variables. Thus one relabels states by

j if ~Im[k;] ( &y/a, (A2a)

j~ g if Im[kj'])y/a, (A2b)

if Im[kj'] & —y/a, (A2c)

a,exp[iQ (a +b)]

Jab
=exp(ik'~a) g," exp(ik; b)P;

Jab

exp(ik, b)P~,

(A4b)

Jab

azexp[iQ(a+&)]= g," exp(ik; b)P;

ab

exp(ik~, b)P~,

Jab
(A4c)

(A5a)

Dropping exponentially small terms gives

Jab

ajexp[iQ(a+b)]= g exp(ik aJ), exp(ik~b)P;J Ja
J J

abJe g,
+ g exp(ikj'a) P~,

It may be convenient to take the parameters y and y' to
be distinct. One then makes a variable change by

Jab Jab
0=g," exp(ik; b)P;+ g,"

P~, (A5b)

and

aJ ——AJ,

a„=exp( ik ~ )A „,—

(A 3a)

(A3b)

(A3c)

Jab Jab
avexp[iQ(a+&)]= g," exp(ik;"b}P;+ g," ~ p„.

(A5c)

IBm=exp(ik fb)Bg .

(A3d)

(A3e)

(A3f)

Jab

ajexp[iQ(a +b)]= g exp(ikj'a), exp(ik; b)P;
l

J Ja
J J
ab

+ g exp(isa), exp(ik~, b)P~,J Ja
J J

Jab

+ g exp(ikj'a) P&, (A4a)

These variables are substituted into Eqs. (Al) and ex-
ponentially small terms are dropped. For example, substi-
tuting into Eq. (Alc) gives

There are four equations, like Eq. (A5b), which have a
zero on the left-hand side. These equations are solved for
the amplitudes of the large- j Im[k]

~

states labeled by g,
P, q, and rl in terms of amplitudes of small-

~
Im[k]

~

states labeled by i and j. One easily verifies that there are
enough conditions to do this. One then eliminates the
amplitudes P; (say} and derives an eigenvalue equation for
the amp1itudes 0;J. This equation does not contain ex-
ponentially large (or small) factors and can be handled
without numerical difficulty.

The procedure described above is generally applicable.
It is somewhat easier to apply if the number of large-

~
Im[k)

~
states is the same in each material. Thus the

number of Ps and the number of g's is the same and Eq.
(A5b) can be directly solved for P~ in terms of the P s.
(In general, these four equations must be combined and
solved together. ) Inspection of Fig. 5, which shows com-
plex band structure for typical cases, reveals that it is usu-
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ally possible to choose y and y' in Eqs. (A2) such that the
number of ri's and Ps is the same.

For the case where the number of g's and g's is the
same, one can easily derive a closed-form expression for
the matrix M in the superlattice eigenvalue equation [Eqs.
(3)]. The result is somewhat complicated and will not be

given here. However, for many cases, the coupling be-
tween the small-

~
Im[k]

~

states and the large-
~
Im[k]

~

states, given by factors like J'., /J', ., are quite small.
J '9 J J

Treating such factors as small parameters and calculating
to second order in these small parameters (the next term is
fourth order) gives the M matrix as

MJJ g——exp(i&) a) ', '
exp(ik, 'b) '~' —gJ Ja

J J f

gab
J

JQ
J J

exp(ik; b)J, , J~& J~
b a bJ Q J(g

ob exp(ik; b)J,
gg J

b a b (A6)

If one considers the four bands which appear in the 16-
band model and not in the 12-band model as large-

~
Im[k]

~
bands in the above sense, the second and third

terms on the right-hand side of Eq. (A6) give the contri-
bution of these bands to the superlattice. Both of these
terms are second order in the small coupling parameter.
The square of this small coupling parameter is found to
be numerically of order 10 . Therefore these bands

make essentially no contribution to the superlattice states.
This result justifies the use of the 12-band model. It also
justifies calculating bulk states in the 16-band model [i.e.,
using Eq. (10) of paper I] and simply disregarding the
four large-

~
Im[k]

~

states [i.e., dropping the second and
third terms on the right-hand side of Eq. (A6)]. Indeed,
these two approaches give virtually identical results.
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