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This is the first of a two-paper series in which we present a complete k p theory of semiconductor
superlattices. Here we present the formal theoretical results. In the second paper, numerical im-

plementation of these results is described and examples of superlattice electronic structure calcula-
tions are presented. A single basis set for the constituent materials is provided by a zone-center

pseudopotential calculation with a reference Hamiltonian. The I » valence and I ~ conduction states
are coupled with a spinor and treated explicitly. Near-in energy states are treated in Lowdin pertur-
bation theory with the k p operator and the difference between the material pseudopotential and the
reference pseudopotential as the perturbation. The calculation is carried out to first order for wave

functions and second order for energies. Spin-orbit and stress interactions are included between the
explicitly included states. Bloch and evanescent states are computed for each material. Interface
matching of the constituent material bulk eigenfunctions is accomplished using results derived for
the normal component of the current density operator. Superlattice symmetry is used to derive an
eigenvalue equation for the superlattice wave vector and eigenfunctions. The formalism has the ad-

vantage of involving only small-dimensionality matrices (typically, 12)& 12). It is well suited to opti-
cal and transport property calculations.

I. INTRODUCTION

Semiconductor superlattices consist of alternating thin
layers of different semiconductors. The electronic struc-
ture of a superlattice depends on the layer thicknesses, as
well as on the constituent materials. ' Because the layer
thicknesses can be precisely controlled, superlattices offer
the possibility of being able to design the electronic band
structure of semiconducting materials. The fiexibility in
superlattice electronic properties that are introduced by
this design possibility makes them useful in several tech-
nological applications, including semiconductor diode
lasers, electro-optical modulators, nonlinear optical de-
vices, and infrared detectors. '

Those electronic states whose mean free path is com-
parable to or longer than the superlattice period are signi-
ficantly infiuenced by the spatial modulation of the super-
lattice. States whose mean free path is much less than a
superlattice period are essentially kinetically confined
within a particular material. Such states are, thus, not
much modified by superlattice modulation. As a result,
electronic states relatively close in energy to the
conduction- and valence-band edges, which have relatively
long lifetimes and mean free paths, are of greatest interest
in superlattice materials. In bulk semiconductors, k p
theory is particularly effective at describing states near the
conduction- and valence-band edges. For this reason, it is
natural to develop a k p theory description of these states
in semiconductor superlattices.

Previous work on the electronic structure of semicon-
ductor using k p models includes the results of White and
Sham, Bastard, ' and Altarelli. %hite and Sham, and

Bastard, used different approaches to arrive at essentially
the same result. They considered a two-band model
which describes the conduction and light-hole bands. The
model is essentially one dimensional in the sense that only
states whose wave vector is normal to the plane of the su-
perlattice interfaces are described. Altarelli uses a three-
band model which is capable of describing states whose
wave vector lies in a plane which includes the vox:tor nor-
mal to the plane of the superlattice interfaces. (States
with any direction of k can thus be described, but it is
necessary to use different basis sets for different directions
of k. ) It is also necessary to diagonalize rather large-
dimensionality (e.g., 72 X 72) in this method. In the above
approaches, the zone-center Bloch functions are taken to
be identical in the two materials, only the very large spin-
orbit splitting case is considered, and stress effects are
usually ignored.

This is the first of a two-paper series in which we
present a complete k p theory of semiconductor superlat-
tices. In this paper, we present the formal theoretical re-
sults. In the second paper, ' numerical implementation of
the formal results is described and examples of superlat-
tice electronic-structure calculations are presented.

In this work; an empirical pseudopotential calculation"
is first performed at the zone center of a reference Hamil-
tonian, formed by averaging the pseudopotential form fac-
tors of the constituent materials, to provide a spatial basis
set. The I &5 valence states and I

~
conduction state are

coupled with a spinor and treated explicitly. The near-in
energy (typically 23, as actually implemented) spatial
states are treated in Lowdin perturbation theory with the
k.p operator and the difference between the material
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pseudopotential and the reference Hamiltonian pseudopo-
tential as the perturbation. The calculation is carried out
to first order for wave functions and second order for en-
ergies. The spin-orbit and stress (for strained-layer super-
lattices} interactions are included between the explicitly
treated states. Bloch and evanescent states for each bulk
material are computed. Matching of the bulk Bloch and
evanescent states at the superlattice interfaces is accom-
plished using results derived about the normal component
of the current-density operator. The superlattice transla-
tional symmetry is used to derive an eigenvalue equation
for superlattice wave vectors and eigenfunctions. The re-
sulting eigenvalue equation has the advantage of involving
only rather small-dimensionality matrices (typically
12X12).

The formal structure presented here can describe super-
lattice states with wave vector in any direction using the
same basis set. It is well suited for optical properties and
transport calculations. Assumptions concerning the simi-
larity of the zone-center Bloch states in the two materials
(in our case, the assumption is that first-order perturba-
tion theory in the difference between material and aver-
aged pseudopotentials is adequate) can be explicitly
checked. It is not necessary to assume large spin-orbit
splittings. The effects of stress resulting from lattice
mismatch is explicitly included. The results presented
here reduce to those of White and Sham, and Bastard, '

if only wave vectors norinal to the interface plane are con-
sidered and an additional series of approximations is
made.

We explicitly consider superlattices made from two
zinc-blende crystal-structure semiconductors with a [100]
growth direction. The basic theoretical approach we use
is equally applicable to other cases. Detailed results, of
course, depend on the physical geometry. We chose to
consider the zinc-blende [100]-growth-direction case be-
cause most superlattices currently grown have this
geometry.

The paper is organized in the following way: In Sec. II
our description of the individual materials is presented, in
Sec. III we describe our treatment of a single interface, in
Sec. IV the superlattice periodicity is used to derive an
eigenvalue equation for the superlattice wave vectors and
state functions, and in Sec. V we summarize our con-
clusions. Calculational details and reduction to previous
results are presented in the Appendixes.

II. DESCRIPTION OF THE CONSTITUENT
MATERIALS

Ug~) (r)= Ug(r) + g Wgp) Up(r),

where

(4a)

(4b)

the sum over P does not include the explicitly treated
states labeled by d, and kj is a point in k space. The
Bloch and evanescent states in each material are written
as

pseudopotential form factors. " The lattice constant in
the reference Hamiltonian is the average of the
constituent-material lattice constants. Alloy materials are
treated in a virtual-crystal approximation.

The reference Hamiltonian is solved at the zone center,
in terms of a plane-wave basis, to give a set of energies
and cell-periodic, zone-center, eigenfunctions, ep and
U&(r). We have

Up(r) = g Rpge'G',1

0
where P labels the various eigensolutions, 0 is the unit
cell volume, G is a reciprocal-lattice vector, and R is an
expansion coefficient. We choose phases such that U~(r}
are real. For degenerate representations, the partner func-
tions are chosen to transform according to the convention
of Ref. 14. In terms of Ha, the Hamiltonians describing
the constituent materials can be written as

Hi ——Hg+hv'+H', , +H'„, (3a)
where

s v'= v' —,'(v'+—v'), (3b)

H, , represents the spin-orbit interaction, and H„
represents the stress interaction (owing to lattice
mismatch} in material l.

We use the zone-center states UIi(r) as a basis set to
describe cell-periodic functions in each material. We
divide the set of states Up(r) into two groups. One group
consists of the threefold I,s valence-band states and the
I i conduction-band state combined with a spinor. These
eight states are treated explicitly. %e will use the nota-
tion U~(r), where d runs over the eight states, to label
them. The other spatial states, also combined with a spi-
nor, form the second group of states. These states will be
included to first order for the wave function in Lowdin
perturbation theory. ' The perturbation consists of
6V'+m 'k p. (These two operators are considered to be
of the same order. ) Thus we construct, in each material,
the cell-periodic functions,

In this section we present our description of the indivi-
dual materials making up the superlattice. For these cal-
culations, it is desirable to have a single zone-center basis
set to describe the states in both of the constituent materi-
als. ' For this reason, we define a reference Hamiltonian
by

H„= + —,
' [V'(r)+ V (r)],2'

where a and b label the constituent materials and V (r) is
the pseudopotential of material I described in terms of

where N is the number of bulk primitive cells (two atoms
in the zinc-blende structure) in the superlattice. The cell-
periodic states U are normalized to a unit cell and the C's
are taken so that [((t('r.,}'itj] in)tegrates to unity over the
superlattice volume. We construct the 8)&8 matrices de-
fined by

ar.'. .r
Hu (kj)=&Uu(e— (6)
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The expansion coefficients Cdj are found by solving the
eigenvalue equation

(Hdd (kj } s—6dd ]Cd I=o

where c. is the state energy.
In the construction of Hdd (kj ), we neglect the coinmu-

tator of H,', and H'„with exp(ikj r) and first-order ma-
trix elements with H, , and H,', . ' Matrix elements of
hv'+m 'k p are kept through second order. In essence,
we treat AV' and m 'k p as first-order perturbations,
H', and H,', as second-order perturbations, and compute
Hdd (k~ ) through second order A. s usual, energy denomi-
nators for off-diagonal second-order matrix elements are
symmetrized.

For the problem considered here, we wish to calculate
the wave vectors normal to the interfaces k jJ, in each ma-
terial at fixed values of kll, the projection of the wave vec-
tor on the interface plane, and energy e. (For notational
convenience we will use the symbol kz, without a vector
sign, to refer to the normal component of the wave vector
and the symbol kj, with a vector sign, to refer to a three-
dimensional wave vector. } For this purpose, it is con-
venient to display the k dependence of Hdd (kj ) explicitly.
We rewrite Eq. (7) as

(Hdd (kj ) +Hdd (kj ) +Hdod ]Cd' J
—0,

where the matrix H is the same for the two materials.
The matrices are given by

and

Hdd' = ~dd'+
2m m (ed+ed }/2—cp

(v, Iav'I vp)(UP Is, I v„)
( ed +ed ) /2 —ep

& vd I pll I Up&& Up Is i I
vd &

(ed+ed )/2 —ep

2

Hdd' ed+ e ~dd'+ ( Ud I
~V +Hs. o. +H«

I Ud &+Ol II E I I Rill l

2m m

&U
I p I

vp&&vpl~v'I v &
Hdidi = &vd Is—i I vd &+—X +

m m (ed +ed ) /2 —ep

& Ud Ipi I vp&& Up I pll I vd &

kll +
m '

p (ed+ ed )/2 —sp

(9a)

(9b)

( Ud
I
b V

I Up ) ( Up I
b V

I
Ud )+

p (ed+ed )/2 —ep

( Ud
I pll I Up & & vp I

~ v'
I

vd & & Ud I
~v'

I vp & & Up I plf I
Ud')+ +

m p (ed+Ed )/2 —ep (ed+ed )/2 —ep

&Ud IpllI UP&&UPI pllI Ud'&

m p (ed+ed )/2 ep— (9c)

Each of the three H matrices is Hermitian. Explicit
evaluation of these matrices is shown in Appendix A.

It is well known that Eq. (8) can be converted into a
linear eigenvalue problem for kj' if the matrix H is non-
singular. ' In obvious notation, one has

0 1 C C
—(H') 'H' —(H') 'H' 10

For the case we consider, the H matrices are 8X8 and
thus the non-Hermitian matrix in Eq. (10) is 16X16.
Thus there are 16 eigenvalues k for Eq. (10) and 16 corre-
sponding eigenvectors. The eigenvalues may be complex
describing evanescent states. We refer to Eq. (10) as
describing a 16-band model.

The matrix H is a nonsingular diagonal matrix [see
Appendix A, Eq. (Al)]. Four of the matrix elements,
which are equal to M+A /2m, describe the second-order
coupling, in the k-p interaction, of states which do not
couple directly to other explicitly included states. These
matrix elements are essentia1 to give the heavy-hole bands
downward curvature. Four other matrix elements, two

I

equal to A'+A /2m and two equal to L'+A /2m,
describe the second-order coupling, in the k p interaction,
of states which do couple directly to other explicitly in-
cluded states. These matrix elements are not necessary to
give the heavy-hole band downward curvature. In
essence, they slightly modify the curvature of the electron
and light-hole bands at large k. (Typically, they are less
than half the size of the M+f2 /2m matrix elements. '

)

Thus, to good approximation, one can neglect the matrix
elements A'+Pi /2m and L'+f2/2m in H . For con-
sistency, we "zero" these numbers when they appear in
H also. ' The matrix H now is diagonal with four
zero-diagonal elements. In obvious notation, Eq. (8) can
be written in blocked form as

h 0 a b a P0k+ bt k+
Ce

=0 . (11)

Equation (11) can be converted into a linear eigenvalue
problem for k to give
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0 1 0 O' C'
—[b '(a —bc 'Pt)] —[Ii '(a b—c 'bt)] —[b '(P b—c '5)] kC' =k kC'

—1pt —c-'h ~ Cf Cf
(12)

For the case we consider, the blocks are 4X4, and thus
the non-Hermitian matrix in Eq. (12) is 12X12. Thus
there are 12 complex eigenvalues k for Eq. (12) and 12
corresponding eigenvectors. We refer to Eq. (12) as
describing a 12-band model.

The additional four bands present in the 16-band model
and not in the 12-band model describe states which are
evanescent at all energies. They have rather large imagi-
nary wave vectors and cannot be considered physically
meaningful. These states do not contribute significantly
to the description of the superlattice states. ' The 12-
band model provides a good description of the constitu-
tent materials at small k and it is somewhat easier to han-
dle numerically for the description of the superlattice.

In Fig. 1 we show the complex band structure of GaAs
computed in the 16-band model. Calculations are done
for two values of k~~. k~~

——0 and k, =Zir/1Ouo, k~=0.
As we will shortly show, if k is an eigenvalue k*, —k
and —k' are also eigenvalues. In the figure only one of
this set of eigenvalues is shown. For k in a [100] direc-
tion (i.e., k~~

——0), the energy bands in the zinc-blende
structure have a twofold "spin" degeneracy. For k in an
arbitrary direction (i.e., k~~&0), this degeneracy is bro-
ken. io

However, on the energy scale of Fig. 1 the splitting
is very small and we have not resolved it in this figure.
Therefore each band in Fig. 1 corresponds to a twofold-
degenerate pair of states. At a fixed energy there are 16
bands. Four bands are evanescent at all energies with
large values of Im(k). At k~~

——0, energy extrema occur at
k =0 and the wave vectors are either pure real or pure
imaginary. For the k~~&0 case, the structure is somewhat
more coinplicated. The valence-band extrema occur away
from k = and there are complex bands emanating from
these extrema.

In Fig. 2 we show the complex band structure of GaAs
computed in the 12-band model. The calculations are
done for the same two values of k~~ as in Fig. 1. Except
for the absence of the four everywhere evanescent states,
the bands in the 12-band model are in fairly close agree-
ment with those in the I6-band model.

The eigenvalues k and eigenvector C satisfy Eq. (7) in
either model. Thus the eigenvalues k are determined by

then taking the Hermitian adjoint gives

[H (k') +H'kg'+H ]Ljt=o, (14b)

1.50 "
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0.00-
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-1.00- GoAs
16-

-1 %A I s a I I I
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Im(k) Re(k)

2.50

2.00-

1.50-

1,00-

(b) % 0.50-

0.00-

-0.50-

—I.OO-

and since C., satisfies this same equation, to within a
J

phase, one has

C.~=L~ . (15)

If the label j refers to the eigenvalue kj, the label j' is
taken to refer to the eigenvalue ( kj )' [i.e., k., =—(kj )'].J

det(H'k'+H'k +H') =0 . (13)
1%A ' I ~ ~ I I I I 1

8.20 5.00 2.80 0.60 0.40 0.20 0.00 020 0.40 0.60
Jm(k) Re(k)

Because the H matrices are Hermitian, if k satisfies Eq.
(13) so does k'. We thus have the important result that
complex eigenvalues occur in pairs, k and k'. That is
evanescent states come in growing and decaying pairs
with the same real part of k and imaginary parts of k
with opposite signs. The right eigenvector associated with
k' is the conjugate of the left eigenvector associated with
k. That is, if the row vector Lj satisfies

LJ(H kj +H'kj+H )=0, (14a)

FIG. 1. Complex-k band structure of GaAs computed in the
16-band model. Energy as a function of k is shown for two
values of k~t. k~~

——0 {top panel) and k =2m/10ao, k„=0 {bot-
tom panel). At a given energy, the purely real values of k are
indicated by a solid line on the right-hand side of the figure and
the purely imaginary values of k are indicated by a solid line on
the left-hand side of the figure. Complex values of k are indi-
cated by a dashed line, Re(k) on the right- and Im(k) on the
left-hand side of the figure. The zero of energy is the valence-
band maximum.
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FIG. 2. Complex-k band structure of GaAs computed in the 12-band model. Energy as a function of k is shown for the same

values of k~~ as in Fig. 1. The curves have the same significance as in Fig. 1.

Ur (r)= (RT)Ud(r) . — (16)

The fact that if k is an eigenvalue, k' is also an eigen-
value, follows from the Hamiltonian being Hermitian and
not from a spatial symmetry. For zinc-blende heterojunc-
tions with a [100] growth direction (and, of course, also
for the bulk material) a twofold rotation about the growth
axis is a symmetry operator. Calling this operator R and
the time-reversal operator T, it is useful to consider the
operator RT. When operating on the plane wave

exp[i(kz+k~~ r~~)], this operator gives exp[i ( —k'z
+"II'rll)] Notice, in particular, that it does not change

k~~. I.et us define the state Ur (r) by

Orthogonality and completeness relations for the eigen-
value equation are particularly important. The ortho-
gonality condition is found by considering two eigenvalues

k& and k, „writing the two eigenvector equations, taking

the Hermitian adjoint of the second equation, overlapping
each equation with the other's eigenvo:tor, and subtract-
ing. This procedure gives

(kj —k;)IC.,[Hz(kj+k;)+HI]C~ I =0 .

Thus, kj equals k;, or else the vector product vanishes.
The vector product has a simple physical interpretation.
It is the z component of the current-density operator aver-

aged over a unit cell,

For the case we consider, Uz has the same spatial part as
~d

Uq, opposite spin, and is multiplied by a phase factor.
For the first-order cell-periodic states, one finds 1 C't [H'(k' +k'}+H "]C'. (21)

(RT}Ud k g = U
q~; —k, i

t~

(17)

Using the fact that RT commutes with the Hamiltonian,
one finds that

(H~k +H~k+H~ )

where QJ is given in Eq. (5) and the subscript A implies an
average over a unit cell. The orthogonality condition can
then be written as

(22)

Since the eigenvalues k can be found by setting the deter-
minant of the matrix in Eq. (18) to zero, one sees that if k
is an eigenvalue, —k' must also be an eigenvalue. The
eigenvectors associated with the eigenvalues k and —k'
are related by (to within a phase)

Cd. ki =(C k, )'.
~II

Combining with the previous result, we see that if k is an
eigenvalue, k, —k', and —k are also eigenvalues.

(Notice the conjugation of the state vectors. }
The orthogonality condition takes the same form in the

16- and 12-band models. The completeness relations take
somewhat different forms in the two models. The com-
pleteness relations will prove to be important in proving
that our treatment of the interface leads to flux conserva-
tion and other important results. %e will explicitly state
the completeness relations in the 16-band model and also
prove these results in this model. However, very similar
arguments can be used to prove the same results in the
12-band model.
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The derivation of the completeness relations process in
the usual way. An arbitrary 16-vector is expanded in
terms of the eigenvectors of Eq. (10),

Sd Cdj

(J:S) =&BJ k C (23)

(C~,, )'Hj pe J.

'n~
j d&

(24b)
j

kj(C~, ~ )'Hg gCgg+kg(C~ .,)'Hg pe.j
j d)

(24c)

The orthogonality relation is used to find BJ in terms of
the components of the arbitrary vector. The result is sub-
stituted back into Eq. (23) and various possibilities for the
vector are considered. As a result, one finds that the fol-
lowing relations are satisfied for all d and 1'

(C» , )'H. g, pe J
0=XX (24a)

j d)

gy and k~~ in terms of the individual material bulk eigen-
states (both Bloch and evanescent) with those values of s
and k~~,

+(r)= QA~QJ(r)+ gBgQ;(r), (28)

where AJ and B; are expansion coefficients and PJ. {P;)
are the eigenstates in material a (b) at the given values of
e and k~~. In Eq. (28), the interface is assumed abrupt so
that r is either in material a or b. The notation in Eq.
(28) means that the sum on g is taken for r in material a
and the sum on P is taken for r in material b We. will
show that the expansion coefficients A, and B; satisfy the
relation

(29)

where the interface was taken to contain the origin. This
equation, together with boundary conditions to the left
and to the right, provide a complete set of equations to
describe a single interface.

It is clear that any argument applied to give Eq. (29)
could equally well be applied in a different order to give

Bg ——g b J,, AJ.J.,!
kj(C~ .„) Hg, gCgj

'n~.j d) j j l,g 1
JJ', , ~ J,,, =5)J

Similar results are derived in the 12-band model using the
same approach. The results in the 12-band model are
somewhat longer to state.

{24d) For these relations to be consistent, it must be that

(30)

(31a)

III. INTERFACE DESCRIPTION
ba

J 1 J JO J Ii'j
(31b)

(26)

From this definition and Eq. (21), we see that

J/ (J/ )4 (27a)

(27b)

We expand an interface eigenstate 4 with a given ener-

In the description of the individual materials making
up a superlattice, there is an arbitrary energy zero. When
describing an interface between two materials, the energy
scales of the two materials must be the same. We include
an offset energy between the valence-band maxima of the
two materials. ' We take this energy offset to be given
empirically.

We describe the matching between bulk eigenstates of
the individual materials to construct eigenstates of the in-
terface using the z {interface normal) component of the
current-density operator averaged over a unit ceH. In
analogy with Eq. (21), we define

~ ~k!'-k~~~
(g, , ) J,(t) )

f' )„=J,',,e (25)

In Eq. (25), the interface is taken to include the origin of
coordinates. For the interface a distance i from the ori-
gin, phase factors enter,

These conditions imply flux conservation across the inter-
face. To see this, note that flux conservation requires [see
Eqs. (28) and (22)]

g(A.~)'J', AJ. ——g(B,,)'J, ,,B( .
j l

Using Eq. (29) to eliminate A& gives

(32)

g (B,,)'J~~. J,,Bi——g (B,,)'J...B; . (33)

Equation (31b) then establishes the result. Using Eq. (30)
to eliminate B;, then Eq. (31a) will also establish the
flux-conservation condition. It is easily seen that the
phase factors which appear if the interface does not con-
tain the origin of coordinates do not change the argument.
We first show that Eq. (29) is valid and then use the com-
pleteness conditions of the single-material eigenvalue
problem, Eqs. (24), to establish Eqs. (31).

To establish Eq. (29), we follow an argument presented
in Ref. 22. Consider an abrupt interface at the z=0
plane. Let QJ(r) be an eigenstate with s and k~~ in materi-
al a to the left and let QJ(r) drop rapidly but smoothly to
zero for z ~0. Likewise, let P;(r) be an eigenstate with e
and k~~ in material b on the right and let P;(r) go rapidly
but smoothly to zero from z &0. Note that boundary
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conditions to the left and right of the interface are not
specified. Expand the interface wave function as in Eq.
(28). Let

l g ) be the (unknown) interface eigenstate
which is equal to g~(r) in material a. Overlapping the
Schrodinger equation with (g l

gives

g&0. IE —sl fj», +g &0 IH —elV;»;=0. (34)
J i

Subtracting (PJ' l
H —e

l g~ ) (=0) from the coefficient of
AJ gives

fiz—
(0 IH —e

I 1/, ) = I dsn (4Vi/i, Q—,V(.'), (35)

where S is a surface to the left of z =0 and n is a unit
outward normal to S. Because (N(r)=i/i (r) for r to the
left of the interface, one can replace g, with i((~ in Eq.
(35). Because the surface integral in Eq. (35) has the same
value for all surfaces everywhere to the left of the inter-
face, it can be averaged over a unit cell to give

where S' is to the right of the interface and n is a unit
outward normal to S'. Taking S' to coincide with the in-

terface, g can be replaced with (t/( . One can then write

(g l
H —s

l (I); ) = i fi —f ds ( i/(
l J,( r )

l P; ) .
z=0

(38)

%'e next coarse-grain-average the current density over a
unit cell to give

(39)

Substi«ting in«Eq. (34), and using the definitions of
Eqs. (21) and (25) and the orthogonalization condition of
Eq. (22), gives the desired result stated in Eq. (29). This
result can also be deduced following the variational argu-
ment of Ref. 23.

From Eq. (5), we see that the current-density operators
can be written in the form

&g. lH —sly, &=i@*&@.
l J, l q, &„, (36)

J"., = g(Cd , )' Cd. j ((dk' , l J, .
l
d'kJ )g), (40a)

where u is the area of the surface (z projection} integrated
over.

In the same way, by subtracting ((t},'
l
H —e

l

g' ) (=0)
from the coefficient of B;, one finds

(io(H —E(ki)= Jchn (i,"(,(pi —p vi;), (37(

where

lk ~ r

(r
l de) = Udi(r) .

N

Through first order in the wave functions, we have

(40b)

(dk'. , l J, l
d'k, ' )„=

( Ug l pi l Up) ( Up l
b, v +m 'Ale' p l Uy )+

(Eg+Ed )/2 —sp

&U, l~v'+~-'n, '"pl U, &&U, lp, l
U, .)+

(sd+eq )/2 —e~
(41)

Detailed expressions for these matrices are derived in Appendix B. For the case I =I, the result has already been stated
in Eq. (21). For /&/', we have

( dk'. , l
J,

l
d'k; ) = [H~ (k'+k; )+H~ —b~ ]= [H~ (k4+ k~)+Hgg~ +(bd d )'], (42)

where b,~ contains only first-order terms in (I} V [see Appendix B, Eqs. (B3)]. The matrix (d'k;
l J, l

dk'. , ) is found by

taking the conjugate of Eq. (42).
Equations (31) are established by substituting Eq. (42) into those expressions and using the completeness relations for

the 16-band model, Eqs. (24}. After a straightforward but tedious calculation, one finds that these expressions are
correct through first order. That is, they are correct through the order to which the calculation was performed. In the
12-band model, the procedure and results are exactly the same as in the 16-band model. The completeness relations are
somewhat more complicated and the calculation more tedious, but Eqs. (31}are also correct through first order (no addi-
tional approximations} in the 12-band model.

We next consider the relation of the matching condition expressed by Eqs. (29) and (30) to the smoothness of the state
function of the interface. We use Eqs. (4) and (5} to rewrite the interface state function as

Ik "r
e

i@~-r
e

ik~"r ik&.rl

0 = g AiC~& U~(r)+ g g AJC~& W(i@ Uii(r)+ +8;C~; U~(r)+ g +8;C~; W~~~; Uii(r),
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where Wq@ is the matrix element in Eq. (4b) and AJ and B; satisfy Eq. (29). Consider the functions

ik~'rJ
Fd'(r) = g AJ. Cg~J.J (44a)

ab. r

Fg(r)= QB;Cgg
N

These are "envelope" functions of the explicitly included cell-periodic functions U~(r). We show that in the 16-band
model these functions are continuous and have continuous derivatives to zeroth order in the perturbation expansion.
To do this we write the matching condition (29) and substitute Eqs. (40) and (42) for J,,

(C~, )"[H~~ (kj'+k; )+H~ 4~ ]—Ce;B;

cf,d i J J

Comparing with Eq. (44) and noting that the parallel
components of k are the same for all cases, we see that
Eq. (46) states that the envelope functions of the explicitly
included states are continuous to zeroth order in the per-
turbation theory. In the same way, multiply Eq. (45) (h~
dropped) by kg Cd'-1 and sum over j. Using the complete-
ness relations, one finds

g kl'Cg-J AJ
—g k( Ce-i' .

Comparing with Eq. (44), one sees that Eq. (47) states that
the normal derivative of the explicitly considered states is
continuous to zeroth order. In the 12-band model a simi-
lar argument shows continuity of the envelope functions
to zeroth order, but the argument for continuous deriva-
tives does not go through. Thus, we have seen that the
matching condition given in Eq. (29) ensures fiux conser-
vation through first order in perturbation theory (the or-
der to which the individual state functions are described)
in both the 16- and 12-band models, continuity of the
normal derivative of the envelope function of the explicit-
ly considered states to zeroth order in the 16-band
model, ~ and continuity of the envelope function of the
explicitly considered states to zeroth order in both the 16-
and 12-band models.

We have noted previously that the interface problem
has a symmetry operator which does not change k~~. This
operator consists of a twofold rotation about the z axis
and time reversal (RT). We have seen that if Pl is a
single-material eigenstate with normal wave vector kj,
then (RT)gz is also a single-material eigenstate with nor-
mal wave vector —kj'. Let us define the label yj by

Qr (RT)fq . —— (48}

Now drop b,ee as being of higher order, multiply by C~-l,
and sum over j. Using the completeness relations (24),
one finds

g Cg-)AJ ——g Cg-;B; .

This symmetry condition is of use in describing superlat-
tice solutions.

%z(r)= g [%g,(r)+%g, (r)], (50a)
C

where il is the superlattice quantum numbers and the no-
tation means that

%~(r) =+go(r) (50b)

for r in material a and the zeroth superlattice cycle, etc.
Because of the superlattice translational symmetry, the su-
perlattice wave function must satisfy

+z(r +D)=e " 4„(r), (51)

where D is any superlattice translation vector and Qv is
the superlattice wave vector. For a superlattice of two
zinc-blende structure materials grown along the [100]
diro:tion and having M, layers of material a and Nb
layers of material b, the primitive superlattice translation
vectors are

a=
(M, +Nb } z, M, +Nb ——even

2

Qp Qp
(M. +&s) R+

(52a)

apP= (x+y),
2

Qpy= (R—$'),

(52b)

(52c)

where ao is the lattice constant. From Eqs. (51) and (52),
we have

IV. SUPERLAi i ICE EIGENVALUE EQUATION

We label the superlattice cycles . . . , —1,0, 1, . . . and
define the superlattice wave functions as piecewise sums

(Pr is an eigenstate with the same e and k~~ as PJ and has
J

normal wave vector —k . ) One then has

(49)

%~& „(r+na) =e "4'g 0(r)

4'g „(r+na) =e "+go(r) .

(53a)

(53b)
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%&„(r)=Q Aj".vs(r),
J

(54a)

We now expand qi, „(r) and %k„(r) in terms of the

eigenstates of the individual materials with a given energy

c and parallel wave-vector component kI~,

[A]JJ ——(A(.,)«.«)* . (62)

This operator is similar to the usual Hermitian adjoint,
except each evanescent state is interchanged with its con-

jugate state. It is easy to verify that

qi$„(r)= +8;"„i';(.r) .

By the symmetry property of Eqs. (53),

i(Q„—ka) an
J "9 J"9

(54b)

(55a)

([A]) =A,
(A+8) =A+8,
(A8) =8 A,

(cA) =C"A,

(63a)

(63b)

(63c)

(63d)

and where c is a scalar. We also define the diagonal matrix

i (Q„—k~).an
i;g = i;qe (55b) Jjj ——J'.~, .j J

(64a}

It is easy to verify

ab
ikj an j ~i ~n ik an

Ja
J J

(56) Using Eq. (31), one finds

M '=J 'MJ,

The interface-matching condition applied to the (a, n;b, n)
interface 6 requires

(64b)

(65)
Using Eqs. (55), all these conditions are satisfied if

ab
Jj~,

"J,.= X Ja

ab
ig& c isa ——ik«a~~ ~ J «i &k; b

j~e e e Ja
J J

(59)

In the same way, the interface-matching condition is ap-

plied to the ( b, n;a, n +1}interface to give

gab
al .y.

i Jji'

where b is the layer thickness of material b. Substituting
the symmetry condition of Eqs. (55), all these equations
are satisfied if

1
Mii'

JJ
iQ& (a+b)=e '9JJJ

(67)

If Qz is a solution to the eigenvalue equation with right
and left eigenvectors A„and L„, then Q„' is also a solu-

tion with right and left eigenvectors, i7

L„and (A—„J) .

where M is given by Eq. (61b). Let Q„and Aj.„satisfy
Eq. (61a) and let Lj„be the left eigenvector associated
with Qz', that is, L&„solves

(66)

Taking the adjoint operator of this equation and using Eq.
(65) gives

where a is the layer thickness of material a. Since Q„
and kj (all j) have the same parallel component, we have

ab
ig&(a+&) ikj«a + J«i — ik&b

(60)J«ply
J J

Using this result, the orthogonality and completeness rela-

tions for the eigenvalue equation are found in the usual

way

(A.«(„,,«)'J'. «.Ajg

g (A.„g,) J'.*.Ajg
J

=&gg (68a)
Equations (57) and (60} are our basic result. They can

be converted to an eigenvalue equation by eliminating 8J
in Eq. (60), (A.,g, )'J'.«.AJ g

g g(A ,g, )'J', . Aqg
J

The analogous relations for 8 and J are also valid, as is
easily verified by using Eq. (57} to eliminate A in terms of
8 and then using Eqs. (31).

The inverse relation Eq. (65) can be used to cast the
eigenvalue equation into an equivalent form which can be
more convenient numerically. Taking the inverse of Eq.
(61a) and using Eq. (65) gives

iQ„(a +b)g Mqq Aq' v
e" Ap.

——,
J

(68b)(61a)

ik. a 1 ab ik b

Ja j i Jb i
J J i l

(61b)

M+J 'MJ
A~ „=cos[Q„('a +b) ]AJ „,

.JJ
(69a}

The eigenvalue equation Eqs. (61) is solved for the
eigenvalue exp[iQ&(a+b)] and the eigenvector AJ z. The.
expansion coefficients in material b are then found from
Eq. (57). Clearly, an equivalent result can be obtained by
eliminating Aj.z.

We consider some features of this eigenvalue equation.
It is useful to define an adjoint operator (denoted by su-

perscript tilde, or overtilde) by
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M —J 'MJ
AJ' „=sin[Q„(a +b)]AJ „.

2l

—ig& (a+b)
MJJAy, ~

——e " Ay~ . (71)

Thus, if Qv is a solution with eigenvector AJ&, —Qz is a
solution with eigenvector ( Ar z ) . Combining with a pre-

vious result, we see that if Qz is a solution Q„', —Qz and
—Qz are also solutions.

The normalization conditions on the expansion coeffi-
cients A and 8 are derived in Appendix C. Here we state
the result as

where

= g (a.. )'N', .,~,'„
J ~J

+ g (B,,„)'N~,
,S;„,

i ~,i'
(72a)

N', , = g (C~., )'P~ (kg, kj')Cgq',
dJ

N, g, ——g (C. ~~. , )'P~ (k;,k; )Cg;
d, d'

and P are spin-diagonal matrices given by

(72c)

Pgg (kq', kJ') =
—i (k&~ —k&~)a

1 —e

k' —k'J J

)& [5~ + (kj' kj')S~ ], — (73a)

P'.(k,', k,') =
a+b

i (kb k b)y

k' —k.b b

x[5~+(k; —k; )S~ ] . (73b)

Here, Sdd is given by

~d'a~d 6
6o o "—6G G

'.
Gg —{jr'g il ll

The P matrices satisfy the condition

P~ (kj,kj ) =[Pg g(kj', k. )]*,

(73c)

which ensures that the normalization integral is real.
We have considered a superlattice consisting of alter-

nating layers of two materials. The approach here can
equally well describe superlattices in which the repeat cy-

For the particular case of [100] growth of zinc-blende
materials, the symmetry operator (RT) also implies con-
ditions on the values of Q„. From Eq. (49), we see that

MJJ
——(Mr .r, )',

so that the eigenvalue equation can be written as

cle consists of more than two layers. In Appendix D we
briefly describe this case.

V. SVNOPSIS

%e have presented a theory of the electronic structure
of semiconductor superlattices based on the }r p formal-
ism. An empirical pseudopotential calculation, using
averaged pseudopotential form factors for the constituent
materials, is performed to provide a basis set for the
zone-center Bloch states. Including spin, eight zone-
center Bloch states are treated explicitly and a larger num-
ber (46, as actually implemented) are included in Lowdin
perturbation theory. ' The perturbation interaction is the
m '}t p operator and i} V the difference between the
given material and the averaged pseudopotential. Pertur-
bation theory is done to first order for wave functions and
to second order for energies. The spin-orbit interaction
and stress interaction, due to possible lattice mismatch,
are taken between the explicitly included states. Using
this description of the individual materials, B}och and
evanescent states are found by solving a non-Hermitian
eigenvalue problem. Two forms of the theory are can-
sidered: a 16-band model and a 12-band model. The ad-
ditional four bands which appear in the 16-band model
are evanescent at all energies and have very large imagi-
nary wave vectors.

States in the two materials are joined at the interfaces
using results derived about the normal component of the
current-density operator. This interface description en-
sures fiux conservation through the order in perturbation
theory at which wave functions are calculated in both 16-
and 12-band models. The envelope functions of the ex-
plicitly included zone-center states are continuous to
zeroth order in the perturbation for both 16- and 12-band
models, and the normal derivative is continuous to
zeroth order in the perturbation in the 16-band model.

The superlattice translational symmetry is used to
derive an eigenvalue equation for the superlattice-normal
wave-vector component and wave function. A result con-
cerning the possible values of the superlattice-normal
wave-vector component is used to cast the eigenvalue
equation into a computationally simpler form. The final
form of the theory consists of a non-Hermitian 12)& 12 (or
16X 16) eigenvalue equation for the normal component of
the superlattice wave vector for fixed energy and the
parallel component of superlattice wave vector. The su-
perlattice wave function is determined in terms of spatial-
ly varying functions, multiplying the zone-center func-
tions determined by the pseudopotential calculation.

In this paper we have presented the formal results of
our theory In the foll.owing paper, ' the numerical im-
plementation of these results are described.¹readded in proof. One can show the terms propor-
tional to Sdd vanish in the normalization integral when
the sums on j' and j' (i * and i ') are performed.
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APPENDIX A: EVALUATION
OF THE HAMILTONIAN MATRICES

(S
I
Z) = —(Z

I
S)=iP',

(X
f
Z) =(Z

f
X)=X'k„,

( Y
f
Z) = (Z

I
Y)=X'ky,

(A2c)

(A2d)

(A2e)

$2
(x fx)=(Y

I
Y)=m+

2ttl
(A lb)

In this appendix we present the explicit form of the ma-
trices H~q, H~u, and H~ defined in Eqs. (9). We consid-
er the case of zinc-blende semiconductors with k in the z
direction and k~~ in the (x,y) plane. Spins are quantized
in the z direction.

We first note that except for the contribution of Hi,
to H ', the matrices are spin diagonal and independent.
We label the eight basis states by I S&, fX&, I Y&, I Z&
combined with a spinor t and l, where

I
S & corresponds

to the I 1 conduction-band spatial state and

I
X&, I

Y &, I
Z & to the three components of the I »

valence-band spatial state.
The general form for the matrices are given in Eq. (9),

the matrix H is spin diagonal and independent. The
nonzero matrix elements, in obvious notation, are

fi(S IS)=A'+ (Ala)2'

X'=I"—6 +H1 —H2

'2

a=2— (S fP, f U, &(U, fP fZ&

(e, +e„)/2 —ej.
(A2g)

where

(A3a)

(S IP, fZ&, (A3b)

~P(
—ih

j«IS-
(s

I
p, I v, &(v, I

sv'fz&
(s, +s, )/2 —e,.

The results for the various materials differ by the value of
the constant P', which is given by

M =H1+H2,
2

2

jGj. ts

L'=I'+26,

(z fz)=I. '+
2m

where

1&S IP. I
U & I'

E —EC J

E —E. *

J

I(x fP„IU, &I'

(Alc}

(Ald)

(Ale)

(A 1f}

(A 1g)

(A lh)

(S
f

b, V'
f UJ & ( UJ I

P, I
Z &

+
(s, +s„)/2 —sJ.

(A3c)

It is convenient to write H ' as the sum of three terms

H"=H', I. +H'„'+H,'I, (A4)

where HOI, is the spin-orbit contribution, H, ,
' is the stress

contribution„and Hq' are the other contributions. The
form of H, , is well known, the nonzero matrix ele-
ments are

gl
(xt I»)= —(zt fxt)= —(xt fz1)=(zt fxt)=

3

(A58)

16=—
2 Pl

and

7?l

(Ali)

(A lj)

and

(Zt
f

Yt)= —(Yt fzt)=(zt
f
Yt)

= —(Yt Zt)=(Yt fZt)
= —(»

f

Yt)= —(Yi fxt)

=(Xt
f

Yt)=
3

(A5b)

The explicitly treated states are not included in the sums
on states which appear. The zone-center eigenstates and
eigenvalues of the reference pseudopotential Hamiltonian
are used to calculate the constants which appear in H .
Note that H is the same for each material.

The matrices 0" are also spin diagon. al and indepen-
dent. The nonzero matrix elements are

where 6 is the spin-orbit —interaction parameter in ma-
terial I, which we determine empirically.

For a superlattice made of two zinc-blende-structure
materials, and a [100] growth axis, only diagonal strain
components are introduced (i.e., E„~=O, etc.) by lattice
mismatch. The diagonal components are

(S IX)=(X fS)=Bky,

(S
I
Y}=(YIS)=8k„,

(A2a) 2C12
XXE

11

(A6a}
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a a
&xx =yy =

b b
&xx =Fyy =

where

ao

Dao

ao

Gbb

6'a+6 b

6'a
G'a+6 b

(A6b)
(dk , .

i J, id'kj )g .

These matrices are spin diagonal and independent. The
general form is given in Eq. (41). For the case /=/', a
straightforward calculation shows

(dk'. , i J, id'kJ )= [H~(kj'+kj )+Hei ] . (Bl)

ao=ao aoa b (A6d) For the case /&/', we find

a,'+a,'
ao ——

2

6 =2 C))+C)2—I 1 E
2(c'i2)

Cl

(A6e)

(A6f)

(dk' , i J, .
i
d'k; ) = [H~ (kg +k; )+H~ —4~]p b 1

[H~~ (kj +k,b)+H~~ +Ed g],

(82)
and ao refers to a lattice constant and the C's are the elas-
tic constants. We neglect the spin dependence of the
stress interaction as small. Then, H, ,

' is spin diagonal and
independent with nonzero matrix elements, 30

(S is)=c'(2e' +e' ),
(X iX)=(Y

i
Y)=(/+m )e~+m'e~

(Z iz)=2m'e' +/'e',

(A7a)

(A7b)

(A7c)

where c, /, and m are deformation-potential constants.
We determine the deformation-potential constants and the
elastic constants empirically.

The matrix Hanoi is spin diagonal and independent; its
nonzero matrix elements are

where b,+ is a non-Hermitian spin-diagonal and indepen-
dent matrix. The nonzero matrix elements of h~ are

~ '

(s
i p, i U, )&U, i~v'iz)

(S
i
Z)=i 2

m i~r (e~+ eq )l2 —ei

(83a)

(Z is)= —i

(s isv'i U, )(tr, i p, iz)
X

(e, +s„)l2—s;Jar,

(S is)=(e, +b,e,' —e)+ A'+ k~~~~,
2m

(X
i
X}=(e„+b,e„s)+L'k„+M—ky + k (~,2m

(Y
i
Y)=(e„+he„e)+L'ky+Mk„+— k((,

2m

(z iz)=(.„+~..'-.)+ M+
2m

(A8b)

(ASc)

(ASd)

(X
i

Y}=( Y
i
X)

= —l
m

(X
i
b V'i U, )(U, iP, i

Y)
X

JCr» GI}—Ej

(83b}

(S
i
X)= —(X

i
S)=iP'k„,

(S
i

Y)= —( Y
i
S)=iP k„,

(S
i
Z}=(Z

i
S)=Bk~ky,

(x
i
Y}=(Yix)=uk.k, ,

where

hei = (s
i
s v'i s) + g i &s lsv'IU, & i'

jGI l
E,~

—Fj

set=(x i~v'ix)+ g i (x i
hv'i U,. ) i'

APPENDIX 8: EVALUATION
OF THE CURRENT-DENSITY MATRICES

(A8e)

(ASg)

(ASh)

(ASi)

(ASj)

where we have usal 5V'= —/) V .

(83c)

APPENDIX C: WAVE-FUNCTION NORMALIZATION

In this appendix we evaluate the superlattice wave-
function normalization integral

f %v%P r

for the case that Qv is real (i.e., for superlattice Bloch
states). Substituting the expanded form of the superlattice
wave function as given by Eqs. (54), (50), and (5) into the
normahzation integral, we immediately find that it is
given by Eqs. (72), where

P~ (kg', kJ') =
b+ a

In this appendix we present explicit forms for the
current density matrices X d'r e ~ U~.. ' U„', C1a
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Pee(kb, k; )=
Ni, +M,

X J,d'r[e " ' (U~~, )'(Ue; )], (Clb}

where the co' and aib are the regions in material a and b of
the superlattice unit cell, respectively. A spin overlap is

assumed in Eqs. (Cl), so the P matrices are spin diagonal
and independent.

%e consider explicitly the matrix I"; the matrix I' is
evaluated in an analogous way. The periodic part of the
Bloch functions are written to first order as in Eqs. (4)
and zone-center basis functions are expanded in plane
waves as in Eq. (2) to give (to first order)

1 1 3 i (kj~ kj~+'6 G)'r a aP~ (kg, kJ') = d r g e ' ' ReGReG+ g(ReriRpo Wep'+RpGReG Wgp)}
Nb+M, 0 P

L

Evaluation of the integral gives

(C2)

1 i(k~.—k~+G'-G) r
e ' ' dr=

Q(Nb +M, }

i(ka ka)a
J J

~o'o
1 —e

a+b oii'oui (k;, —k;)+(G; —G, }
(C3)

APPENDIX D: MULTILAYER SUPERLATTICES

The formal structure presented here can be used to
describe superlattices whose repeat cycle consists of more
than two material layers. Let the superlattice wave func-
tion be written as

where I labels the repeat cycle and the first subscript la-
bels the layer in the cycle. The piecewise functions are ex-
panded as

q p i y~,
p
'„y—', (r), .

Jp

(D2)

where jz labels the Bloch and evanescent states with fixed

F«Gi/Gi, Gj —Gi &&kj' —k~' and the denominator of
Eq. (C3) is expanded to first order. This expansion is con-
sistent with the first-order calculation in the m 'k p
operator. Keeping terms to first order and noting the
orthogonality of the periodic basis functions gives Eq.
(73a). The result for Ps follows in exactly the same way,
only the integration range is different.

c and kI~ in material p. By the superlattice symmetry,

i(Q —kP ) lapl p 0 JpAj'. q
——Aj .qe (D3)

where a is the superlattice translation vector which
translates one repeat cycle.

To be consistent with the treatment in the text, we take
the origin of coordinates to lie on the (1,0;2,0) interface.
Applying the interface-matching condition [Eq. (29}] at
the (i,I; i + 1, I) (1 (i (r —1) interfaces gives

i+ l, i

i+1j'j
(D4)

1,r
iQ d j +j' ik o& ik'(d —a&)

J.' .
J J

where d is the thickness of the repeat cycle and a; is the
thickness of the ith layer (i.e., g,",a; =d and

2a; =dI). These equations can be combined to form
an eigenvalue equation,

where d; is the normal distance between the origin and
the (i,0; i + 1, 0) interface. Applying the interface-
matching condition at the ( r, I —1; 1,I) interfaces gives

AJve

Jl', 1' —1

ik'al r
J2, 1

ik2 a (l&/)Q 't

X Xe J2 (D6)

This eigenvalue equation can be solved to find A' and

Qv. The remaining expansion coefficients can then be
found from Eq. (D4}. We also note that this formulation
can be used to approximate continuously varying poten-
tials (e.g., graded interfaces, band bending) by dividing the
spatially varying region into a series of steps.

APPENDIX E: COMPARISON
%'ITH PREVIOUS k-p MODELS

In this appendix we show that our results can be re-
duced to those of White and Sham, and Bastard, if
only special cases are considered and a series of approxi-
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mations are made. Starting with our results, we only con-
sider the k~~

——0 case, drop all first-order terms of the
b, V+m 'k p operator in the wave functions so that
states outside of the eight explicitly considered ones do
not enter, drop the stress interaction, switch to a Krarners
basis, and take the spin-orbit interaction to be very large
so as to drop the split-off band states.

Taking the spin-orbit interaction to be very large
reduces the Hamiltonian matrix to 6&6. Neglecting the
effect of higher-energy states mixed in by the
b, V+m 'k p operator and taking k~~

——0 decouples the

~

—', + —,
'

) states in the Kramers basis from the other states.
These states correspond to the heavy-hole band for k~~

——0.
With the approximations described above, these states are
dispersionless. These approximations are not appropriate
for a description of the heavy-hole band. Dropping these
states, the Hamiltonian is 4X4. It is block diagonal in
two identical 2X2 blocks describing electron and light-
hole states with a z component of "angular momentum"
of + —,

' and ——,'. The + —,
' matrix elements of the Hamil-

tonian for material l are

in the calculation of the momentum matrix element p. It
must be the same for the two materials. The current-
density matrix elements (dk

~
J,

~

d'k') become the same
for all material combinations and are independent of k
and k' because of the neglige;t of higher-energy states
mixed in by the b, V+m 'k p interaction. The nonzero
matrix elements of this operator are (+—,

' states)

(St
/

—, —,)=—( —, —, /St)=iP3 1 3 1
(E2)

It is a straightforward matter to determine k and eigen-
functions for the two materials from the 2X2 Hamiltoni-
an matrices, construct the current matrices of Eq. (40a)
from these eigenfunctions, construct the 2 X 2 final matrix
of Eqs. (61), and find the superlattice dispersion relations
from the eigenvalues of this matrix. In this way one finds

cos[Q(a+b)]=cos(k'a) cos(k b)

1

O' P'
sin(k'a) sin(k ~b),

(St
~
St)=s, +ha', —s,

(St
~

—', —,')= —(-,' —,
' ~St)=iP k,

(Ela)
where

(Elb)
e—(s„+de„+b, '/3)

(E3b)

I
( ——

i
——)=e +lLs + —s3 1 3 1

3
(Elc)

~he~~ only the first-order term [Eqs. (Agi) and (ASj)] is
kept in hs, and be, . Only the lowest-order term is kept

This is exactly the form reported by Bastard [Ref. 8, Eq.
(11)]. It is equivalent to the form reported by White and
$ham [Ref. 6, Eq. (6)], as is easily verified using a series
of trigonometric identities.
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