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Solid-state analogue of the relativistic gases
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An exact analogy is developed here between particles in a nonparabohc band of a semiconductor

(nonparabolicity parameter Eo- z E~, energy gap EG) and a gas of particles of rest mass mo mov-

ing with relativistic velocities. The connection is made by replacing the velocity of light in the rela-

tivistic theory by the velocity U=(EO/mo )', where &no is the effective mass at the band ex-
tremum For InSb (conduction band), u -1.1&(10' cm/s. The rest energy @=moc of the relativis-
tic theory is then replaced by Eo=mo U . A compressive stress, for example, which increases non-

parabolicity corresponds to a gas which is rendered more relativistic because Eo has been decreased
relative to kT. The density of states corresponding to the dispersion relation il ki/2m 0

=E(1+E/2EO) is shown to be of the same form as that for an ideal special relativistic gas. The
well-known relativistic change of mass with velocity is also reproduced exactly in the solid-state
case, and not only approximately as hitherto supposed. The thermodynamic quantities such as the
mean number of particles, the mean energy, and the pressure of the gas are all given in terms of
modified Bessel functions E„ofthe argument kT/Eo.

I. INTRODUCTION

It is pointed out in this paper for the first time that the
analogy between particles in a conduction band with a
nonparabolicity parameter Eo (an energy) and a gas of
particles of rest mass mo which move with relativistic ve-
locities is exact and not approximate as hitherto supposed.
On approaching the limit of a parabolic band, Eo 111-

creases to infinity and this corresponds to a relativistic gas
of particles which are sufficiently heavy to behave nonrel-
ativistically. If Eo is small compared with kT, however,
the corresponding gas can be treated in the extreme rela-
tivistic limit. This suggests new physical ways of looking
at solid-state experiments using

Eo=mo'u', Eo-Eg/2,

where m o is the effective mass at the band extremum and
the velocity u and the energy Eo are related by (1). The
analogy is then simply obtained by replacing the velocity
of light of the relativistic theory by u, and the rest mass
by mp.

Ep =Pl pc ~Ep =Pl p v ~
2 EG

2 4 2

particle-antiparticle pairs has occasionally been noted.
Also, the two-band effective mass theory has been related
to the Dirac equation. But this is quite different from
the exact analogy discussed here, which covers the density
of states and the change of mass with velocity.

The analogy- applies most siinply to the conduction
band of semiconductors of energy gap Eg which can be
described by a dispersion relation of the Kane-type

(3Eg +25 )(E +Eg )(E +Eg +b )

2mo 3Eg(Eg+Q)(Eg+E+ TQ)
(3)

where E is the carrier kinetic energy above the bottom of
the band and 5 is the spin-orbit splitting of the valence
band. The relation (3) can often be approximated by

2m p 2'? p 2+p

The simplified form (4} certainly applies if b, ~O or
h~ ao. In other cases one can show that for all b, and E

Ak2 1 21&
2mo E(1+E/Eg)

(m, ,c) (m,', u) .
(2) For our purposes it is adequate to treat Eo in Eq. (4) sim-

ply as a parameter and to use (4) rather than (3).
For the conduction band of InSb, m o -0.013m o,
Eg -0.18 eV so that, interpreting 2Eo as Eg ', one finds
u —1.1X10 cm/s, which is 0.37% of the velocity of
light. Thus some relativistic type experiments can be per-
formed more readily in the sohd state because u &&c.
This has hmn noted before it is, however, the exactness
of the analogy which occupies us here. The systems con-
sidered here stand between the nonrelativistic gases
(so~ 00 } and the extreme relativistic gases (e~O).

The analogy between the forbidden gap in a semicon-
ductor and the energy 2moc needed for the creation of

II. SOME PAST USES OF THE DISPERSION
RELATION {4)

The two-band Kane model as expressed by Eq. (4) is
widely used for the conduction bands of semiconductors,
particularly the III-V compounds. As no review article of
such studies seems to be available, we merely cite some
relevant recent work. ln silicon the piezo-resistance was
studied in this way recently; in InSb the metal-insulator
semiconductor capacitance, surface waves, and the heat
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capacity of thin films could be discussed with the aid of
the dispersion relation (4};it was used for gallium arsenide
to study the Boltzmann equation for the interaction of en-
ergetic electrons vrith polar optical phonons. Note also
studies of nonparabolicity by the measurement of ther-
moelectric power in a strong magnetic field, applied for
example to lead compounds' and the inclusion of the ef-
fect of nonparabolicity in the study of the hot electron
distribution in InSb." We shall apply the new interpreta-
tion to the first of these references. s This examines the
stress dependence of the resistivity of the conduction band
of n-type silicon. Apphcation of a compressive stress
makes the electron gas more relativistic, or the "rest ener-
gy" Ep smaller with respect to kT. This is equivalent to
speaking about increased nonparabolicity or alternatively
about a greater departure from the nonrelativistic limit.
The effect of the dispersion relation (4} on the activity
coefficient and the Einstein mobility-diffusion coefficient
ratio, and the equation which connects them, has recently
been investigated in a companion paper. ' The electron
behavior in InSb in crossed magnetic and electric fields
has been considered experimentally and theoretically in a
paper issued since the work on this paper and on Ref. 12
was completed. There the analogy expressed by Eq. (2)
was noted independently. The present considerations may
suggest further developments of this work. For example,
the rise in effective mass at the Fermi level with electron
concentration is due to nonparabolicity and corresponds
to the relativistic rise of mass with velocity. " But this
analogy was believed to depend on the approximation

~
E/Ep

~
&& 1. Because of band curvature, effective mass

increase with electron concentration is in any case exptx:t-
ed as a general feature. This applies to the average mass
or the mass at the Fermi level. See Ref. 14 for the case of
the silicon optical effective mass.

III. THE ANALOGY FOR THE DENSITY
OF STATES AND ITS CONSEQUENCES

&(E)= i, (E+Ep)(E +2EpE)'/' .

G((E p)/kT—)= 4' V 1

3I "' exp[(E —p)/kT]+1

X(E +2EpE)' ',

one finds (see Table I)

3(E+Ep)
00 g PU =, " X.3S S+S, S.

E(E+E,)

(8a)

(8b)

(8c)

~ith N, =(2nrn pkT/h )
/ gV, this goes over into a usual

result in the parabolic limit Eo~ 00.

This is precisely the density of states for a gas of particles
moving with relativistic velocities, ' except that the velo-
city of light is here replaced by the velocity U defined in
(1). In the simplest case ( Ep -EG /2), we have
u-(Ez/2mp )'/, and this quantity can be treated as a
constant as far as integrations over the kinetic energy E
are concerned N. ote N(E) ~E'/i (as Ep~ao), and
N(E) ~E (as Ep~O}, which are characteristic energy
dependencies familiar from parabolic bands and from
black-body or Debye specific-heat theories, respectively.

Consider now a gas subject to (4) with a mean number
N of fermions, mean kinetic energy U, pressure p, tem-
perature T, chemical potential )M, and spin degeneracy g in
a volume V. Using

In this section we note the exact analogy for the density
of states. For spin degeneracy g and volume V the densi-
ty of states implied by (4) is, in virtue of

(gV/2m )kidk/dE,

I( , ,p/kT)—
U =N 'kTI( 'p, /kT)— —

kT I ( ,',p/kT)—
(9a)

(9b)

(9c)

given by w'here

TABLE I. Main integrals for a relativistic ideal gas over the kinetic energy E. 8=—4sgV/3h'U3,
P=(p Eo)/kT, p is the chemica—l potential, and g =+1.

- (E+E,)~Z'+ZEE )'"
Number of particles, N =38 dE

exp (E/kT) +i)—
- ~E2+EZ, ~~E2+2EZ, ~»2

Internal energy U (excluding Eo)=38 dE
exp (E/kT)

(E +2EEo) ~

V 0 exp[(E/kT) P)+g—
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I (s + 1 )I(s,p/kT) = I jx'/[exp(x p—/kT)+1] Idx .

In order to evaluate the integrals in (8), it is convenient to

use the substitution

3 2
&6 c

mou

U = I H(8 p/kT)X 3s2c(e —1) d8,
pV 4

(10a)

(10b)

(10c)

Elmiiu +l=cosh8,

which leads to (a =sinh8, c=cosh8) where

4irgV(mo ) u 1H(8, p, /kT) =
3h exp[(miiu /kT)(cosh8 1—) p/kT—]+1

This is very similar to the corresponding expressions for a
relativistic gas, ' ' ' except that the energy in the ex-
ponent of Eq. (11) is there the total energy, including the
rest energy, and this either removes the —1 or leads to a
renormalization p~p, ,—:JM,

—me~ of the chemical poten-
tial in the relativistic case. The long history of discus-
sions of such integrals was summarized in Ref. 17 (see
also Ref. 18). Numerical work performed for the in-
tegrals in the solid-state context' was of course done
without knowledge of this analytical work on the same in-
tegrals for the relativistic gases.

Let us put for the nondegenerate case

When one goes to more complicated band structures
such as the narrow gap tetragonal material Cd&As&, to
mention just one example, the simple analogy discussed
here is of course lost again because of the much more
complicated density of states.

The integrals in Table I can be developed in a series of
modified Bessel functions K„(x), even for a gas in d di-
mensions (see, for example, Ref. 18). Approximate
methods can also be used (see, for example, Ref. 21).

IV. THE CHANGE OF MASS WITH VELOCITY

From (4), using (1),
3/2

2nmi'ikT

h
gV,

p2u2+E2 (E +E )2 (13)

wluch is an equation for E in terms of p =A'k. The Ham-
iltonian equation of motion

X= 4[3K3(Eu/—kT)+K) (Eu/kT)] —K2(EO/kT) .

The integrations in (10) may be performed by standard
methods" ' and lead to modified Bessel functions:

«, =dH(pi p2 ";e»e» ")/4,

i.e., iu =dE/dp, then yields the velocity at a general
momentum value as

E
U (mkT/2E )in

pu2(p2u2+E2) —ln (14)

Kt(Eu/kT)
Xexp[1/kT(Eu+iu)] X 'E

(12a)

(12b) —3.0
C~/Nk

In addition, pV =NkT. In the limit Eu~ao the nonde-
generate version of (9) is found; one merely has to replace
I(s,p/kT) by exp(p/kT).

The effect of nonparabolicity in raising the ratio
U/nkT and the heat capacity C„/Nk of a nondegenerate
electron gas is shown in Fig. 1 (see also Ref. 13). The case
of conduction-band electrons in InSb at room temperature
is marked by an arrow. For ideal quantum gases U/Xk"1
ranges from —, in the nonrelativistic limit to 3 in the ex-

treme relativistic limit (which applies, for example, to
black-body radiation or particles with zero rest mass).
While the first case corresponds to the parabolic limit
Ep~ 0Q in the solid-state case, there is no obvious ana-
logue which corresponds to the second limit. This re-
quires EO~O, i.e., a vanishing effective mass at the band
extremum.
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FIG. 1. The ratios U/XkT and C„/NkT for a nondegenerate
electron gas as a function of the nonparabolicity parameter.
The numerical data of Table 24 of Ref. 15 have been used.
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This is the velocity one would find from the more fami-

har solid-state formula w=fi 'grad&E{k) .But the for-
mulation in terms of the momentum p =ittk is also apphc-
able to the relativistic situation using the replacement (2).
One finds

LU P
U2 p 2U2+E2

which shows at once that U of (2) can also be introduced
as the limiting velocity which is reached for large E.

In the solid state one uses two distinct masses: the
"tnomentum" mass m which enters into cyclotron-
resonance experiments, «nd the "acceleration" mass m'.
The former is defined by

p2U2+E2
m i=— ~ = = (E+EQ), (16)

w g Eo

where (13) and {14)have been used. It follows, using (15),
that

2
—1/2

.=1+'= 1-, (17)
ill 0 Eo ' U

This is the relation required. A plot of (m) against to2

(measured independently) should yield a falling straight
line with intercept (mo) and slope —(EomQ) iil
which case (17) would be confirmed experimentally. The
whole argument is also valid for special relativity and
shows that also in this respect the solid-state analogy for a
relativistic particle is exact.

The effective mass tensor for band n at wave vector k

is in the isotropic case (the only one of interest here)

, a'E„(k) a'E„(p)
g —2

Bk ii Bp,
i

It relates acceleration a to force P acting on the particle:

a=(m*) 'F . (18)

( g) i d E dio

dp dp

Using (17) and (19),
'3

m E
mo Eo

U 2E2

(E+EQ)'

' 2 —3/2
W1—
U

(19)

Thus m ' rises more rapidly with to than rn, and the form
(20) is not at first sight expected from relativity. Yet it
does occur there when the acceleration is parallel (or anti-
parallel) to the velocity as the so-called "longitudinal"
mass, 22 which satisfies precisely Eq. {20). Thus there is an
analogy also in this case.

In addition to resonance effects, experiments on rela-
tivistic plasmas can also be done in solids using the bene-
ficial fact that U &&c. ' As no other relevant references
have been found, one can say (perhaps surprisingly) that
the systematic exposition of the basic principles of this
pleasing analogy appears here for the first time.

In this isotropic case the acceleration mass may therefore
be defined by
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