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Second-harmonic generation from an interface, in relation to the second-order nonlinearities of
the interface layer and the adjacent bulk, is considered. It is shown that both structural asymmetry
and field discontinuity contribute to the interface nonlinearity, which, as far as second-harmonic
generation is concerned, can be characterized by a local surface nonlinear susceptibility tensor. The
bulk nonlinearity may also contribute to the second-harmonic signal, but is an order of magnitude
weaker than the surface nonlinearity in centrosymmetric media with a large optical dielectric con-
stant. The possibility of detecting submonolayers of adsorbates on various substrates is discussed
qualitatively.

I. INTRODUCTION

Surface second-harmonic generation (SHG) was a sub-

ject of extensive study almost twenty years ago. ' It was
found that in a medium with inversion symmetry, the sur-
face contribution to SHG could be comparable with or
even dominant over the bulk contribution. ' ' '6 Jha as
well as Bloembergen and co-workers showed that the sur-
face contribution could originate from the discontinuity
of the normal component of the electric field at the sur-
face, resulting in a quadrupole-type surface term. One
would then expect the surface SHG from a high-
refractive-index material to be particularly strong and
essentially independent of surface contaminants or ad-
sorbed layers. For cubic crystals, the SH signal would
also be independent of the surface orientation. Experi-
mental results from various groups seemed to have sup-
ported these conclusions.

More recently, however, experiments with better control
have shown that although high-refractive-index materials
do generally yield strong surface SHG, the effect of a sub-
monolayer of adsorbates on such materials also can be
easily detected, ' and the reflected SH signal can be very
different for different crystalline surfaces. "'~ For this
reason, surface SHG has emerged as a useful tool for
studies of various types of surfaces and interfaces, includ-
ing those of metals and semiconductors. 2 It was found
that surface SHG is sensitive to submonolayers of CO or
0 on metals' and semiconductors, ' ' and can be used to
measure the in-plane symmetry of the surface layer of
metals or semiconductors. "' ' Adsorbates on insulating
substrates can also be detected and their orientations
determined. ' ' ' Actually, the technique is applicable to
the study of any interface between two media with inver-
sion symmetry as long as it is accessible by light.

These recent results clearly suggest that there exists a
surface nonlinearity characteristic of the structure and
properties of the surface layer. In this surface layer, the
inversion symmetry is necessarily broken, and hence its

second-order nonlinearity is nonvanishing in the electric
dipole approximation. But then, the structural discon-
tinuity at the surface is also responsible for the field
discontinuity at the surface that leads to the quadrupole-
type surface contribution to the SHG mentioned above.
%whether these two sources, structural discontinuity and
field discontinuity, describe two separate contributions to
the surface nonlinearity or not has caused some confusion
in the literature. Here, we hope to resolve this confusion.

%e shall show, with a rigorous derivation, that
structural discontinuity and field discontinuity do con-
tribute separately to the surface nonlinearity. This can be
illustrated by a simple example. Imagine an interface be-
twmn a liquid and a solid with matching refractive in-
dices. Obviously, at such an interface, the field discon-
tinuity is absent, but the structural discontinuity is still
present and gives rise to a nonvanishing surface nonlinear-
ity. The structural discontinuity here refers to the
structural changes in passing from the bulk to the surface
layer. These include changes in the atomic positions,
symmetry, and electron density, as well as the possible ap-
pearance of adsorbates at the surface. The field discon-
tinuity refers to the variation of the field across the sur-
face layer. This is the result of the local-field variation
across the surface layer caused by the induced dipoles in
the bonding media. Physically, one can visualize this field
discontinuity as extremely sharp, occurring in a few atom-
ic or molecular layers. Thus, the nonlocal response of the
surface layer to the field must be dominant and therefore
the multipole expansion of this response is actually mean-
ingless.

In the bulk of a homogeneous medium, however, the
multipole expansion is generally valid. %hen the medium
has an inversion symmetry, the electric dipole part of the
second-order nonlinearity vanishes, and the electric quad-
rupole and magnetic dipole part is the first nonzero term
in the multiple expansion. Although the nonlinearity is
weak, it is easily detectable, as was first observed by
Terhune et al. in 1962. ' In the surface SHG experiment,
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the detector unavoidably collects the total SH signal con-
tributed by both the surface and the bulk. In fact, it can
be shown that as fax as the signal is concerned, one can
define an equivalent surface nonlinear polarization as a
source for SHG to take into account contributions from
both the surface and the bulk. " Difficulty may
arise if one wants to separately deduce the two contribu-
tions from measurements. Only in special cases with
proper combinations of beam polarizations will this be
possible, as we shall see. However, a quick estimate will
show that the bulk contribution, in the case of strong
phase mismatch, is expected to be at most of the same or-
der of magnitude as the surface contribution.

We should remark that the surface nonlinearity here is
the total nonlinearity arising from structural and field
discontinuities across the surface layer. In this respect,
the thickness of the surface layer is somewhat arbitrary.
Only the nonlinearity per unit surface area obtained by in-

tegrating the nonlinearity through the surface layer comes
in as a measurable quantity.

In Sec. II, we shall start from general nonlocal, linear
and nonlinear, response functions of a medium to a field
rapidly varying in space, and formally establish the ex-
istence of a surface nonlinear susceptibility which includes
both the dipole contribution from the structural asym-
metry in the surface layer and the nonlocal contribution
from the rapid field variation across the surface layer.
Section III will then describe how the measurable SH sig-
nals are related to the surface and bulk nonlinearities.
Our aim is to deduce the surface nonlinear susceptibilities
from SHG, and hence learn about the surface properties.
We therefore would like to find the limitation of the tech-
nique in this respect. Section IV will be devoted to a dis-
cussion of various problems. Part of the purpose of this
paper is to provide some order-of-magnitude estimates on
the relative importance of the bulk, surface, and adsor-
bates in the SHG for various types of interfaces. In the
case of adsorbates at an interface, our calculations allow
us to predict on which systems monolayers of adsorbates
can be easily detected by SHG.

II. SURFACE NONLINEARITY

In this section, we shall show that surface optical non-
linearity at an interface between two media can be charac-
terized by an effective local surface nonlinear susceptibili-
ty that includes both local and nonlocal responses of the
interface layer to the field. We define the interface layer
as follows. In the ideal case where the bulk structures of
the media in the two sides of an interface extend all the
way to the boundary plane, the overall medium experi-
ences only a sudden structural change at the boundary
plane. In real cases, the structure of a medium at a sur-
face or interface is always somewhat different from that
of the bulk. The change usually occurs in a few atomic
layers near the surface or interface. An interface layer

P("(r,co;)=fP "(r,r', cu;) E(r', cg;)d3r',

P' '(r, 2')= f fX' '(r, r', r",2').E(r', ~)

xE(r",co)d r'der" .

In the bulk, we have I'"' replaced by the bulk value

g 0"' which is X Oi' in medium 1 on the z &0 side and X 02'

in medium 2 on the z & 0 side (see Fig. 1). In the interface
layer, we have

y (2) y (2) +~ (2)
(2)

%e should remark that in principle, it is possible to have

an interface layer of finite thickness in which bX("'=0
and E, varies significantly.

We realize that the macroscopic fields and polarizations
are obtained from averages of corresponding microscopic
quantities over a macroscopic volume. In the interface
layer, both F., and P'"' can vary rapidly on the atomic
scale. Consequently, the definition of a macroscopic
quantity is somewhat arbitrary, depending on the averag-
ing volume. However, we know that regardless of the size
of the averaging volume, E, should change smoothly
across the interface layer from its macroscopic value in
medium l to its value in medium 2, and as we shall see
later, the surface optical effects generally depend only on
the integrated response of the interface layer to the field,
that is, fP'"'(z)dz integrated across the interface layer.

Let us consider second-harmonic generation from the
system in Fig. 1. %e write the wave equation for the
second-harmonic field in the form

often refers to the region where the structural change
froin the bulk is significant. Around this region, the opti-
cal field along the surface normal changes rapidly from
its macroscopic value on one side of the interface to the
macroscopic value on the other side of the interface.
Then, for our purpose, the interface layer can be defined
more generally as the region where both the structure and
the field change significantly. The thickness of an inter-
face layer is always much smaller than an optical wave-
length. As a result, perturbation calculation can be used
to deal with the response of an interface layer to an ap-
plied field.

Boundary conditions require that the electrical field
components along the interface (x-y) and the displace-
ment current component along the surface normal (z) are
continuous across the interface layer. The electric field
component E, along z, on the other hand, changes rapid-
ly across the layer. The response of this layer to E, is
therefore expected to be nonlocal. Let the field at fre-
quency co; be E(r, co;). We can write, in general, the linear
and second-order nonlinear polarizations arising from the
nonlocal response of a medium as

fbX"'(r, r', 2') E(r', 2')d r'

(3)
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[VX(VX ) —(2'/c)~DO]6=5(r —r')1 . (4)

The explicit expression of 6 for the present problem is
given in Appendix. The solution of Eq. (3) can then be
written formally in terms of G. We consider here a sys-
tem with translational symmetry in the 2-P plane such
that

E(r, co) = I'(z, co)exp(ik, x —i tot ),
E(r, 2t() }= 0'(z, 2'�)exp(2ik,x 2i cot )—,
P'"'(r, 2')=9""'(z,2')exp(2ik„x 2ico—t) .

(5)

assuming that the linear dielectric constant of the bulk is
local and given by

eo ——1+4'fX o"(r, r')d'r',

that is,

g o"(r,r, co; ) = [Vo(co, ) —1]5(r—r')/4~ .

In medium 1 e ——e~, and in medium 2 eq=ez. The
Green's function G(r, r', 2') for Eq. (3} is defined to be
the solution of the equation

We then find

Xd'z"+S "'(z,2 ) dz

(6)9 ' '(z, 2')= j)X ' '(z, z', z") N'(z', to)N'(z", cu)dz'dz" .

Because of the possible existence of lZ' ' and the rapid
variation of I", in the interface layer, 9"'2' in the inter-
face layer could be significantl different from that in the
bulk. We can decompose I'(z, 2') into two parts: one as-
sociated with 9'(2t(i) in the bulk and the other with
9 (2t0) in the interface region, remembering that the in-
terface layer has a thickness much smaller than an optical
wavelength. As shown in Appendix A, the Green's func-

tion G has the property that G;t(z,z') (for j&z) or
eo{z'}G@(z,z') is continuous in z' (we assume, from here
on, isotropic a'0 foi' simplicity). Therefore, in the interface
layer, Gt&(z, z') for j+z and eo(z')G {z,z') should assume
essentially their values at z'=0. Equation (6) can then be
written as (for z&0)

tt';(z, 2t0) = 4tr(2a)—lc)' g G;, (z,0)[9",~"(2')+9",J'(2to)]+ lim [eo(z', 2')G;, (z,z')][M"'(2a))+ P' '(2to)]
j=xiy z'-+0

fG J (z,z') 9'„'t '(z', 2a) )dz' (7)

Here, we recognize that 8', (z,2') varies rapidly across the interface layer, but can be related to the displacement current
component &, by defining a function s (z,2'�}such that

8', (z, 2a)) =s(z, 2co)[N, (z, 2t(i) 4m&", '(z—,2')] .

Therefore, we have defined the surface polarizations H,'J"' and the volume polarizations R',J' as

P,'J"(2')= f M'tj'(z, z')8'J(z', 2to)dz'dz for j=x,y
6'0 Z, ZCO g) Z, Z S Z,2' g Z, Z Z Of J=Z,

9",,"(2')=gf Itkt(z, z'z")8'k(z', co)S't(z", to)dz"dz'dz for j=x,y
k, l

=g f s(z, 2t0)X&kt(z, z', z")8'k(z'co) 8't(z", to)dz "dz'dz for j=z,
k, l

~„J(z,2')= f Xojkt(zz', z")8)'k(z', co)S't(z",co}dz'dz",

where f and f denote integrations across the interface layer and in the bulk, respectively, and we assumed that bX';J"
is diagonal in the coordinates specified. The more general case with bg,'t" being nondiagonal is described in Appendix B.
Equation (7), with the help of Eq. (8), shows explicitly that the interface layer contributes to the output SH field through
H,'J" and H,'&', both of which are surface polarizations per unit area. This confirms our earlier assertion that optical ef-
fects depend on the integrated response of the interface layer.

Equation (6) or (7) is an integral equation which can be solved iteratively if X "' and X 0" are known everywhere. The
term describes the interface contribution to linear reflection and transmission. However, if we are interested only in

the field generated by nonlinear wave mixing, it can be shown that the effect of the H,'t" term on the solution is only of
the order of d/A, , where d is the interface layer thickness. Consequently, we can neglect that term in Eq. (6) or (7) and
write
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8';(z,2') = —4'(2colc) g Gij(z, O)9",z'(2')+ lim [eo(z', 2')G;, (z,z')]9",, '(2co)
J =Z,P

J =Z,g,Z
f Gij(z, z')H', J'(z', 2')dz'

We now focus our discussion on the surface nonlinear
polarizations H,'j'(2'). We can define a surface non-
linear susceptibility X,' '

by the relation

(2') =+X,';j~kF, (O, a))Fk(O, co),
j,k

&j(O,co) for j=x,y
Fj(O,co) = '

&j(O,co) for j=z .

(10)

This is because both the fields 8'„, 8'» and the displace-
ment current &, are continuous and can be regarded as
constant across the interface layer. On the other hand,
the field component 8', (z,co) is rapidly varying across the
interface layer. Let us define 8', (z,co)=s(z,co)&,(O, co),
with s (z, co) describing the rapid variation across the inter-
face layer. Then, from Eq. (8), we find, for i,j,k =x or

f X,'jk(z, z', z")(S(z',z"))dz'dz",

awhile the multipole or nonlocal contribution can be identi-
fied with

X,",',k =f [X,",k(z, z', z")s(z,2')]dz dz'dz",

X,'~ = f [X (~z,z', z") (zs')s(z") (zs, 2')]d dzz'dz" .

This surface nonlinear susceptibility X,' ', which has been
defined uniquely without arbitrariness, s fully character-
izes the overall second-order nonlinearity of the interface
layer.

The expressions of surface nonlinear susceptibility in
Eq. (11) contains the usual dipole and multipole contribu-
tions, or in other words, the "local" contribution, which
does not depend on the variation of the electric field, and
the "nonlocal" contribution, which depends on the rapid
variation of the electric field in the interface layer. The
usual dipole or local contribution can be identified with

Pi~ (z 2') = fX~(jk(z,z', z")Ej(z',a))Ek(z" co)dz'dz"

with

XIjk(z,z', z")=ga;jik(z)5i(z' —z)(5k )'(z"—z),
I

(12)

where 5; is the Dirac 5 function for the ith component,
and (5', ) is its spatial derivation along the I direction. For
an isotropic medium, we have

P '(z, 2') =(5—P—2y)[E(co) V]E;(co)

+pE (co)[V E(a))]+yV [E (co)]

and

a;,J; =5—P—2y,

aiijj =p ~

a;J;j =2y for i ~j .

(13)

Assuming an infinitely sharp interface between two iso-
tropic media, and using Eq. (11)with

s(z, co) =@i '(co)8( —z)+@2 '(co)8(z)

where 8 is a unit step function, we find the nonvanishing
surface nonlinear susceptibility components as

I

local contribution.
We can relate our results to those derived by other au-

thors. In the derivation of Bloembergen et al. , the
structural deviation of the interface from the bulk is
neglected with M'' ' taken as zero, and only the electric
quadrupole and magnetic dipole contribution was con-
sidered. The sharp variation of the fundamental field
component along the surface normal due to mismatch of
the dielectric constants at the interface was taken to be re-
sponsible for the surface nonlinearity and that of the out-
put field is ignored. In this approximation the expression
for a bulk nonlinear polarization P' '(2') arising from
electric quadrupole and magnetic dipole contribution is
P' '(2') =a:E(co)VE(co), or in terms of nonlocal suscepti-
bilities

f X'ji,'(z, z', z")[S(z',z")—(S(z',z"))]dz'dz",
2 26') —E2

4&i&2

5) 52—+
E) E2

(14)
where S(z',z") is either 1 or s (z') or s (z')s(z") in Eq. (11)
and ( ) denotes the average over the interface layer. It is
seen that if the interface is formed by two media with the
same linear dielectric constants, then E(z) is continuous
across the interface with S(z',z")=1, and the interface
nonlinearity, if present, must originate from the dipole or

2E')E2

[From Eqs. (11) and (12) we notice that in this ideal case,
we are dealing with the product of two distribution func-
tions X' ' and s, both of which have singularities at z =0.
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TABLE I. Independent nonvanishing elements of P,"'(2~}for surfaces of various symmetry classes

(surface is in the 2-P plane).

Symmetry
classes

Cl„

C2„
C3

C4, C,

C4„,C6„or
isotropic

Location of
mirror plane

No Mirror

No mirror

x-R, y-R

No mirror

No mirror

Independent nonvanishing elements

xxx, xxy =xyx, xyy, yxx, yxy =yyx,
yyy, xxz =xzx, xyz =xzy, yxz =yzx,
yyz =yzy, zxx, zxy =zyx, zyy, xzz,

yzz, zxz =zzx, zyz =zzy, zzz

xxy =xyx, yxx, yyy, xxz =xzx,
yyz=yzy, zxx, zyy, yzz, zyz=zzy, zzz

xxz =xzx, xyz =xzy, yxz =yzx,
yyz=yzy, zxx, zyy, zxy=zyx, zzz

xxz =xzx, yyz =yzy, zxx, zyy, zzz

XXX = —xyy = —yxy = —yyx

yyy = —yxx = —xxy = —xyx
xxz =xzx =yyz =yzy, zxx =zyy
xyz =xzy = —yxz = —yzx, zzz

yyy = —yzz = —xxy = —xyx
xxz =xzx =yyz =yzy
xxz =xzx =yyz =yzy
zxx =zyy, zzz

xxz =xzx =yyz =yzy, zxx =zyy
xyz =xzy = —yxz = —yzx, zzz

xxz =xzx =yzy =yyz, zxx =zyy,

Mathematically such a problem is not well definei; the re-
sult will depend on the shape of the functions in the inter-
face layer as the layer thickness approaches to zero. For a
crude estimate, however, we can assume s (z) linear in the
interface. ] Here, the subindices 1 and 2 refer to the two
media. In this case, the electric dipole contribution to
X,"' has been neglected. When ei ——1 for a vacuum/
matter interface, the above expressions reduce to those
given by Bloembergen et al. in Ref. 5.

There is a total of 18 possible independent elements of
the surface susceptibility tensor X,' '(2'). The actual
number of independent elements, however, can be drasti-
cally reduced by the symmetry of the surface or interface
layer. In Table I, independent nonvanishing elements of
several surface symmetry classes are listed.

in medium 1, and 9'„'J'——g~p2~(Q2)exp(igq r) in medi-

um 2 with E,=2k . We then find in medium 1

BULK I
Q

=2k„where k, is the x component of the fundamental
wave vectors (see Fig. 1). Substitution of the expression of
the Green's function in Appendix A into Eq. (7) would
yield an explicit expression for the SH field N';(z, 2'). We
use the notation

&'J'=g p»(Qi)exp(t Qi r)

III. SECOND HARMONIC GENERATION
FROM AN INTERFACE

Pyp

BULK

FIG. 1. Geometry of SHG from an interface (shadowed re-
gion} between two semi-infinite media. kr, kR, and kq are the
wave vectors for incident, reAected, and transmitted fundamen-
tal waves; Qi and Qq are the wave vectors for the nonlinear po-
larizations at 2' induced in media 1 and 2; K~ and K2 are the
wave vectors for the waves at 2' in media 1 and 2.

We have seen in Sec. II that both the interface and the
bulk contribute to SHG from a system with an interface.
In developing SHG as a surface or interface probe, we
need to know how the bulk contribution limits the surface
sensitivity of SHG. For clarity in later discussions, we
shall first give a full expression of the SH output field
from an interface. We assume, for simplicity, a plane in-
terface bonded by two semi-infinite isotropic media. This
problem has been solved by other authors with various
simplification. ' The results can be easily extended
to more complicated systems.

I.et the wave vectors of free SH waves in media 1 and 2
be K& ——E&„x—E»z and K2 ——K2„x+E2,z, respectively,
with Ei=(2') e, /c, E2 ——(2ai) e2/c, and Ei, E2—— '
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( )=4 (2 )2
l ~12) g P2y Q2 Ply Ql Qlz- 2z -lxip Ply Ql ig(Q ) (Q )(Q K ) (Q )

yz = 77 cole sy +& —l
Klz+K2 g, Q2 +K2 g, (Ql, —Kl, } g, Ql. —Kl.

4m')z
Ã (z)=K1,Me ' + g K,~,„(Q1)—

el(Q1.—Kl*) g,

xQlz
(Q )

lg[zz

(15)

&z(z)=K.Me
' '"+, ", g[Kxp»(Q1}—Qlzplx(Ql }]e 4~el QPlz(Q1)e

i 4mÃ2,M=
e&K2, +e2K~,

(2) e2Kx (21 +K2zP2x(Q2 }+KXP22(Q2 }

K2,
"

g iK2,(Q2, +K2, )

2
elK2zQ ]z &2K lz Kx ( e2Q lz elK2z }

where all e; s are at 2'. Similar expressions can be obtained for 8';(z) in medium 2. For the vacuum/matter interface,
e, =1 and e2 —e, and the above expressions for 8';(z) reduce to those given in Ref. 5.

It can be seen from Eq. (15) that even if SHG in the bulk has a phase mismatch as large as b, k —I/A, , where I, is the
optical wavelength, the bulk contribution to 8', as compared to the inteeace contribution is a factor of

I
R„

I
1,/2n

I
9',

I
larger. When the bulk medium has no center of symmetry, we expect

I
&U

I

—
I
& /d

I
with d be

ing the interface layer thickness, and then
I
H„

I
A, /2m

I Hz I
-k/2nd &&1. This shows that in such media, SHG «om

the interface would be overwhelmed by that from the bulk. For this reason, surface studies with SHG are often restrict-
ed to m~ia with centrosymmetn. In this latter case, the bulk nonlinear polarization arise from the electric quadrupole
and magnetic dipole terms given in Eq. (13) for an isotropic medium. Let the incoming fundamental field from medium
1 be Ez(z, el) = gl(co)exp(ik„x+ik 1~ i cot), w—hich creates a refiected wave E„(z,co) = gr'21 (co)exp(ik, x —ik»z

ivor�

), —in
medium 1 and a transmitted wave, Er(z, co) =g T(co)exp(ikxx+ik2zz isn't) in m—edium 2. Equation (15) for the SH field
in medium 1 then becomes

'2

8'y(z, 2') =1'4n
1

(Kl, +K2, )
2X,"~+ 2, , (e2 —e'1 )(51—pl —

2y1 ) &,(O, co) &y(O, ~)e+ ]zE')62

k2, (e2 —e', )
(51—P, —2y, )&z(O,co) 8'y(O, co)

E )gE)6'2

8'x(z, 2')=KlzMe ' 4ni y,—($'Ie ' +8' lte
'

) 4niel 'N—&z(O, cu),
E~

(z,z2~) =K„Me 4mi yl—( 8'le —8'll e ),—iK&P . 1z 2 i 2k&P 2 —i 2k&P
(16)

2x+e2 lz 2z e2(&2)' el(el)

+ X,' ' — + [8'„(O,co)+ 8'y(O, co)]+ N&, (O, co)
&2z e,Z„

2
1 1 2'

N =
2 (E'1 —e2) 2 2 ele2

(el} (e2) K„
—K„(el+e2) (51—pl —2y 1 ),

where e; and e& denote the dielectric constants at frequen-
cies 2' and co, respectively, and 8'„(O,co}, 8'y(O, co), and
&,(O,co) are fundamental field and displacement current
components at z =0 given by

8'x(O, CO) = 8'lx(O, CO)+ 8'llx(O, CO),

8'y(O, co) = 8'gy(O, co)+ 8'gy(O, co), (17)

&,(O,a)) =e'1[8'1,(O,ca)+ 8'g, (O,co)] .

l

The (51—pl —2yl) terms in Eq. (16) arise from interfer-
ence between the incident and reflected fundamental fields
in medium 1.

Equation (16) shows that even if we consider the ideal
case with Xz ' given by Eq. (14) and the electric dipole
contribution to 7,' ' neglected, the bulk contribution to
SHG from centrosymmetric media is at most of the same
order of magnitude as the interface contribution. In the
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case of media with high dielectric constants, the interface
contribution should actually dominate, as we shall discuss
in more detail later.

In the expressions of Eq. (16), each field component
consists of two parts: one is a free wave proportional to
exp(iE&,z); the other is a group of driven waves with dif-
ferent wave vectors generated in the bulk. These two
parts can be experimentally distinguished from their dif-
ferent directions for propagation. We are only interested
in the former which contains the interface contribution.
The various terms in the free wave can be distinguished
by different combinations of beam polarizations and the
dependence of the SH signal on the incidence angle. For
example, by detecting the s-polarized (along P) SH signal
with known fundamental fields along y and z for dif-
ferent incidence angles, the quantities X,'~~=X,'~ and

(5i —Pi —2yi) can be deduced separately. In many cases,
such as the case of a gas for medium 1, (5i —Pi —2yi) is
negligible compared to X,' ' . By detecting the p-
polarized SH output (in the x-z plane) with an s-polarized
fundamental input, (X,' ' y2/f2+—y &/ei) can be de-
duced. Finally, by detecting p-polarized output at 2m

with p-polarized input at co,

[Xs,gu 1 2/&2( s2)'+ r 1/~1«i )']

can be deduced.
Separate determination of the surface susceptibilities

and X,' ' from the bulk nonlinear constants yi and

y2 seems impossible from the above results. However, it
can be achieved with a more complicated arrangement.
As an example, consider an air/liquid or air/solid inter-
face. If we use two orthogonally polarized fundamental
input beams with slightly different frequencies, propaga-
ting collinearly in the condensed matter (medium 2), the
sum-frequency bulk nonlinear polarization will vanish ac-
cording to Eq. (13). Then only the surface nonlinearity
should contribute to the sum-frequency signal. By choos-
ing different polarization contributions while keeping the
polarizations of two fundamental beams orthogonal, all
the nonvanishing surface susceptibility elements X,';J~k can
be measured.

In the case of a crystalline medium, both the surface
and the bulk nonlinearities could acquire some anisotropic
terms but separate determination of the surface and bulk
amsotropic terms is possible from measurements of SHG
with a few different crystalline surfaces. This has been
demonstrated in Si." %'ith a somewhat more complicated
arrangement, it is also possible to eliminate the bulk an-
isotropic contribution while measuring the surface aniso-
tropy. For example, for a Si(111)—1X1 or 7X7 surface,
both the surface and the bulk have a 3m symmetry. '

The surface and bulk anisotropic terms in the nonlinear
polarizations are, respectively,

~s'~ =Xs"
, gÃg(~)&g(~)

P'vq ggaE V~E~, ——

where g's are along the directions of the projected [111]

axes on the surface, and a's are alon~ the principal axes of
the zinc-blende crystal. To make P'i „' vanish, we can em-

ploy two counter-propagating fundamental beams in Si.
A Brewster angle of incidence with p polarization can be
used to eliminate the interference effect due to reflection
of the fundamental beam into the Si bulk. The three-fold
symmetry thus observed in SHG should arise entirely
from the surface anisotropy.

In practical applications of SHG as a surface probe, one
would hope to use the simplest arrangement with a single
fundamental pump beam. In those cases, the SH signal
comprises, in general, both surface and bulk contributions.
In order to deduce the interface properties from SHG, the
surface nonlinearity should dominate the bulk nonlineari-

ty or one should have the interface modulated and the
corresponding change of the SH signal detected. We shall

give a general discussion on this subject in Sec. IV.

IU. DISCUSSION

We are interested in deducing surface or interface infor-
mation from SHG. This means that we need to be able to
deduce Xs', or Ms' due to interface modulation, from
the measured SH signal. As we have seen, the situation
could be complicated by bulk contribution to SHG even in
media with centrosymmetry. With a simple arrangement,
it is generally not possible to completely suppress the bulk
contribution. Fortunately, in all cases the bulk contribu-
tion is at most of the same order of magnitude as the sur-
face contribution. In many cases, the surface contribution
actually dominates. In developing SHG as a surface
probe, it is important to have some feeling about the cir-
cumstances under which we can obtain useful information
on an interface.

Let us consider interfaces between air and various types
of condensed matter. The fundamental beam is incident
from the air side, and we have, in Eq. (16),
5i ——Pi ——yi ——0. Then, from Eq. (16), the ratio of surface
to bulk contribution to the SH output field is always
larger than ~Xs'e2/y2 ~. For a crude estimate, if we as-
sume an ideal interface with Xs ' given by Eq. (14) and

52 P2 p2 we f»d
I Xs '&2/y2

I
-&2—1.

that in the case of centrosymmetric media with high
dielectric constants such as metals and semiconductors
(e2&10), the surface contribution to SHG should dom-
inate. On the other hand, in the case of insulators and
liquids with e2-3, the bulk contribution may still be ap-
preciable.

It may be useful to give some typical values of the SH
signal strength for various systems. Let the pump beam
be a 10-nsec laser pulse at 1.06 pm with 20-mJ energy and
1-cm cross section. The SH signal from a metal or semi-
conductor surface is of the order of 10 photons per
pulse. "' ' ' This corresponds to

~
Xs '

~

is —10
esu. The signal from an insulator surface is generally
much weaker, or the order of 10 photons per pulse. the
corresponding

~
Xs

'
~

is —10 ' esu. ' The structural
asymmetry of the surface layer often contributes roughly
as much to ~X~'~ as the field discontinuity at the sur-
face. This can be demonstrated by comparing the SH sig-
nals from an air/solid interface and an index matched
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liquid/solid interface; the field discontinuity is absent in
the latter case.

Measurements of X s could provide some useful infor-
mation about the symmetry and electronic structure of a
surface layer. ' However, SHG as a surface tool is prob-
ably more useful for probing of surface modification. For
example, melting of a surface layer can be readily detected
by SHG. ' 8 It has also been established that SHG is a
viable method to detect adsorbates on a wide variety of in-
terfaces. ' ' ' In these cases, one measures the

change in X s ' in response to the surface modification. By
using some nulling method for background cancellation, '

it is possible to detect a
~

bX s
'

~
appreciably smaller than

~Xs ~. For this reason, SHG can be a very sensitive
technique for studies of surface modification.

A submonoLayer of atoms or molecules on a surface
would change X s

' to (X s)' '. One can express (X s )'~' as

(Xs)'"=X 's" +X '~" +X 'I" (18)

where X '„' denotes the nonlinear susceptibility of the same
layer of adsorbates placed far away from the surface, and
X I ' is the nonlinear susceptibility resulting from interac-
tion of the layer of adsorbates with the surface. For sensi-
tive detection of adsorbates, we need either ~X'„'~ or

~
X I

'
~

to be sufficiently large. In the case of metals and
semiconductors, ~Xs'~ is quite large, and therefore a
layer of adsorbates that interacts with the surface and
changes the surface properties is expected to also yield an
appreciable

~ Xi '
~. Thus, a submonolayer of adsorbates

can be observed through
~
X I '

~

even though the intrinsic
nonlinear susceptibility of the adsorbates

~

X'„'
~

may be
small. Indeed, it has been found that submonolayers of
atoms and small molecules on metal and semiconductor
surfaces can be easily detected. In the case of insulators,
~Xs'~ is relatively small, and the change due to inter-

action with adsorbates, ~XI '~, could be even smaller.
When this is the case, in order for the adsorbates to be
easily detected~ the intrinsic nonlinear susceptibility of the
adsorbates,

~
X z

'
~, must be sufficiently large. Again, this

agrees with our general finding that irrespective of strong
or weak molecule/surface interaction, only molecules with
relatively large nonlinearity can be easily observed by
SHG on an insulator surface. The above discussion sug-
gests that SHG will be most useful for studying
molecule/surface interaction on metal and semiconductor
surfaces, and for studying behavior of individual mole-
cules or groups of mol~ules on insulator surfaces.
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APPENDIX A

Here we give a brief description of the Green's func-
tions used in this paper. A thorough derivation can be
found in Ref. 24.

The Green's functions obey Eq. (4) in Sec. II. For the
s-polarized field, Eq. (4) for the relevant Green's function
G~„has the form

k„'+(2'/c—)'ep(z) Gyy(z, z') =5(z —z'),
dz

(Al)

the solution of which is

Gz~(z, z') = . (1+R, )[8(z—z')Uz(z) Vz(z')
2~Ã2,

+8(z' —z) V~(z) U~(z')], (A2)

where

can show that the nonlinear response of the interface layer
can be described effectively by a local surface nonlinear
polarization. The interface nonlinearity is then represent-
ed by a local (or electric dipole allowed) surface nonlinear
susceptibility tensor.

Measurement of SHG from the interface allows us to
deduce the surface nonlinear susceptibility. The bulk non-
linearity may complicate the measurement. It is however
much weaker, especially in media with a large dielectric
constant. Surface modification can be monitored by ob-
serving the induced change in the surface nonlinear sus-
ceptibility. A monolayer of atoms or molecules chemical-
ly adsorbed on centrosymmetric metals or semiconductors
should be readily detectable. On insulator surfaces, on the
other hand, easy detection of molecular adsorbates would
require molecules with sufficiently large intrinsic non-
linearity unless chemical adsorption of the molecules re-
sults in the establishment of highly nonlinear bonds be-
tween the molecules and the surface.

V. CONCLUSION

We have shown from a formal derivation that both
structural asymmetry and field discontinuity at an inter-
face contribute to the second-order optical nonlinearity of
the interface. If the refractive indices of the bonded
media are not matched, the optical field component along
the surface normal varies rapidly across the interface
layer. Consequently, the optical response of the interface
layer is nonlocal. It involves not only the electric dipole
contribution, but also all the multipole contributions. As
far as SHG from an interface is concerned, however, one

R, =(Ki, Kgz)/(Kiz+K2, )—

(A3)

(A4)

is the usual Fresnel reflection coefficient for the s
polarized light, and U~(z) and V„(z) are the two linearly
independent solutions for light incident from medium 1

and medium 2, respectively. Therefore,

exp(iKi, z)+R, exp( iK„z), z &0—
Uy(z)= '

exp(iK2, )(1+R,), z&0

exp( iKi,z)(1 ——R, ), z &0
Vy(z)= ' . pexp( iKz,z) R, ex—p(iK2,z)—, z & 0 .
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For the p-polarized hght, because E and E, are coupled, the corresponding Green's functions are determined by four
coupled equations presented here in the matrix form as

2
d 2'

2 + &0(z)
Z C

iK—„dz

—iE„
dz

Eo{z)—K„

6 (z,z') 6 (z„z'}
I

6 (z,z') 6 (z,z') 0 1
(A5)

The solution of Eq. (A5} is

G~(z,z') =a[8(z —z')U„(z) V„(z')+8(z' —z) V„(z)U„(z')],

6~(z,z') = —a[8(z —z') U„(z)V, (z')+8(z' —z) V, (z) U~(z')],

6~(z,z') = —a[8(z —z') U„(z)V, (z')+8(z' —z) V, (z) U, (z')],
6~(zz') = —at [8(z —z')Ue(z) Vg(z)+8(z' —z) V, (z')U, (z')] —[1/eo(z)][c /a(2') 5(z —z')]I,

(A6)

where

l (62K( +elK2z)

4e(eg(2a)) lc

APPENDIX 8

If &IJ" is nondiagonal in the specified (x,y, z) coordi-
nates, we can define

N'(z) =S(z) N', rf(z)

and

exp(iK, ~) Rzex—p( iK&~)—, z &0
U„(z)= '

o(1—R~)exp( —iK)gz), z) 0

(1+R~)exp( iK2,z)—, z (0
V„(z)= '

exp( —iK~)+Rzexp(iK~), z )0

U,(z);K d U„(z)

{2'/c) E(z) E„dz'—

(AS)

(A10)

with

'1 0 0
S= 0 1 0

S~ Ssy Sgz

@eff ~y

Rz is the usual Fresnel reflection coefficient for the p-
polarized light:

0 &2&~s —&i&a

e2K), +e)K2,
(A 1 1)

From these expressions, the continuity property of
6 (z,z'), eo(z)6 (z,z'), 6 (z,z')eo(z'), and
eo(z)6 (z,z'}co(z') at z'=0 used in Sec. II can easily be
verified.

By writing

1 0 0
ep ——0 1 0

0 0 eo '(z)

we can show that Eq. (7) in the text is still valid if we de-
fine

H,'"(2')=J Fo '(z, 2')M' "'(z,z', 2') S (z', 2') N', rf(z')dz'dz,

9,' '(2'�)=I e 0 '(z, 2')[1 4n hX "'(z,z',—2'�}.S '(z', 2'�)].g ' '(z, z',z").8'(z', co) Ig'(z", ro)dz "dz'dz

0 0 0
S '{z',2'�)= 0 0 0

0 0 s~

The above equations reduce to those in Eq. (8) when M,'J" becomes diagonal.
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