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Green s-function —quantum-defect treatment of impurity photoionization in semiconductors
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An analytic expression is derived for the photoionization cross section of impurity atoms in semi-

conductors. The use of a quantum-defect wave function for the impurity ground state permits im-

purity atoms to be conveniently characterized in terms of ground-state energies. The Coulomb
Green's-function and time-dependent perturbation theory are used to calculate the wave function of
photoexcited electrons or holes from which the photoionization cross section is obtained. The re-

sults apply to shallo~ or deep levels associated with carriers bound to charged impurity centers. Re-
sults for photodetachment of carriers bound to neutral impurities are obtained in the limit where the
impurity charge goes to zero. Theoretical cross-section maxima are found to be in remarkably good
agreement with experimental results, considering that no free parameters or empirical effective field
ratios are employed.

Electromagnetic radiation can be absorbed by an im-
purity atom when an incoming photon has sufficient ener-

gy to excite an electron residing in the ground state of a
donor impurity atom into either an excited state or into
the conduction band. In the case of an acceptor, a hole
can be photoexcited out of the ground state into an excit-
ed state or into the valence band. The process of photoex-
citation of a ground-state electron into the continuum is
shown schematically in Fig. 1 along with the potential due
to the impurity atom.

Various attempts have been made at theoretical calcula-
tion' of the photoionization cross section and its wave-
length dependence. Here we present an approach dif-
ferent from previous attempts. First, the photoexcited
carrier wave function is calculated using the Coulomb
Gro:n's function, the ground-state wave function, and
time-dependent perturbation theory. Then the ionization
rate and the photoionization cross section are calculated
by integrating the outward probability current associated

with the photoexcited carrier wave function.
In the case of a "hydrogenlike" impurity, the theory of

photoionization of the hydrogen atom, modified to in-
clude the properties of the medium such as the dielectric
constant and the effective mass, is reasonable only for
shallow impurities with small central cell corrections. For
deeper impurities such a treatment is not reasonable. This
is due to the fact that for deeper impurities electrons (or
holes) spend more time near the impurity atom and ex-
perience non-Coulombic, short-range effects due to the
core of the impurity atom and intervalley scattering.
Also, the simple effective mass equation [Eq. (1}]predicts
a unique binding energy for all impurities, whereas the ex-
perimentally observed binding energies of impurities de-
pend on the chemical species of the impurity ion:
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where rtt
' is the effective mass, e is the dielectric constant

of the medium, and g and E are the wave function and
energy of the ground state, respectively.

Since the core potential is unknown, we attempt to esti-
mate its effect by looking for solutions of Eq. (1) with the
energy eigenvalue (E) replaced with the experimentally
observed binding energy (Eo). In effect, the absence of
knowledge about the short-range potential is replaced by
empirical information about the binding energy which is
sensitive to short-range effects. This is a standard and
well-known technique in atomic physics and certain areas
of solid-state physics. ' ' The resulting quantum-defect
wave functions are solutions of

Zep2 yo(r) =Eoqo(r},
4&6'E'pr

FIG. 1. Photoexcitation of an electron (or hole).

except at r=0. This is equivalent to approximating
short-range effects by an empirical zero-range deviation
from the Coulomb potential. Since the observed energy is
not, in general, an eigenvalue of Eq. (2},we cannot require
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the function $0 to remain finite at the origin. However,
the divergence of the solution at the origin does not affect
its validity away from the origin, where the major contri-
bution to optical transition integrals occurs. This is be-
cause photoionization matrix elements involve spatially
extended excited state wave functions which vanish at the
0&gin.

Solutions of Eq. (2) can be written in terms of a nonin-
tegral principal quantum number n' =(E/Eo)'/ (Ref. 9).
The first term in the asymptotic expansion of the
ground-state wave function provides a good approxima-
tion for our purposes. Approximate wave functions of
this form have also been used by Bebb and Chapman. '
We use the exact wave function normalization constant
while Bebb and Chapman use a constant which normal-
izes the approximate wave function. The difference is
small for shallow levels. Our preference is based solely on
a factor of 2 effect on the photoionization rate for deep
levels. The approximate ground-state wave function is

where f is the Kohn-Luttinger envelope wave function"
and

V(r) =
1/2

O. .pe'q'

g(r, &) = g f„(r)e

If we neglect multiphoton absorption then we need to con-
sider only n =0 and n =1 terms of the above equation:

is the interaction potential between an electron or hole and
a photon. I is the intensity of the incident beam, a is the
polarization vector of the incident photon, p is the
momentum of the electron, e is the dielectric constant,
m' is the carrier effective mass, and n„ is the refractive
index of the medium.

After exposure to monochromatic radiation, the elec-
tron (or hole) will be in a state which has energy
Eo+nkco, where n is an integer, which is the number of
photons that an elytron absorbs in order for the transi-
tion to occur. The general solution to Eq. (7) can be writ-
ten as

N(n')=
n a

C(n')
(n'a)'/2I (n'+1)

C(n')= m 1 I

sin(n'n)2 ~ 0
. (n' —m —1) (n' —m)

(4)
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~
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V +(2kv) —+k P,(r) = V(r)$0(r),

where |tto and gi are the spatial wave function of the
ground state and the excited state, respectively. Here E0
is the ground-state energy and E0———EI, and El is the
ionization energy. Substituting Eq. (10) in Eq. (7) we get

Here a =4neoefP/Zm'e is the Bohr radius and n' is
the effective principal quantum number of the ground
state. C(n') is exactly equal to 1 for positive integer n'
and close to 1 for n' p —,'. It has the value v 2 for n ' =0.

In the limit n'~1, the above wave function exactly
reduces to the usual hydrogenic ground-state wave func-
tion and it is possible to obtain the wave function corre-
sponding to neutral centers in the limit where the impuri-
ty charge, Ze goes to zero. In order to maintain nonzero
binding (ionization) energy in this limit, we must take n'
to zero as well, as can be seen from EI
=m'Z e /2(4meeo) A n' In th.is limit, the ground-
state wave function reduces to

where

Zm'e 2 2m'E
and k =

4n eoek2k A'2

Q, (r) =
2 I G(r, r') V(r')$0(r')d r', (12)

where G(r, r') is the Coulomb Green's function which sat-
isfies the following equation:

and E =frau+ED is the energy of the photoexcited elec-
tron (or hole). Solutions of Eq. (11) can be written in the
integral form

ij'to(r) =
—kr

0 e V +(2kv) —+k G(r, r')=5(r —r'), (13)

where ko (n'a) '=(2m——EI)' /A. The limit of n'a is
finite and nonzero because n'a is proportional to n'/Z.
This $0 is exactly equal to the wave function for a zero-
range potential which was used by Lucovsky to describe
impurity centers with the Coulomb effects neglected.

The wave equation of the electron (or hole) including
interaction with the incident photons can be written as'

r

2 2fi &i Ze
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and has the form'2'
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where W; &&2(
—ikx) and M;, &z(

—iky) are the two solu-
tions of the Whittaker equation. ' The free-particle
Green s function can be obtained in the limit as the im-

purity charge (Z) goes to zero.
A photon causes transitions from s-wave ground states

to p waves. This means that in Eq. (12) the p-wave but
not the s-wave part of the Green's function is important.
Quantum defects reflect deviations from Coulombic po-
tentials near the origin. Since p waves vanish at the origin
but s waves do not, we must take quantum defects into
account in the ground-state wave function but not in the
Green's function.

An approximate evaluation of the integral in Eq. (12)
can be carried out because the ground-state wave function
g(r') has a small spatial extent compared to the larger dis-
tances at which we need to evaluate 1t i(r) which describes
the escape of the photoexcited carrier. Thus we take
r'&gr If w. e also choose the z' axis to lie along the r
direction, it is possible to simplify x and y as

X~2f,
y =r'(1+cos8'),

where 8' is the angle between vectors r and r'.
In order to obtain the asymptotic form of M and 8',

the two conditions r ~&r' and r y& ~iv(iv 1)
~

l—2k
should hold. This specifies the range of validity of the
approximate form of gi for a given excited state energy.
From Eq. (14) we obtain the asymptotic form

G(r, r')= g z
e'""(—ikr')"(1+cos8')"

=o ll (n +1)]

F(n')= C(n')[(n' —1)(k/3ko) 2Fi(2 —iv, n'+2, 4;z)

i—2Fi (2—iv, n *+2, 3;z)], (21)

J„=,Re fi(r) —.e, gati(r)
1

m r
(23)

Since only the asymptotic form of fi is known, the sphere
on which J„ is integrated should be positioned far enough
from the origin in order to use the asymptotic form of g, .
Due to the fact that the total probability current is con-
served, it should be independent of the position of the
sphere on which J„ is integrated. Substituting for f& in
Eq. (23) we get

I
~

S(n')
~

(& e, )
J,

m kr

We typically consider unpolarized photon beams incident
on the impurities in semiconductors. In this case, it is
useful to obtain the photoionization cross section averaged
over possible polarization directions. Averaging over the

z =2kl(k+iko), and zFi is the confluent hypergeometric
function. ' The photoionization cross section (cr) can be
defined as

Total outgoing probability current (I, )

Incident photon flux (I)
The outgoing probability current (I„) can be obtained by
integrating the radial part of the current density J, on a
sphere with the impurity atom at the center:

The impurities that we are interested in have ionization
energies of the order of a few hundreds of meV at most.
This corresponds to wavelengths of the order of microns.
The range of integration in Eq. (12) is determined by the
spatial extent of the ground-state wave function and is of
the order of a few tens of angstroms or less. This implies
that in the interaction potential, the factor exp(iq r) can
be approximated by 1. This is the standard dipole ap-
proximation, and holds for most cases of interest to semi-
conductor physics. Then Eq. (8) becomes

' 1/2

V(r)= a-pe IA
2c6'apl„co

(18)

In order to obtain the asymptotic form of fi(r), we can
use)12) with G(r, r') given by Eq. (17) and V(r) as in Eq.
(18). By evaluating the integral, we get

fi(r) =I' S (n ')& e, ( ikr)'" 'e' ', —
where

4' + j~ 2 k 5 +3/2k 2
' 1/2
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2neon, clice . (k;k)n +3
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and

X(n'+ l)I (2—iv)F(n') (20) FIG. 2. Photoionization cross section as a function of nor-
malized photon energy for n =1, i.e., no central cell correction
(pure Coulomb).
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FIG. 3. Photoionization cross section as a function of nor-

malized photon energy for a neutral impurity (n =0), for ex-

ample, an isoelectronic (isovalent) impurity.

Normalized Photon Energy

FIG. 5. Photoionization cross section as a function of nor-

malized photon energy for donor impurities in germanium, i.e.,
a Coulomb potential with a central cell correction. Small cen-
tral cell corrections correspond to n * near 1.
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possible polarizations of the incident photon we get the
photoionization cross section as

Me 4" +'(n'+1)2n'[(n') —I+x]
~

F(n')
~

m~+4(1 e
—2~)

0'
3n, rom *c

(25)
For a given value of n

* and photon energy, F (n ") can be
obtained using the integral representation of hyper-
geometric function
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FIG. 4. Photoionization cross section as a function of nor-

malized photon energy for donor impurities in silicon, i.e., a
Coulomb potential with a central cell correction. Small central
cell corrections correspond to n * near 1.

FIG. 6. Theoretical and experimental (solid curve) absorption
constant (k) as a function of wavelength for indium impurities
in silicon.
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Impurity

Theoretical
(cm )

Experimental
(cm')

TABLE I. Theoretical and experimental photoionization

cross sections at the peak for different impurities in Si and Ge.
TABLE II. Approximate empirical values of effective

masses, effective Rydbergs, and effective quantum numbers in

terms of impurity ionization energies EI ———Eo. Heavy hole

masses are employed for acceptors.

Si:P
Si.B
Si:Ga
Si:Al
Si:In
GeAs
Ge:P
Ge:Sb
Ge Tl

1.78x 10-"
1.63 x 10-"
8.11x10-"
9.16x 10-"
1.89x 10-"
1.05x 10-'4
1.17x 10-'4
1.51x 10-"
1,36x10-"

1.7x 10-"
1.4x10-"
5.0x10-"
8.0x 10
4.5x10-"
1.1x 10-'4
1.5 x 10-"
1.8x 10-"
8.7x 10-"

Si Donors
Acceptors

Ge Donors
Acceptors

31
36

8.8
9.4

0.3
0.34

0.15
0.16

Effective Rydberg
(meV) Effective mass

31 meV/Ez
36 meV/E

8.8 mev/Er
9.2 meV/Eq

rF t (a,b,c;z)

t'-'(1 —t)'-'-'(1 —tz) 'Ct
I'(b) I'(c b)—

and the recurrence relation'

c (1 z),F, (a,b,—c;z) c,F, (a—,b —l, c;z)

+z (z —a) rFi (a,b, c + 1;z)=0 . (27)

The expression given in Eq. (25) can be used to obtain
photoionization cross sections for both shallow and deep
impurities in semiconductors. In contrast with our re-
sults, the pioneering calculations of Bebb and Chapman'
are not applicable near threshold, since the asymptotic
form of the excited state wave function was used to calcu-
late the matrix element.

Our result (25) exactly reduces to the formula obtained
for the hydrogen atom'r in the limit n'~1 and to the
one obtained by Lucovsky for a zero-range potential in the
limit n* —+0. At n'=1 the maximum of the cross sec-
tion occurs at threshold and falls off rapidly with the in-
creasing photon energy (see Fig. 2). This agrees with ear-
lier results obtained for the hydrogen atom in atomic
physics' and also for hydrogenlike impurities in semicon-
ductors. ' The nonzero behavior at the threshold is a
feature of the long-range nature of the Coulomb potential.
If instead of the Coulomb Green's function, the free-
particle Green's function is used, the cross section would
vanish at the threshold as is the case in Bebb*s treatment
using plane waves for the excited state wave function. In
the limit n'~0„ the cross section vanishes at threshold
and its maximum appears when the photon energy is
equal to twice the ionization energy (see Fig. 3). In the
n '~0, Z~O limit, our result agrees exactly with the for-
mula obtained by Lucovsky for the case of a zero-range
potential. As shown before, ' ' in this limit the ground-

state wave function exactly reduces to the one used by Lu-
covsky. The normalization of the Bebb and Chapman re-
sult is off by a factor of 2 in this limit. (This is a dif-
ferent factor of 2 than has been discussed by Cordes and
Calkjn. '8

Figures 4 and 5 show the photoionization cross section
as a function of normalized photon energy (x =RelEt)
for donor impurities in Si and Ge. As n' becomes small-
er, the absolute value of the cross section decreases and
also the maximum of the cross section moves away from
threshold. The energy dependence of the cross section be-
comes weaker for small values of n'. Figure 6 shows a
comparison of the theoretical and experimental'9 absorp-
tion constant for In impurities in silicon.

Table I shows a comparison between theoretical, using
the above formula, and experimental photoionization
cross sections at the peak for several impurities in Si and
Ge. In order to estimate n', effective Rydbergs and
masses (see Table II) are obtained from the literature. " '

Note that no effective field ratios are used in contrast
with other work, ' where an empirical factor between 3
and 9 is introduced in order to obtain agreement with ex-
periments. Also no free parameters are employed. We at-
tribute this success to the fact that GVfo provides a good
treatment of normalization because G accurately relates
the small-distance behavior to large-distance behavior.
This agreement is also due in part to the fact that the
cross-section maxima are at or relatively near threshold,
where our use of effective mass theory is more accurate
than it is for energies much larger than the threshold en-

ergy.
The above procedure can be extended to obtain cross

sections in the presence of applied electric fields. 'o In this
case, we expect nonzero cross sections for photon energies
below the ionization energy. Future work should be
aimed at incorporation of anisotropy about valley minima.
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