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Magnetoresistance measurements are made on the two-dimensional electron gas in GaAs-
A1„Ga& „As heterostructures as a function of the sample width ( $Y} and the potential probe spacing
{L) to study the electron-electron interactions. The temperature- {T) dependent parabolic magne-
toresistance, observed above 0.1 T, clearly shows the effect of electron-electron interactions. When
W is large compared with LT =—~(AD/kT)', the magnetoresistance agrees quantitatively with the
two-dimensional (2D) interaction theory proposed by Altshuler and Aronov, confirming the earlier
observations by Paalanen, Tsui, and Hwang. When 8'=LT, a 2D-to-1D crossover is observed. For
8'ALT, the magnetoresistance agrees quantitatively with the 1D interaction theory, if boundary

scattering is negligible. When L is decreased and is less than 1.8LT, the zero-dimensional (OD)
behavior is observed, confirming the OD interaction theory. In the narrow channels, with 8' less
than the elastic mean-free path {l,), the orbital effects are greatly reduced by the boundary scatter-
ing, showing the precursor of the extremely 1D behavior. %'hen the magnetic field is less than 0.1

T, a new size-dependent magnetoresistance is observed. This T-insensitive magnetoresistance is at-
tributed to boundary scattering. In addition, when L =LT, irregular conductance fluctuations of or-
der e2/h are observed, consistent with the recent theory of Lee and Stone on universal conductance
fluctuations.

I. INTRODUCTION

The diffusive nature of electron motion in the hydro-
dynamic regime has been known for many years. ' How-
ever, only recently, it was discovered that the interactions
among these diffusing electrons may lead to significant
modifications to the standard Fermi-liquid theory. The
calculations based on perturbation theory in the weak-

coupling regime, originally done by Altshuler and Aro-
nov and also by others, " show that most of the thermo-
dynamic and kinetic quantities are modified, and often ac-
quire singularities in two dimensions. Subsequently,
Finkel'stein performed a renormalization-group
analysis. ' According to this analysis, when the Zeeman
splittings are larger than kT or when magnetic impurities
are present, the interaction increases with decreasing tem-
perature (T) and at sufficient low T, drives a metallic sys-
tem into the insulating regime. Castellani et al. reached
the same conclusion by a perturbative approach. On the
other hand, in the absence of Zeeman splittings and mag-
netic impurities, Finkel'stein predicts a perfect conductor
at T =0, while Castellani et al. claim that the conduc-
tivity should remain finite at T =0.

Experimentally, there have been a number of attempts
to test the validity of the theory. While the experiments
on the single-particle density of states, ' '" the Hall coeffi-
cient, ' and the electron-electron inelastic scattering time'
can be understood within the framework of the interac-
tion theory, direct determinations of the conductivity
corrections' ' and the associated magnetoresistance' '
are still ambiguous. The ambiguity is due to the presence

of other temperature-dependent mechanisms such as local-
ization' and electron-phonon scattering. ' In addhtion,
the theory also predicts that there is a length scale govern-
ing the dimensionality of the electron-electron interac-
tions. A change of the dimensionality should occur when
the size of a sample approaches this length scale. So far,
there is no experimental report on the existence of such a
length scale, and the observation of the electron-electron
interactions in different dimensions in a single system has
not yet been realized.

In this paper we report our magnetoresistance measure-
ments on the high-mobility two-dimensional electron gas
(2DEG) in GaAs-Al Gai „As heterostructures. The
low-field parabolic magnetoresistance, already identified
by Paalanen, Tsui, and Hwang as due to the electron-
electron interactions, is studied as a function of the sam-
ple width (W) and the potential probe spacing (L). The
conductivity corrections (5o), deduced from the magne-
toresistance, are in good agreement with the interaction
theory in two dimensions (2D), in one dimension (1D),
and in zero dimension (OD), depending on W and L. The
success of observing the interaction effect in all three di-
mensions in this system is attributed to its high mobilities.
For example, with a mobility of =3X10' cm /Vs, the
characteristic length governing the dimensionality of the
interactions can be on the order of micrometers. Such
micrometer-size devices can be conveniently fabricated, by
using photolithographic techniques, to test the theory in
different dimensions in a single system. In addition, only
a small magnetic field (8) is needed to suppress the locali-
zation effect in these high-mobility samples. As a result,
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the interaction effect can be studied unambiguously in a
wide range of 8.

This paper is organized into four sections. In Sec. II we

review the theory of electron-electron interactions, em-

phasizing the fact that the interaction corrections to the
conductivity of the 2DEG in GaAs-Al Ga& „As hetero-
structures can be measured directly from the parabolic
magnetoresistance in all thrm dimensions. We also dis-

cuss briefly the effect of the boundary scatterings on the
low-field magnetoresistance, and the universal conduc-
tance fluctuations in the magnetoresistance of small sam-

ples. In Sec. III we present our experimental results, some
of which were reported earlier in Refs. 21 and 22. Discus-
sions of the experiment and some concluding remarks are
given in Sec. IV.

II. THEORETICAL BACKGROUND

A. Standard results

From the perturbation theory, there is a correction to
the Drude conductivity (oo} due to the el':tron-electron
interactions in the diffusion channel in the metallic re-

gime (EFrjh&&1, r is the impurity scattering time}.
When kTr/A'~ 1, the theory ' predicts in 2D,

0 55g
4 91

1 1
1+F/4 ( 1+F/2)

m'

The values in the large square brackets in Eqs. (1) and
(3), and the parameter s in Eq. (4), can be deduced directly
from experiment. For simplicity, we label these values by
the interaction coefficients ge, where d is the dimen-
sionality. We compare the experimental ge with those
calculated from theory using F obtained from Eq. (2).
The above results are obtained for short-range scatterers
for which r is the same as the transport time r„. In gen-
eral, if the range of the scattering potential is finite, the
results are still correct provided that r in the expressions
of the conductivity corrections is replaced by ~,„.

In addition to the diffusion channel, there are correc-
tions from the interactions in the Cooper channel. The
functional form is the same as that given in Eqs. (1), (3),
and (4), except that ge is reduced by a factor of
1+geln(1. 13EFjkT), where Ez is the Fermi energy and

ge is the appropriate bare interaction parameter in the
Cooper channel. Concurrently, weak localization due to
quantum interference also contributes to 5cr. Reviews on
these phenomena can be found in the articles by Lee and
Ramakrishnan and by Altshuler and Aronov.

2+F F
5oiD= —4—3 ln 1+—

F 2

e fi
ln

2n iri kTr

~here

d8 2kF . 8F= 1+ s1n
277 K 2

(2)

and a is the inverse screening length in 2D.
When 8' is less than the thermal diffusion length (LT),

defined by Lr =sr(AD/kT)'r2, the interactions cross over
to 1D. In this case, '9 i

4.91 1+F/4 (1+F/2)'"—
F

2

x
V 2&RW

(3)

If the length of the channel (L) is also less than LT, 5cr is
given by the OD theory,

e
5aoD ——s L, (4)

2 AW

where s, the interaction constant, depends on the boun-
dary condition. For a short channel with bulky metal
contacts at the current leads,

B. Derivation of 5o in 1D and OD

The rigorous results above are obtained from the
current-current correlation function derived from the
Kubo formula. The physical interpretation is not im-
mediately apparent. Since the single-panicle density of
states was also found to be modified by the interactions in
a similar way, it was thought that the corrections in the
conductivity were due to the corrections in the density of
states through Einstein's relation. However,
Finkel'stein' emphasized recently that it is the compres-
sibility BN, /Bp that enters into Einstein s relation,
o =e DBN, /dp (Here, N,. is the electron density and p
is the chemical potential. ) Since there is essentially no
diffusion correction to the compressibility, the conductivi-

ty correction comes from the modification of the dif-
fusion coefficient D. Expressing D =1/2VF~ in 2D, we
obtain a diffusion correction to the impurity scattering
time ~, due to the electron-electron interactions. This is
consistent with the calculations by Fukuyama and the
interaction correction to 5(l/w)/( 1jr) in 2D shares the
same functional form as 5o /oo. Following this argument,
one can derive 5cr in 1D and OD using a simplified for-
malism. Here, we briefly outline these calculations.

Following Fukuyama, the contribution to the self-
energy X from the process of Fig. 1 is given by

&(k,e, ) = — T g g G(k +q, e„+~,)r'(q, ~„e„),

s=& 2n 0.36——1—1 1

(1+F/2)'r

In our experiments, we use long Hall bars and the length
of the channel is defined by the potential probe spacing L.
In this case, s can be shown to be

k
G(k~e» ) = &&» +EF+ sgne»'

2&/ 27
J

(Dq +
~
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~
)

' if e„(e„~,) (0,
I (q, co(,e„)= '

0 otherwise,
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eZ
5o.= —giD, aL,

&2m A'W

where a is a constant given by

(10)

FIG. 1. Exchange self-energy correction due to electron-
electron interactions.

where 6 is the thermal Green's function, and v=rri/2irtI
is the single spin density of states of a Fermi gas. Since
co& is order of kT/A, when W is small so that
D (m/W) & kT/R, the summation over q in Eq. (5) is lim-

ited to the q values in the direction of the length of the
channel. When W gir(AD/kT)'~, which is the thermal
diffusion length LT, we have

The value of a depends on the upper cutoff in cuI. To es-
timate this value, we assume that the system crosses over
from 1D to OD smoothly as L changes. With this as-
sumption, Eqs. (8), (9) and (10) can be combined in a sin-

gle approximate formula,

e2 1 1 79
~2~'em

It implies that a in Eq. (10) is 0.558, a value that can be
determined by experiment. According to Eq. (11), when
the correction to the conductivity is dominated by the
electron-electron interactions, the effective length scale
(L,rf} is, in general, given by

X(k,e„)= — Tg 1 1

2n W„,ie„+iaiI i/2r-~t & ~e

1 1 a+-
Lg Lg L

(12)

~max dq
' '" (Dq'+ 1~iI)'

where q;„and q,„are the momentum-transfer cutoff.

q,„ is set to 2m/V'Dr, below which the diffusion approx-

imation is valid. For a long channel, q;„=0. For a
short potential probe spacing L, the requirement that the
diffusion interaction is valid within the spacing leads to
q;„&2ir/L. This limits the wavelength of the interac-
tion potential to less than L. With these boundary condi-
tions, and assuming L & m(AD/kT)'~, we have

2m /~Dr dq ir 21r

(Dq2+
~
aiI

~
) 4~DaiI/ Lcoi

to the first order of 1/L. If L ~ ao, by equating
5o /oo ——X/(1/~), we have, from the first term of Eq. (7),

2

5o= —g 2 LT.
v'2n fi8'

If we include the effect of the Hartree interactions into
the parameter g, and denote it by giD, Eq. (8) agrees with
the more rigorous solution given by Eq. (3). If L is not
too large compared with LT, we have to include the
second term in Eq. (7). In this case, we get

2 LT
5cr= —gjo ~ LT 1 —1.79

&2m A' 8'

which agrees with the solution given in Ref. 25. On the
other hand, when L ~&LT, instead of Eq. (7) we have

2wl~Dr dq L
2+IL (Dq2+

~

~
~

)2

Not surprisingly, 5o in this case is given by

where a=giD/s, a constant dependent on the boundary
conditions. This is in contrast to the effe:tive length scale
expected from the localization theory, which predicts

1 1 1

2f( L2 L2 (13)

C. Magnetoresistance

The use of resistance measurements to determine
electron-electron interactions is not a straightforward
task. For example, the quantum corrections to the resis-
tivity as a function of T have to be extracted from a T-
dependent background which is due to classical effects
such as electron-phonon scattering' and the T-dependent
Coulomb scattering by individual ionized impurities. In
addition, all three quantum corrections, i.e., localization,
the electron-electron interactions in the Cooper channel,
and the electron-electron interactions in the diffusion
channel share the same T dependence.

In principle, the quantum corrections can be separated
by applying a magnetic field since each quantum effect
has a different 8 dependence. In practice, however, a
combination of different 8 dependences can be complicat-
ed in most systems, hampering a clear demonstration of
the individual effects. Fortunately, for the high-mobility
2DEG in GaAs-Al„Ga~ „As heterostructures, there ex-

where L; is the inelastic scattering length. Hence, by
comparing the length-scale dependence, one can distin-
guish the interaction effect from the localization effect.
Masden and Giordano' performed a systematic measure-
ment on the length-dependent resistance of thin Au40Pd60
wires. They found that the length-scale dependence is
consistent with Eq. (12}instead of Eq. (13) expected from
the localization theory. According to the above analysis,
it is evident that the phenomenon observed by Masden
and Giordano is dominated by the electron-electron in-
teractions.
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1 1 ~l
+ln

2 a~

(14)

where r; is the inelastic scattering time or phase relaxa-
tion time, a =4DeB/R, and 1t is the digamma function.
The effect of 8 is to suppress localization. It can be
shown that when the magnetic length of the Cooper
propagator (v'iii/2eB) is less than the elastic mean free
path (l, ), localization will be totally suppressed. In other
words, when 8 & R/2el2 (=1 G for our device with mo-
bility 3X10 cm /Vs}, the localization effect can be ig-
nored.

For the electron-electron interactions in the Cooper
channel in 2D, the effect of 8 can be written as~7

5cr(8) 5cr(0) =—— g ( T)$2
2eD8

2ir A' mT

2 1 1

, P(T) t(
—+

2iriA' 2 az;

1 1 +ln—
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where

(15)
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tdt xt
(()i(x)= 1—

sinhit sinh(xt)

g -'(T) =(g, )-'+ln

m2

41n(T/T, )

1.13'
kT

Here, T, is the superconducting transition temperature.
%'hen the interaction is repulsive, the magnetorcsistanee is
positive. However, in this case, the interaction enhances
the zero-field conductivity. Hence, the 8 field still
suppresses the interaction effect in the Cooper channel.
Although the 8 dependence of the first term differs from
localization, it can be deduced from the derivation of Eq.
(15) in Ref. 27 that the 8 field required to suppress the
first term is also the same as that for localization. There-
fore, for high-mobility samples, there is no contribution to

ists a range of 8 that shows preferentially the effect of the
electron-electron interactions in the diffusion channel.
One can take advantage of this fact to study the electron-
electron interactions. In the following, we briefiy review
the magnetoresistance due to the various quantum effects.

It is well established that there is a negative magne-
toresistance associated with the weak localization ef-
fect. 9

1 1
5o (8)—5o'(0) = f —+

2 A 2 ar;

the conductivity from the effects associated with the
Cooper propagators above a few gauss. This is also true
for other dimensions.

In contrast to the 8 sensitivity of the Cooper propaga-
tors, there is no magnetic effect on the interactions in the
diffusion channel, even at to, ~&&1, until the energy as-
sociated with the spin becomes important. In this case,
the 2D magnetoconductance associated with the dif-
fusion channel is given by

2 ygf

g2(h), (16)
ih' 4

5cr(8)—5cr(0) =—

where

:"=4 ln(1+F/2) 4, —

00 h
gq(h)= f dQ i [QN(A)]in 1—

h =g*pttB/kT,

ln(h/1. 3} if h »1,
O.OS4h if h «1 .(h)= '

:" is the interaction parameter of the
~
S,

~

=1 triplet con-
tribution. We expect that a positive magnetoresistance
will be observed when h = l. In our samples, 8 corre-
sponds to 4.3 T (Ref. 35) when T=1.5 E. Since the in-
teraction in the diffusion channel decreases the conduc-
tivity, the magnetic field in this case enhances the interac-
tion. However, when 8 «4.3T, this enhancement is
negligible.

Now, we have for our samples a particularly simple sit-
uation in the range of 8 from a few gauss to 1 T. In this
range, the only quantum contribution to the conductivity
is from the interactions in the diffusion channel. It is un-
changed under the applied field and is given by the zero-
field expressions Eqs. (1},(3), and (4). In our experiment,
the device has a Hall-bar geometry. When 8 is applied,
the measured quantity is p instead of o~. To calculate
the change in p, we notice that 5a,~ =0 (Ref. 33) in all
dimensions for the interaction effects in the diffusion
channel. By inverting the conductivity tensor, we obtain,
in the presence of the Shubnikov —de Haas (SdH) oscilla-
tions,

2&kT 2~Em
Xcsch cos

—7T/N T
e

Here, oo is the Drude conductivity, o, contains the SdH

p(B)=po+[1+(a),r) ] 2
—[1 (co,r) ] i— , (17)

o'o oo

where

—1po=oo

oo (~.~)' 2~'kT
1+(co,r) 1+(a),r)
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dy(8) =
moo

2

8 50; . (18)

In the range of 8 of interest, 5cr; is constant and Eq. (18}
predicts a parabolic magnetoresistance. By measuring
bp/8, we can obtain 5cr; regardless of the dimensionality
of the sample.

The present experiment is designed to determine 50; in
samples with different sizes relative to LT, by measuring
the magnetoresistance. Our results are compared with the
predictions in 2D, 1D, and OD. Before entering the dis-
cussion of these results, we wish to review briefly the ef-
rect of boundary scattering on the magnetoresistance, and
the conductance fluctuations expected in small samples.
These phenomena are not from the electron-electron in-
teractions; they are observed in our samples with L and
W around a few micrometers.

oscillations, and 5cr; is the interaction contribution given

by Eqs. (1)—(4). It is clear from the first term of Eq. (17}
that there is no classical magnetoresistance associated
with the Drude conductivity. The second term indicates
that the amplitude of the SdH oscillations increases ex-
ponentially once duo, & kT and A/r. The third term is the
parabolic negative magnetoresistance from the interaction
effect. Here, we should emphasize that this magnetoresis-
tance is a classical orbital effect which depends only on
the perpendicular component of B.

According to Eq. (17), when 8 =0, p(0)=pa 5—o';/oo
Since 5rr; &0, the interactions increase the resistivity at
zero field, and the magnetoresistance +(8},defined as
p(B)—p(0), is given by

(ai, r) Os
dy(8)=

2
5a;+[1+(a),~) ]

0'0 0'o

Since n, is an oscillating function, it does not contribute
to the monotonic magnetoresistance, and consequently,
even when the SdH oscillations are present, the interaction
effects can be deduced from the background magne-
toresistance by joining the midpoints of the oscillations.
The monotonic term can be written as

of narrow channels with that of wide channels, we con-
cluded that the latter dominates in our samples. As a re-

sult, rL is expected to be less than r«and the measured
magnetoresistance is expected to be smaller than that
predicted by Eq. (20). Indeed, the increasing importance
of the boundary scattering as W decreases can be viewed
as the precursor of the extremely 1D case in which the
electrons are also bound along the width. In this extreme-

ly 1D limit, the orbital effect we have discussed should be
quenched completely. Therefore, in the absence of a more
detailed theoretical analysis in this regime, the use of Eq.
(20) to determine the interaction parameters in our ex-
tremely small channels cannot be quantitatively correct.
Although it is still useful in demonstrating the functional
dependence of the interaction effects, the interaction pa-
rameters deduced from it will be reduced.

In our experiment, we also observed a T-insensitive par-
abolic magnetoresistance in narrow channels ( %&3 pm)
when 8 &0.1 T. This size-dependent magnetoresistance
is also attributed to the boundary scattering and it will be
discussed in Sec. III.

E. Universal conductance fluctuations

It is well known that large fluctuations appear in the
measurements of small samples. Some fluctuations,
recently discussed by I.ee and Stone and also by
Altshuler, ' ' are results of the highly correlated electron
paths in space due to quantum diffusion. They found
that at T =0 the amplitude of the fluctuations in the con-
ductance as a function of chemical potential or 8 is of the
order of ei/h, independent of the sample size, shape, and
the conductance itself. It is related to the sample size at
finite T because such fluctuations are apparent only when
L &LT or L; (where L; is the inelastic mean free path).
In this case, ensemble averaging cannot be performed.
The fluctuations, hence, result from the fact that the con-
ductance associated with each electron path of definite en-

ergy is different.

III. EXPERIMENTAL RESULTS

D. Boundary scattering

Equation (18) can be rewritten as
r

8 5o; .Ap(8) =
pf 2e 2

Here, we differentiate the lifetime ~L of an electron in a
Landau orbit and the transport r«deduced from the con-
ductivity. ~en they are the same,

lip(8)= z zB 5cr; .
s

(20}

However, when 8' is comparable to I„ the scattering of
electrons by the sample boundaries can play an important
role. More specifically, the boundary scattering is just as
effective as the impurity scattering in hmiting rL, but its
effect on the conductivity depends on whether the scatter-
ing is diffusive or specular. By comparing the resistivity

In order to test the theory of electron-electron interac-
tions in different dimensions, we fabricated about twenty
samples with different combinations of L and W' from
two modulation-doped GaAs-Al„Gai „As wafers. Con-
ventional photolithographic techniques are used to define
the Hall-bar pattern for four terminal measurements.
Here, we present the representative data from ten samples.
The sample parameters and specifications are shown in
Table I. The first six samples are fabricated from the
same wafer which has an average N, =5X10' m and
an average mobility p=2. SX10' cm jVs. The other
four samples are fabricated from the other wafer with
N, =4.6X10' m and @=1.8X105 cm /Vs. At T=2
K the samples from the first wafer have Lr =4 1@m and.
those from the second have LT-3.4 pm. Since these
length scales are comparable to the physical dimensions of
the samples listed, we expect a dimensional crossover to
occur when the temperature is decreased belo~ 4.2 K. In
Table I, we also list the theoretical crossover temperatures
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TABLE I. Sample parameters and the theoretical dimensional crossover temperatures.

Sample no fV (pm) L (pm) X, (10" m-') ~ (10-" s) T, ) (K) T,2 (K)

3

6
7
8
9

10

156
34.5
6.2
3.5
3.0
1.1
2.7
3.0
1.9
2.6

338
272
272
310
272
272

59
7.5
6.2
6.7

5.03
5.43
5.02
5.43
4.79
4.84
4.60
4.78
4.60
4.91

11.4
9.68

11.3
9.68
7.45

10.3
7.15
6.88
7.15
7.12

0.0017
0.031
1.1
3.0
2.9

28
3.2
2.6
6.5
3.7

0.02
1.3
1.9
1.8

T„and T,2. The former is the 2D-to-1D crossover tem-
perature at which Lr(T„}=W; and the latter is the 1D-
to-OD crossover temperature, defined in Eq. (11),at which
Lz ( T,2) =L /1. 79. The magnetoresistance data are
recorded between 1.25 and 8 K with a perpendicular mag-
netic field up to 0.8 T. The measurements are made using
a lock-in amplifier at 145 Hz and a constant-current
source of 10 A to avaid electron heating.

Figure 2 shaws the magnetoresistance data for a wide
sample (no. 1) and for three narrow and long samples
(nas. 3, 5, and 6), previously reported in Ref. 21. Figure 3
shows the data from a narrow but short sample, with
W =1.9 pm and L =6.2 pm, at 4.2 and 1.25 K. The in-
set shows the sample geometry. These data illustrate the
change in the perpendicular field magnetoresistance as we
vary W and L. In the wide channel (IV=156 pm), the
parabolic magnetoresistance is observed from 8 =0.02 T
to approximately 0.4 T, confirming the earher observa-
tions made by Paalanen, Tsui, and Hwang. zc When the
width of the channel becomes small (%=6.2 pm), para-
bolic magnetoresistance can be identified in two regimes
with a critical field (8,) around 0.1 T. Below 8„ the
magnetoresistance is insensitive to temperature, in con-

trast to the magnetoresistance at higher fields, which is
temperature dependent. As the width of the channel de-
creases further, the magnitudes in both regimes increase
and 8, extends to higher fields. For a l.l-p, m-wide chan-
nel, 8, increases to 0.25 T. At lower temperatures (1.6
K}, the SdH oscillations become apparent. Strikingly, the
onset of the oscillations depends on the sample size, al-
though the mobility of the samples is approximately the
same. For very narrow channels (no. 6 in Fig. 2 and no. 9
in Fig. 3), in addition to the SdH oscillations, irregular,
aperiodic, and T-insensitive fiuctuations are observable
belaw 0.5 T. Here, we note that the magnetoresistance ob-
served in a parallel magnetic field is less than 0.1% of
that in the perpendicular field case. This fact shows that
all the aforementioned magnetic effects up to 0.8 T are or-
bital in nature.

A. Magnetoresistance below 8,

An example of the magnetoresistance below 8, is
shown in Fig. 4, where it is plotted against 8 from 0 to
0.055 T for sample no. 4 ( W =3.5 pm). For 8 & 0.01 T,

25C

aQQ

l5Q

a III' I

Qg
8(&)

Q.S

100
Q.2 Q.4

1

Q-6 Q.S

FIG. 2. Change of resistance, 4E, /Ro, as a function of per-
pendicular field at 4.2 and 1.6 K. The irregular structures in the
data of sample no. 6 below 4 kG are reproducible; they are not
Shubnikov —de Haas oscillations.

FIG. 3. Magnetoresistance of sample no. 9 with 8' = 1.9 pm,
L =6.2 pm at T =4.2 K (upper curve), and T =1.25 K (lower
curve). The dashed line is the extrapolation of the B depen-
dence above B, at T =4.2 K to zero field. The y intercept gives
the magnitude of the T-insensitive magnetoresistance.
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2.0

L = 51opfA
I 2- L = 6.2p.m

OX
0

1.0

K

0—
2

8' (~o T')

FIG. 4. Change of resistance, LR/Ro, of sample no. 4 with
8' =3.5 pm, L =310pm against 82 from 0 to 550 G.

0
l

1

4 5 8 7 8 9lo

Nt (p, m)

the magnetoresistance is caused by the magnetic effect on
the Cooper propagators mentioned in the preceding sec-
tion. This T-dependent magnetic effect is now under in-

vestigation, and it will not be discussed further in this pa-

per. For 8=0.01 to 0.05 T the magnetoresistance is
linear in 8 and the slope is independent of T below 4.2
K. This approximately parabolic magnetoresistance is
size dependent. However, it is not caused by the
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FIG. 5. Change of the resistance, ~/Ro, of sample no. 4
with g =3.5 pm against 8 from 0 to 0.6 T. The dashed line
is the extrapolation of the 8, dependence above 8, at T =3.8 K
to zero field.

FIG. 6. Temperature-insensitive part of the magnetoresis-
tance below 0.15 T from seven devices. W is the sample width
and I. is the potential probe spacing.

electron-electron interactions for the following two
reasons. First, it is almost temperature independent, con-
trary to the predictions from either the 2D or the 1D in-
teraction theory. Second, a fit of the 4.2-K data to Eq. (3)
yields giD-11.6, an order of magnitude higher than that
expected from the interaction theory.

The magnetoresistance deviates from the 8 depen-
dence as 8 approaches 8, (=0.1 T in Fig. 3), and van-
ishes at higher B. When 8 is well above 8„ the T-
dependent parabolic magnetoresistance becomes dominant
(Figs. 2, 3, and 5). If we assume that the 8 dependence
above 8, can be extrapolated at each temperature to
below B„as indicated by the dashed line for T =4.2 K in
Figs. 3 and 5, we can obtain the magnitude of the magne-
toresistance below 8, from the y intercept of the dashed
line. The magnitude is slightly dependent on the tempera-
ture. In Fig. 6 we summarize our data on this magnitude
as a function of the sample size for seven samples at 4.2
K. It shows that this T-insensitive, negative magne-
toresistance is larger for smaller L or W.

%e attribute this conductivity enhancement to the skip-
ping orbits in a restricted geometry. For the samples we
used, the elastic mean free path is around 3 pm, which is
comparable or even larger than the size of the samples
shown. Here, the boundary scattering plays an important
role. At zero magnetic field, the scattering between the
electrons and the boundaries is essentially specular and
does not affect the conductivity. This can be verified by
comparing the conductivity of the wide and narrow sam-
ples. However, due to their high mobilities, the transports
in these samples switch from the weak-field limit
(co,r & 1) to the classical high-field limit (co,r & 1) in a rel-
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atively low-field regime (=0.04 T}. In this "high"-field
limit, scattering sites are needed for current transport.
The boundaries in this case provide additional scattering
sites for the current transport and hence decrease the
resistivity. The magnetoresistance begins to saturate
when the electrons are able to complete cyclotron orbits in
higher fields instead of executing skipping orbits. For a
channel 1.5 pm wide, the magnetorcsistance should begin
to saturate when d8-1.5 pm, where dz is the diameter
of the cyclotron orbit. In other words, 8, should be
around 0.15 T, consistent with the experimental result.
According to this argument, the decrease in the resistivity
is proportional to the boundary scattering rate and hence
inversely proportional to the width. Also, the model
correctly explains the weak temperature dependence of the
magnetoresistance in this regime since all the parameters
involved are temperature independent. Indeed, the mag-
netoresistance decreases only by 12% at T =10 K and
48% at 20 K.

Another evidence for the important role played by the
boundary scattering in the narrow channels is the addi-
tional broadening of the Landau levels. The boundary
scattering reduces the lifetime (r} of an electron in a Lan-
dau orbit and hence the criterion ei,r) 1 in Eq. (17) is sa-
tisfied at higher fields. This leads to the SdH oscillations
emerging at higher fields for narrower channels, as shown
in Fig. 2.

8. Fluctuations in magnetoresistance

For samples nos. 6 and 9, the fluctuations observable
below 0.5 T are not SdH oscillations. These fluctuations
are aperiodic and T insensitive. Although the fiuctua-
tions of samples nos. 6 and 9 look similar, they actually
correspond to very different fiuctuations in the conduc-
tance G. This can be seen by expressing bG as b,R/R
for small b,G. For similar fluctuations in ling/R, EG is
inversely proportional to the resistance of the entire chan-
nel. Numerically, the fluctuations in the conductance for
sample no. 9 are from 0.7e /h to 1.8e /h, whereas the
b G for sample no. 6 are only from 0.014e /h to
0.064e /h, much smaller than that of sample no. 9.
These quantities are consistent with the theory proposed
by Lee and Stone. The fluctuations reveal the funda-
mental transport characteristics of a sample when L & Lz .
For sample no. 9, this condition is satisfied and the order
of the fluctuations is e2/h. On the other hand, the length
of sample no. 6 is much larger than Lr =4 pm, rendering
the fluctuations small.

C. Magnetoresistance above B,

The magnetoresistance above 8, is caused by the
electron-electron interactions. To verify this, the magne-
toresistance of samples nos. 4 and 9 is plotted against 8,
from 0 to =0.7 T, in Figs. 5 and 7, respectively. The
magnetoresistance is T dependent and is linear in 8 .
From the slopes of these curves, dy(8)/8 at different
temperatures can be extracted and compared with the
theory. In 2D, when kTr«lh) 1, which is the case here,
Eq. (1) cannot be directly applied. Instead, we use the
more general expression
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FIG. 7. Change of resistance, hR, of the sample no. 9 against
B2. The curves are linear up to 0.8 T.
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Here, g'iD is defined by

(24)

L
(25)

the apparent interaction parameter in 1D deduced from
the orbital magnetoresistance. Equations (22)—(25) hold
for both short- and long-range scatterers.

In order to facilitate comparison with the 2D theory ex-
pressed by Eq. (22}, we plot in Fig. 8 the data from the
four wider samples (nos. 1—4) in the parabolic regime as

~

dy(8}/82
~
N, 2' A' versus 1(( —,'+R/kTr„) —g( —,

' ). F«
samples with 8' =156 and 34.5 pm, respectively, the data
follow two straight lines passing through the origin, as ex-
pected from the 2D theory. From their slopes, we obtain
g =0.54+0.02 and 0.51+0.02. These values of g are close
to the theoretical value of 0.7 for I' =0.45, calculated
from Eq. (2) using N, =5 X 10' m . Within the experi-
mental uncertainties, the data show no 8' dependence,
consistent with Eq. (1). For &=6.2 and 3.5 pm, the
data show increasing deviations from the 2D behavior as
T decreases. These deviations are suggestive of a transi-
tion as T approaches T, i (Table I), expected for the cross-

where g is the digamma function. When kT~«/A'&&1,
Eq. (1) is recovered. According to Eqs. (20) and (21),

+(8)=—
2 g2D f —+ kT

—P( —,') 8
N, 2

for 2D . (22)

Also, from Eqs. (3) and (19),



33K. K. CHOI, D. C. TSUI, AND S. C. PALMATEER8224

l.4'RAT X'

0.05 O.IO O.I5 0.20 O.M 0.40 O. 50
I 1

THEOR (I,o

THEOR. ggo

0.8

04
0

I IOOO

FIG. 10. Experimental values of the interaction parameter g
vs 8'. g is extracted either from Eq. (22) or from Eq. (23) as
determined by the characteristic temperature dependence of 50.
Since g is a weak function of N„ the data shaw only the general
trend. The data point (h, ) is from Ref. 20 with N, =1 17&10's
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~
hp/8'~2m fxiV,

' vs 1((—, +R/kTr„) —1(( 2 ) for sam-

ples nos. 1—4.

over from the 2D interaction effect to 1D interaction ef-
ect.

In Fig. 9 the data from the four narrower samples (nos.
3—6) are plotted as hp(8)/82~ versus I/v T. For
W =1.1 )Ltm, the 1/ T dependence, predicted by the 1D
interaction theory [Eq. (23)j, is observed in the entire T
range. For W =3.0 and 3.5 pm, this T dependence is ob-
served when T &T, ~, whereas for W=6 2@m. the 1D
characteristics are not yet fully developed, cansistent with
the predicted T, ~ of 1.1 K. In addition,

~
hp ~

is observed
to increase with decreasing W for W&3 pm, consistent
with the expected I/W dependence. The g values, de-

duced from the slopes of the curves using Eq. (23},are as
shown in Fig. 10, together with those of samples nos. 1

and 2 obtained from the 2D theory using Eq. (22). The
largest value af g, obtained from the 3.5-pm-wide chan-
nel, is 1.11+0.05, close to the theoretical value gtD ——1.33,
calculated from Eq. (2} using I' =0.45. For the 6.2-pm-
wide channel, g deduced from the data at T=1.5 K is
O.S9, indicating that the sample is in a 2D-to-1D transi-
tion in this temperature range. For W &3.5 )Mm, the ap-
parent value of g begins to drop. In this W range, the
width of the sample is comparable to the elastic mean free
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FIG. 11. Plot of

~
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~

vs I/O T for samples nos. 7—10.
T, I and T,z are the predicted 2D-to-1D and 1D-to-OD crossover
temperatures, respectively, calculated from the geometry of the
samples.
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FIG. 9.
~

hp/8~
~

vs 1/~T for samples nos. 3—6.

path (I, =3 pm). As mentioned before, a direct compar-
ison with the theoretical g value cannot be made. Instead,
from Eq. (25), we expect the experimental g value to de-
crease as W since rL, due to boundary scatterings is ap-
proximately praportional to W. This is roughly what was
observed, and the value of g obtained from the 3.5-(Mm-

wide channel may already be reduced from its theoretical
value. In any case, a more quantitative theory is needed
to elucidate this aspect of our data. Here, we simply point
out that the decrease of g indicates once again the impor-
tant role of boundary scattering in narrow channels on the
orbital magnetic effects.

Next, we investigate the L dependence of the magne-
toresistance of narrow channels. In Fig. 11 the data from
the four narrow samples with different potential probe
spacings are shown. For sample no. 7, with W =2.7 pm
and L =59 pm, the 1D behavior is observed below T, &.

For sample na. 8, with L =7.5 (ttm, the magnitude of
hp/82 ceases to increase below T =1.4 K indicative of a
dimensional crossover from 1D to OD. As L is reduced
further to 6.7 and 6.2 (ttm, the crossover occurs at higher
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temperatures, consistent with Eq. (11). The crossover
temperatures T, i and T,i indicated in the figure are the
theoretical values, calculated from the geometry of the
samples according to LT(T, i)= W and LT( T,2)
=L/1. 79, the criteria for the 2D-to-1D crossover and
1D-to-OD crossover, respectively. Therefore, a two-
dimensional sample at high tern. peratures may undergo a
sequence of dimensional crossovers as T do:reases and fi-
nally becomes a zero-dimensional sunple at sufficiently
low T as far as the interaction effect is concerned.

The value of giD can be extracted from the saturation
value of +/82 using the OD expression given by Eq. (24).
From samples nos. 8, 9, and 10, we obtain giD ——0.96,
0.64, and 0.49, respectively. These values agree with those
deduced from the slopes of the same curves, before satura-
tion, using the 1D theory to within 10—30%. It shows
the consistency between theory and experiments and veri-
fies the validity of Eq. (11).

IV. DISCUSSION AND CONCLUSION

In the preceding section we saw the agreement between
the predictions of the interaction theory and the experi-
mental data. This agreement is a direct confirmation that
the electron-electron interactions play an important role in
this system. The interaction theory correctly predicts that
there is a temperature-dependent parabolic magnetoresis-
tance. From this magnetoresistance, the corrections to the
conductivity due to the electron-electron interactions can
be measured directly regardless of the dimensionality of
the samples. The magnitude as well as the functional
dependence of the corrections, obtained from the experi-
ment, agree quantitatively with the theory. The data also
show dimensinal crossover when the physical dimension
of the samples is comparable to the length scale set by the
thermal diffusion length. The crossover temperatures cal-
culated from the theory agree quantitatively with those
observed in the experiment.

The sample-size dependences of the electron-electron
interactions can be conceptually understood using the fol-
lowing physical picture. In a weakly disordered system,
the electron motion is diffusive in temporal and spatial
scales large, compared to r and l„respectively. The dif-
fusive motion introduces two effects on the electron-
electron interactions. First, the electrons under diffusion
move away from each other much more slowly than in an
ordered system, which leads to an increase of the duration
of interactions. Second, in a disordered system, total
momentum of the electrons is not conserved during the
mutual interactions. This momentum nonconservation
leads to a diffusive interaction correction to the conduc-
tivity of the electrons. The characteristic length of the
diffusive interaction can be obtained by the following ar-
gument. In a system at T, an electron has an uncertainty
in energy of order kT and an uncertainty in time A/kT.
In this time duration, the electron diffusively spreads out
to a length &&. =(AD/kT)'~, which is the uncertainty in
the location of the diffusing electron. We can think of the
electron as diffusively confined by the impurities within a
length ~L in a large sample. Associated with ~~, the un-
certainty in momentum is given by hp =A/~E-. There-

fore, the total momentum of the interacting electrons need
not be conserved within q,„=f2/b,L, where q is the
momentum transfer during the mutual interactions.
When W & ~&-, the electrons are confined by the physical
size of the sample along the width, instead of by the im-
purities. As the width decreases, the electrons are more
confined to each other and, at the same time, the uncer-
tainty in the momentum increases. Consequently, the in-
teractions become stronger. This leads to an increase of
the magnetoresistance before the boundary scattering sets
in to limit the orbital effigy:t. For samples with short
probe spacings, the diffusion along the channel is not dis-
turbed. The short spacings only filter out the long-range
interactions (i.e., small q) and, at low T, lead to a reduc-
tion of the magnetoresistance when compared with that
from sainples with the long probe spacings.

In this experiment we also observed other transport
characteristics specific to the narrow channels. In the
narrow channels with high mobilities, boundary scattering
plays an important role. The scattering reduces all the or-
bital effects and leads to a new magnetoresistance, unex-

pected from the classical theory for a wide channel. The
exact role of the boundary scattering in a narrow sample
deserves further investigations. When the sample is both
short and narrow, fiuctuations of order e'/h are observed.
This observation shows that the sample is in a new regime
where ensemble averaging does not exist.

Although the interaction theory in the weak-coupling
regime is successful in this temperature regime (T & 1.25
K}, extending the measurements to lower temperatures
(=0.5 K} shows the magnetoresistance saturates even for
the long channels. For example, extending the measure-
ments on sample no. 7 to 0.5 K and fitting the data to Eq.
(11) yields L =10 pm (which corresponds to T,2-0.75
K) instead of its physical length 59 pm. This observation
raises two possibilities: either there is a fundamental
length cutoff in the theory suggested by Castellani et al. ,
or there is a length scale set by the samples, such as the
length scale of the macroscopic inhomogeneities, larger
than which the electrons are not diffusively correlated.
The former case implies that the mean size of the
pseudo-local-spin moment is 10 pm. On the other hand,
the macroscopic inhomogeneities, such as a small electron
density gradient, have been detected in the measurements
of quantum Hall effect. 3' The diffusion corrections in
the presence of such macroscopic inhomogeneities need
further investigation.

In the temperature range of this experiment (=4.2—to
1.2 K), the quantity kTr«lfi is from 5.6 to 1.7. On the
other hand, the theoretical calculation is done for
kTrlfi & l. One possible explanation of the agreement of
the present experiment and the theory is that the transport
time ~„ is much larger than the impurity scattering time v.

due to the long-range nature of the scattering potential in
the heterostructures. However, the predictions of the in-
teraction theory are also verified in the kTr/A& 1 regime
even in systems known to have short-range scatterers,
such as in copper' and in Si inversion layers. There-
fore, it is possible that the present results of the interac-
tion theory are indeed applicable even in the kT~/fi& 1

regime.
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We have seen that reducing the width or the length of
the sample changes the characteristics of the magne-
toresistance at low 8 fields. More dramatic changes are
observed when the measurements on these small samples
are extended to high 8 fields. In the quantum Hall re-

gime, the quantum oscillations of p become sawtoothed
and the peak values decrease drastically. In addition, the
temperature dependence is totally different from that of a
wide channel. Detail experimental results on narrow
channels and short channels have been reported. Al-
though perturbative calculations s for the electron-

electron interactions exist in this regime and may explain
some of the experimental features, the exact role of the
electron-electron interactions, as well as the boundaries, in
this high-field regime, still await further investigations.

ACKNO%LEDGMENTS

We thank R. Brown of RCA Laboratories for his help
in mask making. The work at Princeton University is
supported by the National Science Foundation through
Grant No. DMR-82-12167.

'Present address: AT8cT Bell Laboratories, Murray Hill, NJ
07974.

Present address: Lincoln Laboratory, Massachusetts Institute
of Technology, Lexington, MA 02173.

'P. Nozieres and D. Pines, Theory of Quantum Liquids (Benja-
min, New York, 1966).

D. Forster, Hydrodynamic Fluctuations, Broken Symmetry and
Correlation Functions (Benjamin/Cummings, Reading, 1975).

38. L. Altshuler and A. G. Aronov, Zh. Eksp. Teor. Fiz. 77,
2028 (1979) [Sov. Phys. —JETP 50, 968 (1979)].

4For a review, see P. A. Lee and T. V. Ramakrihnan, Rev. Mod.
Phys. , 57, 287 (1985).

5A. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 84, 168 (1983) [Sov.
Phys. —JETP 57, 97 (1983)].

sA. M. Finkel'stein, Zh. Eksp. Teor. Fiz. 86, 397 (1984) [Sov.
Phys. —JETP 59, 212 (1984)].

7C. Castellani, C. Di Castro, P. A. Lee, and M. Ma, Phys. Rev.
8 30, 527 (1984).

SC. Castellani, C. Di Castro, P. A. Lee, M. Ma, S. Sorella, and
E. Tabet, Phys. Rev. 8 30, 1596 (1984).

9For a brief review, see B. L. Altshuler and A. G. Aronov,
Electron-Electron Interactions in Disordered Systems, edited

by M. Pollak and A. L. Efros (North-Holland, Amsterdam,
1984).

~ A. E. White, R. C. Dynes, and J. P. Garno, Phys. Rev. 8 31,
1174 {1984).

"M. E. Gershenzon, V. N. Gubankov, and M. I. Falei, Pis'ma
Zh. Eksp. Teor. Fiz. 41, 435 (1985) [JETP Lett. 41, 534
(1985)].

'2D. J. Bishop, D. C. Tsui, and R. C. Dynes, Phys. Rev. Lett.
44, 1153 {1980).

' Y. Kawaguchi and S. Kawaji, J. Phys. Soc. Jpn. 48, 699
(1980).

'~A. E. White, M. Tinkham, W. J. Sk~pol, and D. C. Flanders,
Phys. Rev. Lett. 48, 1752 (1982).

'5J. T. Madsen and N. Giordano, Phys. Rev. Lett. 49, 819
(1982}.

'6M. Lavion, P. Auerbuch, H. Godfrin, and R. E. Rapp, J.
Phys. Lett. 44, L1021 (1983).

'7D. J. Bishop, R. C. Dynes, and D. C. Tsui, Phys. Rev. 8 26,
773 (1982).

~SR. A. Davis, M. J. Uren, M. Kaveh, and M. Pepper, J. Phys.
C 14, 5737 (1981).

~98. L. Altshuler, D. Khmelnitzkii, A. I. Larkin, and P. A. Lee,
Phys. Rev. 8 22, 5142 (1980).

2oM. A. Paalanen, D. C. Tsui, and J. C. M. Hwang, Phys. Rev.

Lett. 51, 2226 (1983).
2'K. K. Choi, D. C. Tsui, and S. C. Palmateer, Phys. Rev. 8 32,

5540 (1985).
2&K. K. Choi, D. C. Tsui, and S. C. Palmateer, in Proceedings

of the Sixth International Conference on Electron Properties
of the Two Dimensional Systems, Kyoto, Japan, 1985, edited

by T. Ando (unpublished).
23H. Fukuyama, Y. Isawa, and H. Yasuhara, J. Phys. Soc. Jpn.

52, 16 (1983).
B. L. Altshuler and A. G. Aronov, Solid State Commun. 46,
429 (1983).

25B. L, Altshuler, A. G. Aronov, and A. Yu Zyuzin, Zh. Eksp.
Teor. Fiz. $6, 709 (1984) [Sov. Phys. —JETP 59, 415 (1984)].

6K. Scharnberg, in Proceedings of the International Conference
on Localization, Interaction and Transport Phenomena in Im-
pure Metals, Braunschweig, Aug. 23, 1984, supplement (un-

published).
78. L. Altshu1er, A. G. Aronov, A. I. Larkin, and D. E.

Khmelnitskii, Zh. Eksp. Teor. Fiz. 81, 768 (1981) [Sov.
Phys. —JETP 54, 411 (1981)].

8H. Fukuyama, J. Phys. Soc. Jpn. 50, 3407 (1981).
2 M. Kaveh, M. J. Uren, R. A. Davies„and M. Pepper, J. Phys.

C 14, L413 (1981).
R. G. Wheeler, K. K. Choi, A. Goel, R. Wisnieff, and D. E.
Prober, Phys. Rev. Lett. 49, 1674 (1982).
S. Hikami, A. I. Larkin, and Y. Nagaoka, Prog. Theor. Phys.
63, 707 (1980).

32K. K. Choi, Phys. Rev. 8 28, 5774 (1983).
A. Houghton, J. R. Senna, and S. C. Ying, Phys. Rev. 8 25,
2196 (1982).

~P. A. Lee and T. V. Ramakrishnan, Phys. Rev. 8 26, 4009
(1982).

35Th. Englert, D. C. Tsui, A. C. Gossard, and Ch. Uihlein, Surf.
Sci. 113,295 (1982).

6T. Ando, J. Phys. Soc. Jpn. 37, 1233 (1974).
37W. J. Sk~pol, L. D. Jackel, R. E. Howard, P. M. Mank-

iewich, D. M. Tennant, A. E. %'hite, and R. C. Dynes, in
Proceedings of the Sixth International Conference on Electron
Properties of Two Dimensional Systems, Kyoto Japan, 1985,
Ref. 22, p. 1.

38A. B. Fowler, A. Harstein, and R. A. Webb, Phys. Rev. Lett.
48, 196 (1982).
R. A. Webb, S. Washburn, C. P. Umbach, and R. B.
Laibowitz, Phys. Rev. Lett. 54, 2696 (1985).

~P. A. Lee and A. D. Stone, Phys. Rev. Lett. 55, 1622 (1985).
4'B. L. Altshuler, Zh. Eksp. Teor. Fiz. 41, 530 (1985) [Sov.



33 ELECTRON-ELECTRON INTERACTIONS IN GaAs-. . . 8227

Phys. —JETP 41, 648 (1985)].
4~H. Sakaki, H. Hirakawa, J. Yoshino, S. P. Svensson, Y. Sek-

izuchi, T. Motta, S. Nishi, and N. Miura, Surf. Sci. 142, 306
(1984).

43G. Ebert, K. v. Klitzing, and G. %'eimann, J. Phys. C 13,
L257 (1985).
H. Z. Zheng, D. C. Tsui, and A. M. Chang, Phys. Rev. 8 32,
5506 {1985).

4~S. Das Sarma and F. Stern, Phys. Rev. 8 32,, 8442 (1985).
H. Z. Zheng, K. K. Choi, D. C. Tsui, and G. Weimann, Phys.

Rev. Lett. 55, 1144 (1985).
~7H. Z. Zheng, K. K. Choi, D. C. Tsui, and G. %'eimann, in

Proceedings of the Sixth International Conference on the
Electron Properties of Two Dimensional Systems, Kyoto,
Japan, 1985, Ref. 22, p. 261.

~ S. M. Givin, M. Jonson, and P. A. Lee, Phys. Rev. 8 26, 1651
{1982).

~9A. Houghton, J. R. Senna, and S. C. Ying Phys. Rev. 8 25,
6468 {1982).


