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We study the phase diagram of the one-dimensional extended Hubbard model in the half-filled-
band sector for an attractive nearest-neighbor interaction V. A first-order condensation transition
occurs at a critical value of V which is a function of the on-site repulsion U. We obtain the phase
boundary in strong coupling for U— « and U— — «, and, from a variational estimate, for U =0.
We then compute the phase boundary numerically using a Monte Carlo simulation technique. Our
numerical estimates join smoothly the strong-coupling regimes for | U | ~4, and agree with the vari-

ational estimate at U =0 within 10%.

I. INTRODUCTION

The phase diagram of the one-dimensional electron gas
has been extensively studied in recent years, using a
variety of analytic techniques’’? and more recently Monte
Carlo simulation methods.>* While the analytic ap-
proaches usually define the model by specifying the cou-
plings in momentum space, for the numerical approaches
it is more convenient to define the model in real space. In
addition, the interaction parameters in real space have a
more direct interpretation in terms of overlap matrix ele-
ments of molecular orbitals in a tight-binding picture.
The simplest model defined in real space that can be put
in one-to-one correspondence with the electron-gas model
is the extended Hubbard model with on-site interaction U
and nearest-neighbor interaction V.2 One would also ex-
pect these interactions to be the dominant ones in a
quasi-one-dimensional narrow-band material for which
the model might be appropriate, both because of exponen-
tial decay of overlap matrix elements and because of
screening. Since the electron-electron interaction parame-
ters U and V will, in general, be a combination of Qirect
Coulomb repulsion and indirect attraction mediated by
phonons or excitons (neglecting retardation), it is of in-
terest to study the phase diagram of the model for both
positive and negative values of U and V.

In the half-filled-band sector, there are two regimes of
the extended Hubbard model which one expects will have
long-range order. For sufficiently large repulsive ¥, the
model will undergo a transition to a charge-density-wave
(CDW) state of period 2 in real space. For sufficiently
large attractive ¥, Haldane® has recently predicted the ex-
istence of a condensation transition line. For repulsive V
the phase boundary has recently been studied in detail us-
ing Monte Carlo simulations, and the purpose of this pa-
per is to study the phase boundary for attractive V.
Within these two boundary lines the system still exhibits a
rich structure characterized by algebraic decay of various
correlation functions which has been studied in weak cou-
pling using renormalization-group techniques. Numerical
studies of that region will be reported in the future.

The model is defined by the Hamiltonian

(CLCi 41 0+H.C.)
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where n,,,=C,3:,C,-‘7 And n;=n;;+n;,.

We will define our energy units by setting =1 in what
follows, and we restrict ourselves to the half-filled-band
sector (one electron per site). In the next section we dis-
cuss the condensation transition in the limits U— « and
U— — w0, and a variational estimate for the transition
point at U=0. In Sec. III we briefly discuss the simula-
tion method used and the methods we have used to deter-
mine the phase boundary from our simulation results. We
present numerical results in Sec. IV and summarize our
conclusions in Sec. V.

II. SOME LIMITING CASES

A U |V |>1

If we neglect the hopping, the Hamiltonian can be writ-
ten as

H-= §H(i) , (2.1a)
i=1
where
H()=Unjn; +Vain; 4
= %+2V n;— —2U—+V (njy—n;,)?
__7(n,._ni+l)2 (2.1b)

and the energy

with n; being a ¢ number now. Since V <0, the ground
state for U 42V > 0 has only singly occupied sites:
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nip1=n;; np=1, n;;=0 or n;=0, n;=1 (2.2a)
with energy
E=NV. (2.2b)

This state is highly degenerate, since the energy is in-
dependent of the spin orientation at each site.
For U +2V <0, the energy will be most negative if

n; 1=n; and n;;=n;, (2.3a)
with energy
E=N—;—]+ %—1 av. (2.3b)

This is a condensed state, where all sites are doubly oc-
cupied in half the system, and the other half is empty. So
the transition line for t=0is U= —2Vas N— .

When hopping is included, the correction to the
ground-state energy of the condensed state in second-
order perturbation theory is t2/(—U —¥). This correc-
tion is of order 1. The correction to the state with singly
occupied sites is, however, of order N because of the high
degeneracy. In second-order perturbation theory one ob-
tains an effective Hamiltonian describing a Heisenberg an-
tiferromagnet with coupling:

=77 _y
so that the ground state will have long-range antifer-
romagnetic correlations, i.e., a spin-density-wave (SDW)

state. The ground-state energy is, using the Bethe-ansatz
result,

Je

_ 4%1n2

E=N U—v

vV

(2.4)

Equating the energies of the condensed and SDW states
we get the phase boundary for large Uand ¥V as N— c0:

U 8’2
2 3U

V=— 2.5

B. UV <0|U|>>1,|V|

As shown by Emery,® the effective Hamiltonian to
second order in the hopping and first order in V is again
an antiferromagnetic Heisenberg model:

N/a—1 2k N
E,=(H)=—4t 2 cos N +V2(n1ﬂi+1)
k=—N/4 i=1
cos(w/N) 2 | cos(w/N)
- sin(w/N) AV N? | sin(7/N)
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N
Hegg=— 2 (‘IXSI',XSI'+1,X +JySi,ySi+ Ly +sti,zsi +1,z)

i=1

(2.6a)
with
412
J =J =
x y ’ U l s
(2.6b)
J,=—J,—4V,
and
st=clcl,
S =CinCiy, (2.6¢)

Siz=(ny+n,—1)/2,

i.e., spin up corresponds to doubly occupied sites and spin
down to empty sites.

When J,=J, there is a first-order transition to a fer-
romagnetic state. In the Heisenberg model, this corre-
sponds to half of the system having spin up and half spin
down, since the total magnetization is conserved. In the
Hubbard model, it corresponds to the condensation transi-
tion. Hence, the transition line in this limit is given by

2¢2
| U |

V=— (2.7)

C. U=0

If V=0, the kinetic part of the Hamiltonian can be di-
agonalized and the eigenvalues are

2wk

e = —2t cos N

, k=0,1,...,N—1.

Let us take this free-electron-gas wave function as our tri-
al wave function and calculate the expectation value of
the Hamiltonian (H ) with this wave function. We have
then, for the half-filled band:

(2.8)

[
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On the other hand, the expectation value of the Hamil-
tonian in the perfectly condensed state is

E=av | _1|=2vN—av. 2.9)

As a crude estimation, we equate these two energies and
let N—oo:

4t 2
2V == 1-=1, 2.10:
- +V = l (2.10a)
ie.,
4t
=— =—1.0587. 2.10b
Tm+2/7 ( )

So the system will not condense for ¥ > —1.0587, and we
expect the actual transition value of V to be somewhat
lower than this. The reason is that for such a large value
of V the ground state in the noncondensed phase will
probably be quite different from that of our free-electron
variational state, giving a lower energy. On the other
hand, the true ground state in the condensed phase is
probably not very far from our variational estimate.

III. METHODS TO DETERMINE
THE PHASE BOUNDARY

Having seen the qualitative and quantitative behaviors
in limiting cases, we turn our attention to intermediate
values of U. The weak-coupling renormalization-group
calculations predict that the system will have algebraic
SDW order for U >2V, U > —2V and long-range CDW
order for U <2V, ¥V >0, while singlet superconducting
(SS) pairing dominates in the region U <2V <0, and trip-
let superconducting pairing dominates in the region
—2V >U >2V. We have seen that in strong coupling a
condensed phase should exist for both U—« and
U— — w0, so that one may expect a continuous phase
boundary separating the condensed phase from the other
phases as a function of U. In order to determine the loca-
tion of this phase boundary, we use the Monte Carlo (MC)
simulation method described in Ref. 7, which treats the
system in the canonical ensemble (fixed total number of
electrons). In the following we discuss the methods we
used to determine this phase boundary.

J

B -
Xsowlg) = J, 47 3 (Umnm)—m (][0 =m0 ™71, g =2 (o,
iJ

Xspw(q =) should diverge in the SDW phase but is very
small in both the condensed and CDW phases.

B. Histogram

To help determine whether we have a condensed phase,
we look at histograms of the occupation number. Since
the total particle number is fixed in the canonical ensem-
ble, we measure particle number in certain number of ad-
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A. S(Qmin)

An appropriate quantity to determine the condensed
phase is the Fourier transform of the electron-density
correlation function at wave vector ¢ =Q i, =27/N, de-
fined by

N
D(I)=1—:(-2((n,-n,-+1>—(n,~)(n,-+1)) (3.1a)
i=1

and its Fourier transform, the so-called structure factor

N1 2
S(@)= 3 D(De®, g==>-x(0,...,N—1).  (3.1b)
=0 N

In the perfect charge-density-wave (CDW) phase
n;=(—1) + 1, so that

DQ2j+1)=-1, (3.22)

D(2j)=1, j=0,1,...,N/2—1
and

S(m)=N,

(3.2b)

S(q)=0 for all g,

while in the perfect condensed phase, n;=2(0) for
i <N/2 (> N/2), and we have

D(j)=—D ﬁ+j]=1—4ll, j=0,1,...,N/2 (3.3a)
4 N
and then
_(—_1)k
S(=21=C=0" /0. (3.3b)

Nsin%(q/2)’
The largest one is that with ¢ =27 /N, in which

—»ﬂ asN—ow .

~
The zero-frequency SDW susceptibility is defined by

2

S(Qmin)=S N

.o N=1).

jacent sites instead of over the whole lattice. Let N be the
lattice size, and M the size of our measuring “window.”
We sweep with this window across the entire lattice, and
measure p(n), the number of times the occupation num-
ber in our window is nM (0<n <2). It is easy to see that
if we are in a phase where all sites are singly occupied, or
in the perfectly ordered CDW phase, then p(1)=N (for
M>1) and p(n)=0 for n=1, while in the perfectly con-
densed phase p (n) will be nonzero for n=0 and 2, provid-
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ed M <N /2. To get a clear indication of the condensed
state we found it most convenient to take M =N /4. In
that case, p(n) is sharply peaked around n=0 and 2 in
the perfectly condensed state and we expect this qualita-
tive feature to persist in the presence of fluctuations. In
contrast, in the noncondensed phase p(n) will always be
peaked around n=1.

C. Problems at large U

There are some problems that we should pay special at-
tention in doing MC simulations when we are in large- U
region. The transition is strongly first order there and the
energy barrier between the two phases is very large, mak-
ing it very difficult for the system to reach equilibrium.
If the simulations were started on the “wrong side” of the
phase boundary, the system could stay there very long be-
fore going into the “right side” of phase boundary. To
overcome this difficulty we start the simulations in the
SDW phase, in the condensed phase, and in a mixed phase
with one-half of the lattice in the condensed phase and
one-half in the SDW phase. After several hundred sweeps
we measure the energy in each phase. By comparing the
energies we can determine the transition point to the re-
quired accuracy. The mixed phase usually (but not al-
ways) converges to the phase of lower energy, so that this
is an alternative way to determine the phase transition
point.

Another problem to be noted here is the effect of size
dependence which is especially important in doing MC
simulations because we always deal with finite lattices.
Such effect in determining the transition point V is, as a
crude estimate from Eq. (2.3b), AV =V —V(N)
~—4V/N. Though the hopping term might compensate
this for small U, it cannot be neglected for large U since
there ¥~ —U/2. Thus, it is essential to extrapolate the
size dependence, particularly for strong coupling. We plot
V(N) versus 1/N for different lattice size N and extrapo-
late it to N— . This procedure is found to work very
well in our simulations.

IV. SIMULATION RESULTS

In this section we discuss our simulation results of the
extended Hubbard model in the region V' <0. The Monte
Carlo simulation method used is described in detail in
Ref. 7, and other studies of the Hubbard model in Refs. 3
and 4. We have performed our simulations on lattices of
up to N=132 sites, with time-slice size A7=0.25 and num-
ber of time slices L =N. Typical simulations involved
20000 sweeps through the lattice and doing measurements
every 5 or 10 sweeps depending on the acceptance of the
move. The system takes a very long time to equilibrate,
especially for large lattices and strong couplings. To
make sure that we were getting correct statistical averages
we repeated the simulations several times with different
initial random number seed to see if the results were coin-
cident within the errors. The simulations were performed
on a Ridge 32 minicomputer.

We started our MC simulations for the case U=0. Fig-
ure 1 shows the structure factor S(q) and Fig. 2 the zero-

H. Q. LIN AND J. E. HIRSCH 33

I

10— S(q) vs g for U=0 N=32 —

S(q)

T
b b

p- . = =
R e S S AU A S e e S A S 4
0 5 10 15
q{units of m/16)

FIG. 1. Structure factor S(q) for a 32-site ring at U=0 and
V=—1.0 (dotted line and square), ¥ =—1.1 (dotted-dashed
line and cross), ¥'=—1.15 (dashed line and diamond), and
V = —1.2 (solid line and fancy diamond). The sudden jump at
q =Qmin for ¥ =—1.2 indicates that the transition is first or-
der.

frequency SDW susceptibility Xspw(q) versus g for
N=32, U=0, and ¥=-1.0, —1.1, —1.15, and —1.2.
S(g) is small for all ¢ for V> —1.1, and a peak at
q =Qmin appears and grows rapidly as V is decreased.
Xspw(m) is rapidly suppressed as V decreases from —1.1
to —1.2. It is clear from these results that the system un-
dergoes the condensation transition between V= —1.15
and —1.2. Histograms for N=32, U=0, and V' =—1.0,
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FIG. 2. Zero-frequency SDW susceptibility Xspw(gq) for a
32-site ring at U=0 and ¥ =—1.0 (dotted line and square),
V= —1.1 (dotted-dashed line and cross), ¥ =—1.15 (dashed
line and diamond), and ¥ =—1.2 (solid line and fancy dia-
mond).
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FIG. 3. Histograms of the occupation number of N/4 adjacent sites for a 32-site ring at U=0 and ¥V =—1.0, —1.1, —1.15, and
—1.2. The histogram is peaked around n=1 in the SDW phase and at n=0 and 2 in the condensed phase.
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FIG. 4. Structure factor S(Qu,) vs lattice size N for U=0
and V=-—1.0 (dashed line and fancy diamond), V= —1.1
(dotted-dashed line and square), V' = —1.15 (dotted line and dia-
mond), and ¥ = — 1.2 (solid line and cross).

FIG. 5. Zero-frequency SDW susceptibility Xspw(7) vs lat-
tice size N for U=0 and ¥V = —1.0 (dashed line and fancy dia-
mond), ¥V =—1.1 (dotted-dashed line and square), V' =—1.15
(dotted line and diamond), and ¥ = — 1.2 (solid line and cross).
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FIG. 6. Structure factor S(Qui,) vs lattice size N for U=2.0
and ¥V = —1.70 (dotted line and fancy diamond) and V = —1.90
(solid line and cross).

—1.1, —1.15, and —1.2 are shown in Fig. 3. For
V = —1.0, Fig. 3 shows a narrow peak around n=1. As
V decreases this peak broadens, and when the system con-
denses the histogram shows peaks at n=0 and 2, as ex-
pected.

If we scale the spatial size and the inverse temperature
by the same factor, S(Qpn;,) should diverge linearly with
N in the condensed phase and Xspw(m) should diverge
linearly in the SDW phase. Figures 4 and 5 show the re-
sults for ¥=—1.0, —1.1, —1.15, and —1.2. The results
for S(Qmin) indicate clearly that the transition point for
U=0 is around ¥V =—1.1510.05. It is somewhat more
negative than the value estimated in Sec. IIC
(V =-—1.0587), as expected. The results for Xspw(w)
show that these correlations become smaller as tempera-

4
T T I T T T T " T
Xspw(m) vs N for U = 2

Xspw(m)

lLJl]liJlJ

FIG. 7. Zero-frequency SDW susceptibility Yspw(7) vs lat-
tice size N for U=2.0 and ¥ = —1.70 (dotted line and fancy di-
amond) and ¥ = —1.90 (solid line and cross).
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FIG. 8. Transition value ¥V vs lattice size N for U=4.0, 6.0,
and 8.0. The extrapolated transition value at N=c is
V =-—2.50+0.05 for U=4.0, V= —3.35+0.05 for U=6.0, and
V =-—4.2010.05 for U=8.0.
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FIG. 9. Structure factor S(g) for a 24-site ring at U = —2.0,

(@) V=-—0.6, where the maximum is at ¢=w, and (b)
V = —0.8, where the maximum is at ¢ = Q..



33 CONDENSATION TRANSITION IN THE ONE-DIMENSIONAL . .. 8161

TABLE L. E(N,V) for U=4.0.

TABLE III. E(N,V) for U=38.0.

N | 4 E(condensed) E(SDW) V(N) N | 4 E(condensed) E(SDW) V(N)
8 —345 —3.862 (0.021) —3.801 (0.014) 8 —6.70 —7.165 (0.001) —7.136 (0.033)
—3.35 —3.807 (0.013) —3.816 (0.024) —6.60 —7.015 (0.0001) —7.045 (0.021)
—3.40 —3.883 (0.013) —3.877 (0.016) —3.40 (0.05) —6.65 —7.090 (0.001) —7.089 (0.018) —6.65 (0.05)
12 —3.15 —3.684 (0.003) —3.669 (0.018)
—3.05 -—3.501 (0.015) —3.582 (0.009) 12 —590 —6.425 (0.003) —6.392 (0.011)
—3.10 —3.584 (0.009) —3.613 (0.011) —3.11 (0.05) —5.80 —6.270 (0.003) —6.300 (0.030)
—5.85 —6.348 (0.002) —6.356 (0.021) —5.84 (0.05)
16 —3.00 —3.591 (0.004) —3.561 (0.005)
—2.90 —3.422 (0.005) —3.463 (0.006) —2.95 (0.05) 16 —545 —6.038 (0.001) —5.980 (0.011)
—5.35 —5.872 (0.002) —5.879 (0.011)
20 —290 —3.505 (0.001) —3.473 (0.005) —5.40 —5.959 (0.002) —5.966 (0.009) —5.40 (0.05)
—2.80 —3.336 (0.002) —3.367 (0.004) —2.85 (0.05)
20 —5.20 —5.785 (0.001) —5.769 (0.006)
24 —2.85 —3.468 (0.001) —3.414 (0.007) —5.10 —-5.616 (0.001) —5.650 (0.008) —5.17 (0.05)
—2.75 —3.291 (0.001) —3.331 (0.003)
—2.80 —3.380 (0.001) —3.372 (0.004) —2.80 (0.05) 24 —-5.05 —5.626 (0.001) —5.622 (0.008)
—5.00 —5.539 (0.001) —5.576 (0.006) —5.03 (0.05)

ture is reduced in the condensed phase. In the noncon-
densed phase, these correlations do not appear to diverge,
in agreement with the renormalization-group predictions.

In the same manner we performed Monte Carlo simula-
tions at U=2.0, and some results are shown in Figs. 6 and
7. The transition point is ¥ = —1.8010.10.

As we mentioned before, it is important to pay atten-
tion to the size dependence and large energy barrier for
large values of U. For U=4, 6, and 8, 4000 to 15000 MC
iterations were run before measuring the energies. The
pictures of electron configurations after warm-up helped
us to determine what phase of the system we were
measuring. Typically 1000 measurements were made
separated by 5 (U=4) and 10 (U=6,8) MC runs. Table I
lists the results for U=4 at N=38, 12, 16, 20, and 24,
Table II for U=6, and Table III for U=8. From these
results we estimated the transition points ¥ (N) and plot

TABLEII. E(N,V) for U=6.0.

N | 4 E(condensed) E(SDW) V(N)
8 —5.10 -—5.514 (0.001) —5.509 (0.027)

—5.00 —5.364 (0.001) —5.413 (0.022)

—5.05 —5.439 (0.001) —5.464 (0.022) —5.05 (0.05)
12 —4.50 —5.012 (0.003) —4.993 (0.013)

—4.40 —4.857 (0.002) —4.883 (0.008)

—4.45 —4.932 (0.002) —4.909 (0.023) —4.45 (0.05)
16 —4.20 —4.771 (0.001) —4.740 (0.007)

—4.10 —4.604 (0.002) —4.609 (0.010)

—4.15 —4.690 (0.001) —4.690 (0.012) —4.15 (0.05)
20 —4.05 —4.644 (0.001) —4.574 (0.017)

—3.95 —4.472 (0.001) —4.503 (0.005)

—4.00 —4.557 (0.001) —4.562 (0.006) —4.00 (0.05)
24 —3.95 —4.545 (0.001) —4.513 (0.004)

—3.85 —4.368 (0.001) —4.416 (0.006) —3.89 (0.05)

them versus 1/N in Fig. 8. The results fit a linear depen-
dence well, and the transition values for V for the infinite
system deduced by extrapolation are V' = —2.50+0.05 for
U=4, V=-—3.35+£0.05 for U=6, and ¥V =—4.20+0.05
for U=8. Note how the size dependence becomes
stronger as U increases. The transition values obtained
from the strong-coupling perturbation calculation, Eq.
(2.5), are V =—2.4621 for U=4, V = —3.3081 for U=6,
and V=-—42310 for U=8. So we already join the
strong-coupling results at U=4 and beyond. This is in
contrast with the results obtained for the CDW transition,
where even for U=8 the MC results were somewhat
smaller than the strong-coupling predictions.

We next consider the negative- U region. According to
the renormalization-group predictions, SS correlations
should diverge for U <2V. Unfortunately, our MC pro-

S(Qmin)

FIG. 10. Structure factor S(Qui,) vs lattice size N for
U=-20 and V=—0.6 (dashed line and fancy diamond),
¥V = —0.7 (dotted line and cross), and ¥V = —0.8 (solid line and
diamond).
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S(QIIH[))

10 20
N
FIG. 11. Structure factor S(Qu,) vs lattice size N for
U=—4.0and V =—0.4 (dotted line and square) and V' =—0.5
(solid line and diamond).

gram does not measure SS correlations. For small nega-
tive ¥, CDW correlations, i.e., S(qg =), should also
diverge for U <0, but not when we approach the conden-
sation point. S(Q,) still will diverge as the system ap-
proaches the condensed phase. Figure 9(a) shows the
structure factor S(q) versus q for the 24-site ring at
U= -2, V=-0.6, where we see increasing of S(gq) with
increasing ¢. The maximum is at ¢ =w. Opposite
behavior occurs for V = —0.8, where the maximum is at
q =Qnin [Fig. 9(b)]. We plot S(Qn) versus lattice size
N in Fig. 10 for ¥=—0.6, —0.7, and —0.8. It clearly
indicates that the system is in the condensed phase when
V=—0.8 and the transition point is ¥V =—0.710.1.
Proceeding in the same way for U= —4, V=-—04, and
V = —0.5, we present the results of S(Qp,) versus N in
Fig. 11. The transition point is U=—4.0, V=—-0.45
+0.05. This is close to the value V' =—0.5 as calculated
from Eq. (2.7) by strong-coupling perturbation theory.

Phase Boundary
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FIG. 12. Phase boundary of the condensation region. The
solid line connects the Monte Carlo results (diamonds) and the
two dotted lines are the strong-coupling predictions for U— o
and U— — o, respectively.
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FIG. 13. Phase diagram of the one-dimensional half-filled
extended Hubbard model. The thick lines indicate first-order
transitions. CON denotes the condensed phase.

Considering the error in our estimation AV=0.05, we
conclude that it starts to merge with the line given by Eq.
(2.7) beyond U = —4.0.

To summarize, we show the phase boundary in Fig. 12.
The two limiting cases for large | U | are shown as dotted
lines and the Monte Carlo—simulation results are shown
as the points connected by the solid line. The transition is
first order everywhere along that line, in contrast with the
CDW-SDW transition, which becomes continuous for
small values of U.

V. SUMMARY

We have studied the phase boundary where the elec-
trons undergo a condensation transition in the one-
dimensional extended Hubbard model with attractive in-
teractions between nearest-neighbor sites. From perturba-
tion theory we found that a condensation transition
should occur both for large positive and negative U for
sufficiently large negative ¥V, and Monte Carlo simula-
tions allowed us to conclude that there exists a continuous
phase boundary connecting both strong-coupling solu-
tions. The strong-coupling predictions for the phase
boundary were found to be quite accurate for | U | >4.
To summarize, our present knowledge of the phase dia-
gram of the one-dimensional half-filled extended Hubbard
model is shown in Fig. 13. The line ¥V =0, U <0 for the
CDW-SS phase boundary can be obtained by symmetry
arguments, and the other solid lines in the diagram were
obtained by Monte Carlo simulations in previous work*
and in the present work. The dashed lines in the diagram
are renormalization-group predictions? which are prob-
ably accurate but have been tested numerically only quali-
tatively to date.”
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