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Theoretical examination of the quantum-size effect in thin grey-tin films
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A theoretical treatment of the thin-film size quantization of grey-tin is presented. The energy lev-
els describing the band gap are calculated as a function of film thickness. The calculation employs
the linear combination of atomic orbitals method to construct the appropriate wave functions and
considers the effect of the surface and interface electronic structure. The results compare favorably
with experiment. The band gap is found to have a maximum value of approximately 430 meV for a

0
film thickness of 40 A. The influence of the electronic structure due to the film boundaries is exam-
ined and shown to be important in order to examine the various experiments on the properties of the
quantum-size effect.

I. INTRODUCTION

The electronic properties of thin solid films are current-
ly receiving widespread attention. An important feature
of the electronic structure is the quantum-size effect
(QSE). This effect arises from the confinement of the
electrons and holes to the film width. For films with
thickness of 10—100 layers, the electronic structure is ob-
served to be a manifold of subbands, rather than having
the bulk band structure. Experiments with GaAs-
Als Gai ~As heterostructures' have clearly demonstrat-
ed the existence of such quantum levels.

The qualitative nature of the splitting of the electronic
structure into subbands can be easily described by the
one-dimensional quantum square-well model. Each
discrete level within the square well corresponds to the
position of a subband within the manifold. A detailed
analysis of the on+dimensional model was undertaken by
Cottey in a series of papers. ie It was shown that for
films of sufficient thickness the wave functions'obtained
from the square-well model are the envelope functions for
the electron wave functions within the film. These en-
velope functions, like those of effective-mass theory,
describe the contribution of the atomic orbital or Wantiier
functions at each unit cell within the crystal. Where the
effective-mass function for a shallow level in a semicon-
ductor is a hydrogeniclike function, the QSE envelope
function has the form sin(nnz/L), where n is an integer
and the film extends from z=0 to z =L.

The aim of this paper is to explore the nature of the
quantum-size effect. This theoretical treatment will ex-
amine the recent experimental investigation of thin a-Sn
films grown on a CdTe(111) surface. l These experiments
with high-resolution electron-energy-loss spectroscopy
show an interesting finite band gap in a-Sn as a function
of film thiclmess, in contrast to the zero band gap for a
large crystal.

The linear combination of atomic orbitals (LCAO)
method employed to calculate the electronic band struc-
ture of infinite solids is modified for the calculation of
the electronic structure appropriate to a system of N
atomic layers. This method gives the change in the ener-

gy levels describing the subband manifold edges as a
smooth variation with E and therefore provides a useful
method for calculating the change in band gap as a func-
tion of layer thickness. In addition, the nature of the
wave functions corresponding to these energy levels is also
described and compared with the predictions by the
square-well model. As a result, a model for the plane-
wave envelope within the thin film is developed with at-
tention given to behavior of the wave functions near the
surface and interface. This model is employed to examine
the quantum-size experiments with thin-metal films,
where small concentrations of impurities and defects at
the surface or interface were shown to greatly distort the
QSE.

The general theoretical background is established in
Sec. II. The results are presented and discussed in Sec.
III. Atomic units such that the unit of energy is the ryd-
berg are used in this paper.

II. THEORY

The electronic structure for the thin film is obtained by
the LCAO method. In general, this method gives the
wave functions as

g (Hj R iR EaSjR',iR)~iR =0 i
i,k

(2)

where S is the overlap matrix, and E is the energy level
for state a. Equation (2) is usually solved numerically as
a finite-matrix equation. Significant difficulties arise
when comparing similar energy levels for systems with a
different number of atomic sites as in the present problem
where a change in film thickness is considered. The nu-
merical difficulties arise from the changing basis and
computational accuracy. In order to construct a method
to examine the smooth change in the appropriate energy

R i

where P;(r—R) is the atomic orbital of type i, centered at
site R. The expansion coefficients C R are obtained from
the diagonalization of the Hamiltonian,
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levels from a change in film thickness, the properties of
the wave functions describing the manifold edge are used.

In a three-dimensional crystal of N' unit cells (N'~ oo }
the band edge is described by a point k within the three-
dimensional Brillouin zone. The wave function for this
state within the LCAO method is given by

Xexp[i(k+g) (rp —rp)], (5a)

(4;i, (
H

( 4~g) =Qazga, '(k+g)aj(k+g)
~
k+g (

Xexp[i (k+ g) (r'p rp~)]—
+ g a;(k+g')a, (k+g)

Xcos[(g' —g) r] V(g' —g)

XexpIi [(k+g') rp (k+g)—rp]],

@ni(r}=y y Cl~p~ik(r}
i P=1

where n is the band index and
N'

@a=
(Ni)i/2

~tk R

such that there are Np atomic sites Rp within each unit
cell. In the LCAO method of Chadi6 and subsequent
workers, ' the atomic orbitals I P;(r) I are chosen in order
to fit known energy levels for a potential V(r). A set of
10 Slater-type orbitals, whose exponents are computation-
ally varied, have obtained an accurate description of the
band structures of the diamond lattice structures, Si, Ge,
and a-Sn. This set consists of an s orbital, a p orbital,
and a d orbital, for all angular harmonics, and a single f
orbital of the type xyz exp( Pp}. For—the specific case of
a-Sn, V(r) is the local pseudopotential of Cohen and
Bergstresser. '0 In the infinite crystal the overlap and
Hamiltonian matrix elements are obtained from the fol-
lowing equations:7

(@K I @Ji ) =&szg &i'{k+g}&J(k+g}

k,'=(I/v 3)(k, ~k„+k, ) =mar/L .

For N sufficiently large the band edge is described by
m= 1 and the I point of the two-dimensional BriHouin
zone k'=(0,0). The wave function for this state is written
as a sum over layers, namely

P (r)= ggC;» 4;(r—Ap),

where 4;{r—Ap) is an intralayer sum over Nl lattice sites
R within the (111}layer and is given by

14;(r—A, )= gP;(r —R—A, },P (N )1/2 p

where there are NL atoms with each (ill) layer p, and Ap

is the translation vector of the pth layer from the surface
layer (A,

&

——0}. The coefficients C;» describe the contri-

bution of the orbitals P; within the pth layer to the state
a. For layers not too near the crystal faces, these coeffi-
cients for the manifold edge ( m = 1) have the form '4

1/2
2 m'

C»= sill A,' L
(7)

where Ap, is the component of Ap in the direction normal
to the film surface. Near the surface there exists a
surface-localized electronic structure not simply described
by the one-dimensional square-well model. Included in
this surface-electronic structure are surface states and res-
onances which are, of course, orthogonal to the manifold
edge states. Therefore, for layers p near the crystal edges
(or film boundary) the coefficients C;» may vary signifi-

cantly from the form given by Eq. {7).
A method for describing the energy level of the inani-

fold edge can be obtained by choosing the following lat-
tice sums as basis functions for the matrix diagonaliza-
tion, instead of the entire crystal's sums for the three-
dimensional crystal. For layers p=1 to N, and from
N N, to N the —functions 4;(r—Ap) for each i are in-
cluded to describe the effect of the surface-electronic
structure, while for the remaining region of the film
[layers p =N, + 1 to N (N, + 1}]o—nly two summations
for each i are used. These summations are

(5b) q I "(r)= „,g sin
(N) i/2

~pz 4;(r—Ap ) (8a}

where r=(a/S, a/8, a/8)=r, = ~2 The funct. ions 4;i,
are given by Eq. (4) and a;(q) is the Fourier transform of
the atomic orbital P; (r).

With a-Sn, the k point describing the band gap is the I'
point (k=0) for both the valence maximum and the
conduction-band minimum. As a-Sn is a zero-gap semi-
conductor, these energy levels have the same value. How-
ever, in a crystal of fine thickness (N layers), in the (111)
direction, the three-dimensional BriHouin zone ( k„k„,k, )

is replaced by a two-dimensional zone ( k', kp), where

k' =(1/V 2)(k —k, ), k„'=(1/v 6)(k„—2k +k, ) .

In addition, each band n is described by a manifold of N
subbands, characterized by a quantized wave number

4I '{r)= i/i g sin —(Ap+R, )g(N)i/i I P 8 s

X4;(r—A.p
—R, ), (Sb)

where R, =(a/4, a/4, a/4) and describes the translation
vector between the two Sn atoms belonging to the fcc unit
cell. N, is the number of surface layers in which the coef-
ficients CP» are allowed to vary. In the current treatment
N, =5. The summations gp within Eqs. (Sa) and (Sb)
give a layer sum over the fcc (111) layer structure and do
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(10)

VJ(A, ) = (4;(r)
~

V(r)
~
@J(r—A, ))

Qaz "&

g g g a& (q+g )o'g(q+g)e
q I I'

X V(g'-g)cos[(g'-g) ~]

—l( —g} 1'~e

and r=(a/8, a/8, a/8), where g ' is a sum over points
in the three-dimensional Brillouin zone, in the interval
—(m /a, n /a, ir/a) to (n /a, n./a, ir/a).

Using these equations, the matrix elements between the
120 basis functions can be constructed. The film thick-
ness is controlled by the choice of the value for N describ-
ing the layer sums [Eqs. (8)]. The orbitals belonging to
the surface layers feel the effect of the surface potential.
In this current work the surface potential is described by a
model potential,

V, (r)= .

{z—zp) 1
Vo ' + V(r)

(1+(z—zp) [1+(z—zp) ]
for z &zp,

V(r) for z &zp,

(12}

where V(r) is the bulk potential and z=0 describes the
first layer. The vacuum is described by z&0 and zp
occurs just outside the first layer. The potential matrix
elements for the near-surface orbitals therefore need to be

not include the surface layers. These two layer summa-

tions, 4'" and 4'~', describe the contribution from each

Sn atom within the fcc unit cell.
The expansion coefficients C~,

' and C~,
' obtained from

the matrix diagonalization therefore describes the bonding
and antibonding character for each orbital i within each
state u. As an example, coefficients with values C,'=C,
describes the s bonding state, while C,'= —C, describes
the s antibonding state. The sine form [Eq. (7)] for the
coefficients Ci» for these layers has been assumed. The
matrix elements for the Hamiltonian and the overlap ma-
trices for these basis functions are obtained from the ma-
trix elements between the single (111)-layer summations,
4J(r —A, ).

The matrix elements for those (111}-layer summations
over a three-dimensional Hamiltonian are given by

Sg(A, ) = (4i(r) i Cg(r —A, ) )

I) N~

g g ai'(q+g)n~(q+g)e "q+s'"
q I

T~J(A)=(@g(r)
~

—V
( @J(r—A))

IIsz g g iz,'(q+g)~J(q+g)
~ q+g ~

'
s

corrected by the additional term

(z —zp)
(4;(r—A, )

~ , [Vp —V(r)]
~ @,(r—l(,')), (l3)

1+(z —zp}

which is obtained by a real-space integration for z &zp.
As only the tails of these orbitals see the surface potential,
the form for V, (r) for large z is not important, and the
additional term is not large The electronic structure for
the film is therefore solved for a system of N layers of
atoms embedded in a potential well. The potential well is
modeled by Vp ——0.8 Ry (the sum of EF and the work
function), while zp was chosen to be 0.3 of the Sn
nearest-neighbor distance. This choice of potential gives
only a qualitative model for the real surface potential.
The system is not sensitive to the details of the choice of
this potential, but mainly depends on the atomic wells in
which the orbitals are embedded. The results in the next
section show no large changes in the energy levels when
comparing the system with this surface potential to one
where it is neglected.

This method therefore gives an approximate description
of the surface-electronic structure. The method is not
self-consistent and employs the same model potential for
both the surface and the film-substrate interface in order
to maintain the central symmetry for the film in the (111)
direction. Fortunately, these boundary layers give only a
very small contribution to the layer summation for the
band manifold edge states [Eq. (7)].

The most important feature not considered in this
method is the effect arising from the surface- (and the
interface-) layer relaxation and reconstruction. This
would lead to larger changes in the Hamiltonian matrix
elements and therefore may yield possible significant
changes in the electronic structure in the surface (and in-
terface) region. However, no experiment or theory has
determined the nature of the surface- and interface-layer
reconstruction, and therefore a precise knowledge of the
surface-electronic structure cannot be obtained. The
current work obtains a basic model for the a-Sn (111)film
and yields an illustrative example for the electronic struc-
ture rather than an accurate self-consistent calculation for
the system corresponding to the experiment, which due to
the large uncertainty arising from the surface ro:onstruc-
tion, cannot be obtained.

III. RESULTS AND DISCUSSION

The energy levels for the subband manifold edges have
been calculated by the theory outlined in the preceding
section. The change in the energy levels as a function of
the film thickness are shown in Fig. 1. This figure shows
the energy levels for films with and without the inclusion
of the surface potential ( Vp ——0.8, zp=0. 3). In addition,
the energy-level curve for a square well, namely
E =(1/M )(m/L)z is also displayed for effective masses,
0.23 and 0.0236, equal to the valence- (hole} and
conduction- (electron) band values, respectively. Good
agreeinent is obtained for the valence curve but not for the
conduction curve. These results can be understood by ex-
amining the nature of the wave functions for each level.

The energy levels displayed in Fig. 1 can be denoted the
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FIG. 1. Graph of the change in the energy levels LEE, from
the values for a film with infinite thickness, as a function of
film thickness. The levels shown are the bonding and antibond-
ing s levels {s and s', respectively), the p level ahgned in the
[111]direction, denoted by Pi, and the doubly degenerate p lev-
el (P&) with p orbitals aligned in the [10—1] and [1 —21]
directions. The values of AE given by crosses and solid circles
are for films with and without the inclusion of the surface po-
tential, respectively. The simple effective-mass values are
shown as solid curves.

C(R) =sin(k. R)=—.(e'" —e '"
)

2E
(14)

for most lattice sites R. The band-edge states for the film
qu~Jitatively look like a combination of the degenerate
Bloch functions Pi,(r) and P i,(r) of the infinite crystal,
and therefore an energy level E(k) belonging to the I -L
interval of the three-dimensional Brillouin zone.

In the infinite crystal the three p levels are degenerate
at the I' point (I z5 level). Along the interval from the I

s bonding level (E, }, the s antibonding level (E,'), the
(p„+p~+p, ) level (E~iii~), and the doubly degenerate p
levels, E~io ii and Eii 2i~, describing the p, —p, and

p, —2p„—p, combinations of the p orbitals. The s bond-
ing and antibonding levels describe the bottom of the
valence and conduction manifolds, respectively, while the
degenerate p levels, (10—1) and (1 —21), describe the
top of the valence manifold. Along with each of the three

p states are contributions from the d orbitals, such that
the coefficients of the d~, d~, and d,„orbitals are ap-
proximately 0.25 of the p, -, p„-, and p, -orbital coeffi-
cients, respectively. Similarly, the f~ orbital contributes
to the s antibonding orbital with a coefficient of
0.05—0.15 of the s coefficient. This coupling is, of
course, due to the xyz symmetry about each lattice site.

For large film thickness (small wave number) the ener-

gy levels qualitatively behave like the bulk band structure
for u-Sn in the I' Ldirection —within the three-
dimensional Brillouin zone, ~here the wave number
k =(rr/v 3L) (1,1,1). This result is expected as the con-
tribution from the perturbed surface-electronic structure
is not sufficiently great to distort the envelope function
for large L. In this case the envelope function looks like

point (0,0,0) to the L point (~/a, m/a, m/a}, the degenera-
cy is split into the E~iii~ level, which decreases rapidly,
while the levels E[]0 i] and E[~ 2~] decrease more slow-
ly, like Ek=(1/Mi, )

~
k

~

. The s antibondiilg level (I 2)
however, behaves as (1/M, )

~

k
~

for only small
~

k
~

and
departs from the parabolic behavior with increasing k
such that the energy level obtains a maximum at
k= , (n/—a, m/a, m/a).

When considering the case of a film, the truncation of
the number of layers leads to a severe perturbation. This
perturbation has its greatest effect on those states where
the orbitals from adjoining layers overlap significantly.
The (p, +p~+p, ) level describes a p orbital aligned in the
[111] direction, normal to each layer. Similarly, the s
states require orbitals on the next layer to construct the
antibonding combination. However, in the case of the de-
generate p levels, the orbitals (p„—p, ) and (p, —2p„—p, )

describe p orbitals aligned parallel to the surface, localiz-
ing the wave function within each layer and reducing the
sensitivity of this level to interlayer perturbations. The
good agreement between these p levels and the simple par-
abolic form shown in Fig. 1 is therefore not surprising.

In addition to the disagreement between the level E,'
and the parabolic form employing the bulk effective mass,
the maximum in this level is achieved at a thickness cor-
responding to the wave number k- —,', (m/a, m/a, m/a).
This wave number is approxiinately one-third of the value
suggested by the bulk band structure. These features for
E,' demonstrate the sensitivity of this level to the pertur-
bation arising from the surface and interface.

A surface state was found to exist. The energy level for
this state was determined to be 0.5 eV below the Fermi en-
ergy EF for the film including the surface potential and
close to EF without the surface potential. These energy
levels have significant uncertainties due to the limited size
of the basis employed and the lack of self-consistency
which, although adequate to describe the states within the
crystal potential, is possibly insufficient to accurately
describe the electronic structure arising from the introduc-
tion of the surface potential.

This surface state is localized to the first four layers.
The energy level does not change significantly with the
film size, which is, of course, a property of the surface-
localized state. The energy variation is of the order
of 10 eV for L =30—300 A. The state can be qualita-
tively described as a hybridization between an antibonding
s state in the first two layers (where each Sn atom in the
first layer has three nearest neighbors on the second layer}
and p orbitals aligned in the [111]direction. The mixing
of the p (111)orbitals with the antibonding s state varies
with the surface potential. The existence of this surface
state, and the surface-electronic structure in general, leads
to a variation in the coefficients C;i [Eq. (7)] from the
simple "sine" form for the first four layers. The variation
results from the orthogonality of the band-edge states to
the surface states and resonances. The coefficient for the
fifth layer agrees with the "sine" expression by approxi-
mately +20% or better for the band-gap levels E~i 0
E~i 2i~, and E,', and a film thickness of L&30 A. This
feature is not surprising as the surface state has little con-
tribution from the fifth layer. The s bonding level (E,),
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FIG. 2. Graph of the band gap as a function of film thick-
ness. The values given by crosses and sohd circles are the
theoretical values for fibers mth and without the inclusion of the
surface potential, respet:tively. The experimental values {Ref.5)
are given by the open circles.

turbed electronic structure within the surface (interface)
layers arising from the surface (interface) reconstruction is
an important additional feature of the film boundary in
examining the confinement of states to a single potential
well. In a more general situation where the states may
have sufficient energy to occur above the potential bar-
riers, as in the case of very-low-energy electron diffraction
within thin metal films, '" or heterostructures where
there is an array of potential wells (and therefore tunnel-
ing), ' the potential beyond each single well needs careful
consideration along with the interface-localized structure
in order to obtain a quantitative description of the elec-
tronic behavior.

The square-well approach can be followed in analyzing
some of these results by including the contribution from
the surface-electronic structure. In the simple model the
square-well functions P;(z) and the layer coefficients are
given by the plane-wave form

P;(z)=sin, Ci(A, }=sin —
I

A,, I

7rZ

I.

however, shows reasonable agreinnent for all layers where,
due to the antibonding s nature of the surface state, little
adjusting is required to maintain orthogonality.

In Fig. 2 the band gap is displayed as a function of film
thickness. It can be readily seen that the effect of includ-
ing the surface potential, describing a greater perturbation
in the surface region, is to improve the agreement with the
experimental results. 5 For large thickness the surface po-
tential has the effect of increasing the band gap, while at
L & 50 A the inclusion of the surface potential results in a
greater departure from the parabolic form suggested by
the one-dimensional model.

The experimental results indicate that the surface and
interface undergo a greater perturbation than is modeled
by the current simple method. The experiment yields a
greater band gap at L ~ 60 A while the departure from the
parabolic form sonns to occur at approximately 5—10 A
larger thickness than suggested by the simple surface po-
tential. These results are not surprising as surface and in-
terface reconstruction has been neglected and therefore
this larger perturbation could quite easily yield this result.

An extension of the square-well model to incorporate
the finite surface and interface potential barriers and step
functions along the lines of earlier work is not considered
here as an accurate description of the effect of the surface
and interface. This approach solves the one-dimensional
wave equation for a finite-well system, obtaining the ap-
propriate eigenvalues and eigenfunctions. However, rath-
er than describing the electron wave functions, the sine
wave functions obtained from the square-well model qual-
itatively describe the coefficient of the Wannier function
or atomiclike orbital at each site. It is the tail of each or-
bital (multiplied by the coefficient} which senses these po-
tential barriers, rather than the srn. ootMy varying sine
function, which would have a greater magnitude in the
barrier region. The confinement of these electron states
by the atomic wells at the surface and interface, in addi-
tion to the film potential well, therefore, needs to be con-
sidered. The results presented here show that the per-

A generalized treatment considers a plane-wave function
IPW,K), where in the above specific case K =ir/L. In
the general case K =an IL for bound states and is con-
tinuous for states above the well, but here attention is re-
stricted to the nature of these wave functions within the
region of the film. Including the orthogonality of these
wave functions with the surface (interface) electronic
structure, the coefficients C;(1(,) are related to an orthogo-
nalized plane function IOPW, K). The two functions can
be expressed by the equation

IOPW, K) = IPW,K)+ gP~ I P, ), (15)

such that

P~ ———(f, IPW,K), (16)

H =—72+ V(r) . (18)

This approach of course follows from the
orthogonalized-plane-wave (OPW) method widely used in
pseudopotential theory. ' The usual OPW equation is ob-
tained by substituting Eqs. (15}and (18) into (17), giving

[ v'+v(r)+—v '"]Ipw, K) =z» Ipw, K), (19)

v ' =g«» K. )
I Ps &(ks I

. —

Therefore, plane waves JPW, K ) appear to be scattered by
a potential V(r)+ V which has a more "square-well-
like" form than the potential V(r). Any model surface
potentials which yield good agreement with experiment in
terms of the scattering of plane waves include the contri-

(20)

and the functions
I f, ) are the states within the surface-

electronic structure. As
I t/i, ) and IOPW, K) are eigen-

states of the realistic model of the system, then

& If.&=EsIfs& HIoPwK&=E»IoPWK&

where
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bution of V and are therefore a type of pseudopoten-

tial.
This OP% approach can be used in examining the ex-

periments looking at the scattering of plane-wave states at
the surface and interface barriers of thin films. Experi-
ments with (111)layers of Cu and Ag grown on a W(110)
substrate show distinct quantum-size effects in the
scattering of low-energy electrons, where the eigenvalues

Ez occur above the barrier. Various model potentials for
the surface barriers within the one-dimensional model
have been examined in order to describe the experimental-
ly observed quotum-size oscillations. '" However, the
most interesting result with regard to the above OPW ap-
proach is the sensitivity of this quantum-size effect to de-
fects within the surface or interface. Both impurities (ox-
ygen and carbon) and lattice defects (described by a step
atom density} were used to create the perturbed surfaces.
At the vacuum-film interface a step atom density of 6.5%
decreased the magnitude of the observed oscillations by a
factor of 2, while 12%%uo coverage removed the oscillations.
At the film-substrate interface an increase of the step
atom density from 1% to 3% decreased the magnitude of
the oscillations by 70%. The OPW potential [Eq. (20)] is
strongly dependent on the electronic structure at each in-
terface. A. defect at the surface or interface will not only
affect the electronic structure locali*ed to the central site
but also the neighboring atoms according to the change in
the lattice reconstruction or surface states describing dan-

gling bonds. This enhancement in the surface area of the
perturbation would therefore be the order of the number
of nearest neighbors, equal to 6 for a fcc (111}surface.
The plane waves operated on by the OPW potential would
therefore sense different potentials for each region and

lead to destructive interference and dampening on the os-
cillations as a function of E. The level of dampening de-
pends on the strength of the perturbation in V P with
respect to V(r) and the relative area of the perturbed re-
gion. With the interface potential barrier being smaller
than surface barrier, and the observed perturbations aris-
ing from defect concentrations of the order of 5%, this
theoretical approach is consistent with these experimental
results.

IV. CONCLUSION

The general behavior of the film-thickness-dependent
band gap in thin (111)grey-tin films has been adequately
described by the LCAO method. The calculations show a
maximum value for the band gap at thickness approxi-
mately equal to 40 A, in contrast to the simple one-
dimensional model where no maximum should occur.
This feature results from the localized electronic structure
at both the surface and the film-substrate interface. A de-
tailed treatment for obtaining an accurate calculation of
this electronic structure requires a precise knowledge of
the lattice reconstruction at these film boundaries, which
at present is unfortunately not known. However, the
work presented here provides a useful illustrative example
of thin-film confinement through the consideration of the
three-dimensional nature of the system.

ACKNOWLEDGMENTS

The financial support of the U.S. Office of Naval
Research, the National Science Foundation, the IBM Cor-
poration, and the Camille and Henry Dreyfus Foundation
(New York, NY} is gratefully acknowledged.

'L. L. Chang, K. Esaki, and R. Tsu, Appl. Phys. Lett. 24, 593
(1974).

2R. D. Dingle, W. Wiegmann, and C. H. Henry, Phys. Rev.
Lett. 33, 827 (1974).

iA. A. Cottey, J. Phys. C 6, 2446 (1975}.
4A. A. Cottey, Phys. Status Solidi 8 $$, 207 (1978}.
5S. Takatani, and Y. W. Chung, Phys. Rev. 8 31, 2290 (1985).
6D. J. Chadi, Phys. Rev. 8 16, 3572 (1977}.
7M. Downey and P. V. Smith, Phys, Status Solidi 8 115, 255

(1983).
SP. V. Smith, Phys. Status Sohdi B 116, 101 (1983)

98. T. Jonker, N. C. Bartlett, and R. L. Park, Surf. Sci. 127, 183
(1983);B.T. Jonker and R. L. Park, ibid 146, 93 (198.4); 146,
511 (1984}.

'oM. L. Cohen and T. K. Bergstresser, Phys. Rev. 141, 789
(1966).
H. Iwasaki, B. T. Jonker, and R. L. Park, Phys. Rev. 8 32,
643 (1985).

~2V. Hiene, in Solid State Physics, edited by F. Seitz, D. Turn-
bu11, and H. Ehrenreich (Academic, New York, 1970), Vol.
24, p. 1.


