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This is the first of a series of papers in which a second-order perturbation theory is derived for the

Hamiltonian of a metal hydride. The theory, which is called the fully harmonic lattice approxima-

tion, or FHLA, goes beyond the customary harmonic treatment of Horner and %agner to include

second-order terms for the hydrogen-hydrogen and metal-hydrogen potentials. These terms account

for the hydrogen-concentration dependences of a metal hydride's volume and elastic constants; their

inclusion should result in a better representation of the free-energy and phase-change behavior at

high hydrogen concentration. In this paper, the forces between hydrogen atoms and metal atoms

are evaluated using the FHLA. Two types of forces result: direct forces, between an isolated hydro-

gen atom and a metal atom, and indirect forces, which are effective forces between a hydrogen atom

and a metal atom caused by the presence of a neighboring hydrogen atom. Both the direct and in-

direct forces each have two components: a permanent part, which is equivalent to the force exerted

by a hydrogen atom on a metal atom in the pure (hydrogen-free) metal lattice, and an induced part,
which corrects the permanent part for the effects of the hydrogen atom on the metal-metal cou-

plings. These four forces are evaluated for the hydrogen-niobium system. The indirect forces have

one-tenth the magnitude and are of opposite sign to the direct forces. The induced component of
the force is approximately one-third the size of the permanent component, and opposite to it in sign.

The displacements of the metal atoms surrounding an isolated hydrogen atom or a pair of hydrogen

atoms are also evaluated. These are compared with the results of previous harmonic-approximation

calculations and of experiments on the hydrogen-niobium system. In a subsequent paper these

forces are used to evaluate the elastic interaction of hydrogen atoms in a metal.

INTRODUCTION

The harmonic approximation serves as the starting
point for most theories of interstitial solid solutions. It
was used by Horner and Wagner' in their treatment of
the a-ct' transition in hydrogen-niobium systems and has
been used by others to predict the formation of dilute
ordered phases (e.g., V&60) in metals containing the
heavy-gas atoms, e.g., oxygen, nitrogen, and carbon.
While the harmonic approximation appears to be ade-
quate to the description of dilute ordered phases in metals
containing heavy gases, it is inadequate to the description
of ordered phases in hydrogen-metal systems since these
occur at high concentrations. The reasons for this are
twofold: (I) the harmonic treatment of elastic interactions
does not take into account three- and four-body effects
which become important when hydrogen atoms are close
together as in concentrated systems, and (2) the harmonic
theory does not include an adequate treatment of electron-
ic interactions. These limitations are of little consequence
for the case of dilute ordered phases of heavy-gas atoms
in metals because the distance between interstitials is large
enough so that electronic interactions (which are short
ranged compared to elastic interactions) are unimportant
and because many-body elastic interaction terms are negli-
gible at these distances. However, in metal hydrides,
where ordered phases are concentrated and hydrogen-
hydrogen separations are sxnall, electronic interactions and
many-body elastic interactions are both important.
Thus the failure of the Horner and Wagner theory to

predict the correct ordered phases in hydrogen-metal sys-
tems may be traced to the inadequacies of their
harmonic-approximation treatment.

It is appropriate to ask which of the two inadequacies
in the Horner and Wagner theory is most responsible for
the theory's inability to predict the correct ordered phases
at high concentrations. Our initial viewpoint on this
matter was that the fault lay entirely with the crude ap-
proximation used to treat the electronic interactions.
However, based on work by Futran and Hall, ' who
showed that it was impossible to find a set of pairwise
electronic interactions which could predict simultaneously
the disordered phases a and u' and the ordered phases P
and e, we have come to the view that the restriction to
pairwise interactions is equally to blame.

There is both experimental and theoretical evidence for
the importance of many-body interactions between hydro-
gen atoms in metal hydrides. Gates and Stoneham used a
potential-energy method to determine the relaxation ener-
gies of various configurations of H atoms in a Pd lattice.
They assumed explicit forms for the pairwise Pd-H and
Pd-Pd potentials as functions of atomic separations.
These potentials were summed over the atomic positions
of the Pd and H atoms in a particular configuration to
give a total configuration-dependent energy. Rather than
solve for the equilibrium displacements and interaction
energies using the harmonic approximation, Oates and
Stonehaxn used a computer sixnulation technique in which
the total energy was minimized to give the equilibrium lo-
cations of the Pd and H atoms. With these positions
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known, the interaction energy for an n-body cluster of H
atoms can be calculated as the relaxation energy of the n-

body cluster minus the relaxation energy of n isolated H
atoms. Thus, Oates and Stoneham were able to show the
existence of many-body elastic interactions even in a sys-
tem composed of two-body potentials. Their work must
be interpreted carefully, however, since their results were
sensitive to the assumptions used in the formulation of the
potentials. The effect of many-body interactions on the
thermodynamic properties of Pd-H has been discussed by
Kuji et al. ' They performed calorimetric and pressure-
composition-temperature measurements on Pd-H samples
in the range of the a-a' transition, and found great varia-
tions in the excess enthalpy and entropy with hydrogen
concentration. They conclude that it is unlikely that pair-
wise interactions could cause these changes unless the in-
teractions also varied with concentration, which is
equivalent to having many-body interactions. The impli-
cations are that many-body effects may control the ther-
modynamic behavior of a metal hydride, at least in the
case of Pd-H.

The inability of the Horner-Wagner theory to fully
describe the behavior of hydrogen in metals may be traced
to the limited order to which the perturbation of the metal
hydride Hamiltonian is carried out. Although the expan-
sion of the metal-metal potential is taken to second order,
the hydrogen-metal and hydrogen-hydrogen potentials are
expanded only to zeroth and first order, respectively.
This scheme was chosen because of lack of knowledge
concerning the hydrogen-metal and hydrogen-hydrogen
potentials. It can be shown, however, that these terms are
important at higher hydrogen concentrations. For exam-
ple, Pick and Bausch" and others' ' have shown that
the orthorhombic strains in P-Nb-H are due to the direct
forces between hydrogen atoms which come from the
first-order term in the H-H potential. The changes in
elastic constants that occur during hydrogen absorp-
tion' ' result from second-order terms in the M-H and
H-H potentials. Schober and Lottner' have shown that
the localized vibrational modes of hydrogen in Nb, V, and
Ta result from one of the second-order terms in the
hydrogen-metal potential. Thus it appears that the terms
neglected in the Horner-Wagner perturbation of the Ham-
iltonian have physical significance for the relaxations ob-
served in metal-hydrogen systems upon ordering. This
suggests that these neglected terms should be included in
the Hamiltonian in order to obtain a correct description of
the system's phase-change behavior at high concentrations
where ordered phases occur.

Several investigators have previously developed
methods that include the effects of some of the neglected
second-order perturbation terms on the elastic behavior of
a lattice. Dederichs et al. ' ' have derived equations that
show how these terms change the couplings between the
lattice atoms and therefore change the elastic constants of
the lattice. These new couplings will affect how the de-
fect responds to external strains, and will change the
strain field near the defect. This phenomena is known as
dielastic polarization. The new coupling terms will not
only change the elastic constants but will also change the
elastic energy of the crystal, giving rise to "induced" in-

teractions between defects in addition to the "permanent"
elastic interactions that result from the harmonic approxi-
mation. The size of the induced interaction is significant
in comparison to that of the permanent interaction. For
example, Trinkhaus ' has calculated the permanent and
induced interactions for self-interstitials in Al and Cu,
and finds that they are of the saine order of magnitude at
small defect-defect separations. Kramer~ has applied the
lattice-theory equivalent of Trinkhaus's treatment to the
case of hydrogen in Nb. The resulting induced elastic in-
teractions are about —, as big (with opposite sign) as the
permanent elastic interactions, at small separations. From
these studies it would appear that neglecting some of the
expansion terms in the perturbation of the Hamiltonian
(as is done in the harmonic approximation) does not give a
complete accounting for the elastic energy of the crystal.

In this paper the fully harmonic lattice approximation
(FHLA) to the metal hydride Hamiltonian is derived.
This treatment was originally proposed by Pick and
Bausch, " who developed it to explain the formation of
orthorhombic strains in P-Nb-H, and to calculate the
force-dipole tensor at high hydrogen concentrations. In
this paper the elastic and electronic energy terms in the
FHLA are derived, and then the forces and displacements
resulting from the FHLA are evaluated. The FHLA in-
cludes all terms of the Hamiltonian expansion out to
second order in the displacements. This analysis results in
a differentiation between two types of forces between hy-
drogen atoms and metal atoms. We distinguish between
direct forces, which act directly between an isolated hy-
drogen atom and its metal neighbors and indirect forces,
which are effective forces between a hydrogen atom and
its metal neighbors which arise due to the presence of
neighboring hydrogen atoms. These indirect forces are re-
sponsible for the orthorhombic strains that occur in
P-Nb-H and other ordered phases as was pointed out by
Pick and Bausch. " Both the direct and indirect forces
can be separated into two components: a permanent con-
tribution which is the force exerted by a hydrogen atom
on a metal atom in a lattice having the elastic properties
of the pure (hydrogen-free) metal lattice and an induced
contribution which corrects the permanent interactions
for the fact that the coupling constants of the hydrogen-
loaded lattice are different from those of the hydrogen-
free lattice. In the harmonic-approximation treatment of
Horner and Wagner only the permanent-direct forces are
taken into account.

In paper II, of this series, the FHLA will be used to
evaluate the effective interaction energies between hydro-
gen atoms. The permanent-direct, permanent-indirect,
induced-direct, and induced-indirect hydrogen-metal
forces will give rise to permanent-direct, permanent-
indirect, induced-direct, and induced-indirect effective
elastic interactions between hydrogen atoms. The latter
three interactions have three- and four-body terms in ad-
dition to the usual two-body (pairwise) term. In the har-
monic theories derived previously' ' only permanent-
direct interactions were considered with the exception of
work by Trinkhaus ' and Kramer who performed calcu-
lations of induced-direct interactions. Our calculations of
permanent-indirect and of induced interactions show that
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these terms make significant contribution to the elastic
energy of a hydride. These many-body terms will give
thermodynamic properties (e.g., critical points, phase
boundaries) which are different from those which result
when only pairwise interactions are considered. Using
the FHLA formalism the permanent and induced contri-
butions to the direct and indirect forces and force-dipole
tensors are calculated. The permanent part of the indirect
forces are found to be approximately —,0 the magnitude of
the permanent-direct forces, and are attractive whereas
the permanent-direct forces are repulsive. The induced
forces are approximately —,

'
as large as the permanent

forces (either direct or indirect), and are of opposite sign.
From our analysis of these force terms it would appear
that the permanent-indirect forces and the induced-direct
and -indirect forces are approximately 40% of the magni-
tude of the permanent-direct forces, and that ignoring
thein in the energy calculation (as is done in the harmonic
approximation, which uses only the permanent-direct
forces) gives inaccurate results. For example, the free-
surface correction derived for the FHLA is not just a
second-order function of r as it is in the harmonic ap-
proximation of Horner and Wagner, ' but also includes
third- and fourth-order terms.

As part of the calculations performed here, the dis-
placements of the metal atoms surrounding a hydrogen
atom (or pair of H atoms) due to the direct (and indirect)
forces are determined. These displacements are compared
with previous harmonic-approximation calculations of
Johnston and Sholl and Fukai, and with experimental
measurements of Behr et al. In their calculations
Johnston and Scholl used forces exerted by a hydrogen
only on its nearest metal-atom neighbors, while Fukai
used a Born-Mayer potential to determine forces. The
present calculations use forces out to second-nearest metal
neighbors that were determined from experimental force-
dipole tensors. The displacements due to direct forces
compare well with the previous calculations and the ex-
perimental values, and a comparison of the displacements
due to direct and indirect forces indicate that

~

u ~'" '""/~ u
~

" '-0.025—0.125, where
~

u
~

is the ab-
solute value of the displacement.

Monte Carlo calculations on systems containing many-
body interactions are extremely complex so no attempt to
predict a phase diagram is made here. Instead,
renormalization-group techniques can be used to reduce
the complexity of the lattice of tetrahedral sites to a
siinpler lattice type with fewer interactions. A report on
this lattice-simplification work and on phase-diagram cal-
culations using the cluster-variation technique (which has
the ability to handle many-body interactions) on the sim-
plified lattice is planned as paper III of this series.

I. THE FULLY HARMONIC LATTICE
APPROXIMATION (FHLA)

A. Metal hydride Hamiltonian

In this section a perturbation expansion of the metal-
hydrogen-system Hamiltonian is performed out to second
order for all potentials. This is labeled the fully harmonic

+ I p(7 )Qp + 2 I pu pil v++pvupTQv (2)

where the double summation convention is assumed; e.g.,

subscripts indicate x, y, or z directions. The displacement
v and u' are taken here to represent the static part of the
displacements only. Vibrational displacements will also
occur, but these will decouple from the static displace-
ments in the expansion because they have a time average
of zero. ' The vibrational displacements are independent
of hydrogen concentration, and thus do not affect the
metal hydride's phase behavior. The expansion terms in
Eq. (2) are defined as

e„=ac /a»„,
e„'(~)=W /aq„',

e„(~)=a+/a»„,
r„'(r)=al./aq„,
c„-„"=@ac/a»„.)/a»"„,

q'„'„=a(W /aq'„)/aq'„,

0„„"=B(M/8»„)/&»"„,

q „„=a(ae/a»„)/aq'„,
I &„——B(BI /Bq„')/Bq„,

where each is evaluated at the rest positions Q' and R .
The first partial differential quantities are the forces and
the second partial differential quantities are the couplings
or force constants.

The terms in Eq. (2) may be interpreted physically as

lattice approximation (FHLA).
Consider an ensemble of X hydrogen atoms in a bcc

metal lattice containing NL metal atoms. The atomic
volume of the pure metal is 0= V/Ni, where V is the
crystal's volume and the H atoms will occupy the NH( =6
NL ) tetrahedral interstitial sites in the metal lattice. The
locations of the host lattice sites and the interstitial sites
in the H-free lattice are called R and Q', respectively.
The interstitial sites are indicated by the letters a, b, c,
and d. Metal-atom sites are indicated by the letters m
and n. In the hydrogen-loaded lattice, the metal atoms
and interstitial sites are displaced to new locations r and
q', respectively. These displacements are given by
v~=r —R~ for the metal atoms and u'=q' —Q' for the
interstitial sites. The occupation index ~, =(0,1) defines
which interstitial sites are occupied.

The Hamiltonian of the hydrogen-loaded lattice is given
by1, 2

H=4(r)+%(r, q, r)+ I (q,r),
where 4 is the metal-metal potential, 4 is the metal-
hydrogen potential, and I' is the H-H potential. The
FHLA consists of expanding this Hamiltonian in powers
of v and u' out to second order:

H =4(R)+%(R,Q,r)+ I (Q,r)+@„u„+,' 4q„"u„—u"„
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follows: the 4& is the negative of the force exerted by all
metal atoms on the metal atom at nt in direction p, %z (r)
is the negative of the force exerted by all hydrogen atoms
on the metal atom at m, 4„'(~) is the negative of the force
exerted by all the metal atoms on the H atom at a, and
I„(r) is the negative of the force exerted by all the hydro-
gen atoms on the H atom at a. The forces —@„and
—4'„' are identically zero since this defines the rest posi-
tions R and Q', but the forces —%„(~}and —I '„(r}are
not equal to zero since they must balance the surface
forces acting on a real crystal. "

The couplings 4&~„" are the force constants of the pure
metal. The couplings 4'„„"are the changes in the metal
force constants due to the presence of hydrogen. The 4„„
are couplings between the metal atoms and the hydrogen
atoms, and the sum I „'„+ip'„„is the coupling between the
hydrogen atoms in the metal matrix. The couplings have
inversion symmetry; i.e., 4„"„=4~,and matrix symme-

and 4'„„".
The equilibrium FHLA Hamiltonian is found from the

mechanical equilibrium conditions BH/Bv =BH/Bu'=0
which gives the equilibrium values of the displacements
u' and v . This provides a relationship between the
forces and the displacements:

(@mn+ ymn)u n +@ma a @m(

When Eqs. (3) and (4} are substituted into Eq. (2), the
Hamiltonian becomes

H =4(R)+ W R,Q, i)+ I (Q, r) —, (4'q„"—+4„„")uqu"„

—
2 (%~»+ I ~»)it~a» —%~»v~ 0»,

which can also be written in terms of the forces and dis-
placements,

H =4(R)+%'(R,Q, v )+I (Q,r) + ,
'

%q (r)v„—

(6)

This simple result for the FHLA differs from the
Horner and Wagner harmonic-approximation result,

H =4 (R)+% (R,Q, i)+ I (Q,r)+ —,'%„(~)u„

in the presence of an extra term, —,
' I'&(w)u„'. In order to

transform Eq. (6) into a function of the forces only (rath-
er than both forces and displacements) a relationship be-
tween u and v' is required. This can be obtained by de-
fining the matrix A&„=(%~+I'~) ', inverting Eq. (4) to
give

u „—An„+q» u» AnqI q(r}

and then inserting Eq. (8) into (3) to obtain

um (@nm+ynm @naAabiIIbm} —1[@n( } yn~bba I a]

(9)

This may be compared with the Horner-Wagner approxi-
mation expression for u&, which is given by

u„= —(@„")iP"(~)=(D„„") '+„"(~), (10)

where D„„"=—(4~ )
' is the static Green's function in

the harmonic approximation.
A comparison of Eqs. (9) and (10) suggests the defini-

tion of a new, fully harmonic, static Green's function of
the lattice

Dmn (@ma+ ipnm ynaAab ibm)
—1 (11)

which differs from the Horner and Wagner definition, '
because of the inclusion of higher-order terms in the per-
turbation. To avoid confusion, the Horner-Wagner
Green's function is denoted in this paper as
D„'m"[ =——(4~~) '], and will be called the Green's func-
tion of the ideal (i.e., hydrogen-free) lattice. This is be-
cause the interaction energies calculated by Horner and
Wagner are calculated for the ideal lattice (i.e., the lattice
with the couplings of the pure metal), while the interac-
tions in the FHLA will be calculated for the defect
(hydrogen-loaded) lattice. Insertion of Eqs. (8) and (9)
into the Hamiltonian in Eq. (6) gives

H =4 (R)+ P(R,Q,~)+ I'(Q, ~)

+ ,
' [%„(r)—P„,A —I'„'(~)]

XD„„"[ql„"(r)—+„pAgl s(r)] ——,
' I „'(~)A„'bl „(~) .

(12)

It is instructive to compare the Hamiltonian of the
FHI.A, Eq. (12), with the Hamiltonian for the harmonic
approximation,

H =4(R)+ql(R, Q,r)+ I (Q,r)+ ,
' 4'„(r)D„'—„"4"„(~).

Three differences are apparent:
(1) The Green's function D„„"is not that of the pure

lattice (D„'„").
(2) There is an additional force term, 4„'A"I"„(~).

This quantity is an effective force between hydrogen
atoms and metal atoms caused by the presence of neigh-
boring hydrogen atoms. Henceforth it is called the in-
direct force, to differentiate it from the direct H-metal
forces %&m(r) and the—direct H-H forces —I „'(r). The
physical origin of the indirect force and its numerical
evaluation will be described in the next section.

(3) An additional electronic interaction term,
——,I &(r)A&„I „(r) is present in the FHLA Hamiltonian.
This term is an effective electronic interaction between
hydrogen atoms, in addition to the H-H potential I (Q,~).
The effective electronic interaction energy serves as a
correction to I (Q,r) reflecting the fact that the electronic
interactions should be evaluated at the sites in the loaded
lattice, [q J, and not at the rest sites in the unloaded lat-
tice, IQI. These effective electronic interactions have a
many-lx)dy dependence on I ~, J and are important in the
formation of ordered structures.

B. Physical origin of the direct and indirect forces

The direct forces of the hydrogen atoms on the metal
atom at m, V„(~), and of the hy—drogen atoms on the H
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atom at a, —I'„'(r} can be written as sums of the indivi-

dual forces exerted by the H atoms,

which may be written as

—8„(r)=g "8„r,r, ,
Q, C

(16)

where "8„(=—%'„~A~'I'„) is the indirect force exerted
by a hydrogen atom at c on a metal atom at m due to the
presence of a H atom at a. The physical cause of this in-
direct force is best understood by examining the schematic
in Fig. 1(c). The couplings %&~ can be viewed as

where 'g& is defined to be the force of a H atom at site a
on a metal atom at site m, and 'I „' is the force of a H
atom at c on another hydrogen atom at a. These direct
forces are shown schematically in Figs. 1(a) and 1(b).
[Note that Horner and Wagner refer to +%„(r) as the
force of the H atoms on metal atom m whereas we define
the negative of the term, i.e., —%&(r) to be the force.
Given their definition of the potential, their definition of
+4„(~}as the force is incorrect since the force should be
the negative of the potential. ]

The indirect forces can be written as sums of forces ex-
erted not by individual hydrogen atoms but by pairs of
hydrogen atoms. To simplify notation the indirect force
is denoted henceforth by

"springs" connecting the H atom at a to its inetal neigh-
bors, and the total coupling %~+I" as a "spring" con-
necting the H atoms at a and c. %'hen hydrogen atom a
exerts a direct force 'I „' on the H atom at c, the spring
(4 +I "„=A")causes a to be displaced. The magni-
tude of this displacement is equal to A „I'„'(r). The
springs 4'z' will tend to restore a to its original position;
this is equivalent to saying the displacement of a places a
force on its metal neighbors. Thus the hydrogen atom at
a exerts a force that displaces hydrogen atom c, which in
turn causes a force on the metal atom at m.

The indirect force "8 does not possess the same in-
variance properties as 'g„. Although the direct force 'f&
has translational invariance due to lattice symmetry,

'f& ——0, the indirect force "8& does not, i.e.,
"8&&0. However, the total of the indirect forces

due to the pair (a,c) does have translational invariance,
that is, g ("8„+ 8&)=0, where "8&& 8„[see Fig.
1(c)]. This is because the sum g "8„
(= —g +PEA/, 'I") depends only on the direction of
the force 'I"', and since 'I"= —'I', then

"8„=—g "8„.Because of this, the definition of
iP&(r) is changed to

e„(r)=—,
' g ("8„—+8„)7;r, .

a, c

In order to calculate phase diagrams and thermo-
dynamic properties it is necessary to be able to calculate
the direct and indirect forces. Since these forces are on
the microscopic level and therefore cannot be measured
dire:tly, it is necessary to be able to relate them to macro-
scopic quantities which can be measured directly. In the
next section we show how to relate the direct and indirect
forces to the stresses and strains that are measured in a
metal hydride.

(c)

COg

ap C

~QC + I CO]
a~ ax

C. Determination of direct and indirect forces
from macroscopic strain measurements

In order to determine the direct and indirect forces ap-
pearing in the FHLA, one must be able to relate them to
the stresses, cr& and strains, e& that are measured in a
metal hydride. To do this it is necessary to get an explicit
relationship for the dependence of the forces on the
metal-atom displacements v . This is done by eliminat-
ing u' from Eq. (3) using Eq. (8) to obtain

( @~„"+k~„" +~ 'A'~+) —v"„=—+~ (~)—e~ (r), (

where the e&(r) notation for the indirect force has been
inserted. If the displacements are assumed to be homo-
geneous (uniform throughout the lattice) then the dis-
placements are related to the strain fields by u"„=e„i.&i.
(Ref. 27). This gives

(4q„"+4„„" %~A'p4p"„—)R i e„i= —+q (r) —O„(~) . (19)

yfr)O
iu, a

FIG. 1. Spring analogies for (a) the direct force '%'„, (b) the
direct force 'I '„, and (c) the indirect forces 0„. Large dark cir-
cles are metal atoms; small open circles are hydrogen atoms.

Equation (19) gives the macroscopically observable strain
e„i in terms of the microscopic couplings and forces. It is
desirable to manipulate this equation to get a relationship
between stresses and strains having the form of Hooke's
law. To do this we multiply Eq. (19) by R, /V and sum
over repeated indices:
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= —(1/V)R, [%„(r)+8„(r)], (20)

thus obtaining a Hooke's law equation for the metal hy-
dride in the FHLA. In the usual notation, Hooke's law
can be written as

C~ g& g=o I

force 'g„ is taken to be a central force between a hydro-
gen atom and its first- and second-nearest metal neigh-
bors,

'e;=q i,2(R: Q-p, (29)

where 4i and %z are constants for the first and second
shells, respectively. For metals in which there is more
than one type of interstitial site, Eq. (28) is replaced by

where C~„i is the tensor of elastic moduli for the metal
hydride,

P,q ——g (c» /c )P,'„', (30)

Cv,„i =Cii5,„5„g+C44(5,+„i.+5,i,5„„)

+(Cli C12 2C44)5qsvk, ~

and 5~ is the Kronecker 5 function; 5+„i——1 if
i, =p=v=A, , and =0 otherwise. When Eq. (21) is com-
pared to Eq. (20), it is found by analogy that

o,q
———(1/V) [R, %m(r ) +R, 8 (r) ] (23)

C,„„i=(1/V)R, (4++4'„„"—%q'A'p%p"„)Ri . (24)

This may be compared with the elastic moduli obtained in
the harmonic approximation (1), where the equivalent of
Eq. (20) is

(1/V)R, 4„„"Rie„i=—(1/V)R, %q~(r),

leading to a harmonic-approximation stress tensor

(25)

(26)a'~ ———(1/V)R, %q(r)

and a harmonic-approximation tensor of elastic moduli, 2

Co (1/V)Rm@mnRn (27)

p ( 1/~)Rmqgm( ) y (Rm Qu)num (28)

where the second equality follows from Eq. (14), the
translational invariance of 'g~™and g, r, =N. The direct

Note that the tensor of elastic moduli in the harmonic ap-
proximation is given in terms of the metal-metal force
constants for the pure, hydrogen-free lattice, and is there-
fore independent of hydrogen concentration. In contrast,
the elastic moduli obtained in the FHLA are functions of
hydrogen concentration due to the presence of the terms
%&mn —qlgnAn~~+sg since the %Pn and Ann~ will dePend
upon the location of the H atoms a and b, and the 4&„"
will depend upon the number of H atoms near rn and n
The difference in elastic moduli between the pure metal
and the hydrogen-loaded metal is significant at high con-
centrations; e.g., at (r):N /NH ——0.10, —values of
[C,„i,((r&=0.1)—C,„„]/C,„„=40% have been mea
sured 16

Equation (23) suggests the definition of two force-
dipole tensors for the FHLA, one associated with the
direct force as described by Horner and Wagner and
another associated with the indirect force as first pro-
posed by Pick and Bausch. " This is in contrast to the
harinonic approximation, where only one force-dipole ten-
sor results. The force-dipole tensor P~ associated with
the direct force, %„(r),is given by

where x refers to each type (sublattice) of site, c is the hy-
drogen concentration ( =N/NI ), and c, is the concentra-
tion on the xth sublattice. The tetrahedral sites in a bcc
lattice have tetragonal symmetry; i.e.,

0 0
P~' —— 0 8 0 (31)

0 0 8
With Eqs. (28) and (29), this gives for 9'i and %2

98 —2A 2A —8
4a 4a

The force-dipole tensor associated with the indirect
force is related to the term ( —1/V)R, e„(r) in Eq. (23).
The indirect force-dipole tensor is not as easy to calculate
as the direct force-dipole tensor, since the individual
forces "8 do not possess translational invariance as the
forces 'g„do. However, by considering the total indirect
force of the pair (a,c) on m, which is invariant [recall
that g ("8„+"8„)=0],we can define the indirect
force-dipole tensor.

The indirect force-dipole tensor associated with H-H
pairs (a,c} is denoted by Il~ to distinguish it from the
direct force-dipole tensor P+ It is d. efined by

Il~= (El. /N )R,—e„(r)
=(NL, /2N }gg[R, ——,'(Q;+Q,')]

a,e m

X("8~+"8~ )r, r, , (33)

where —,
'
(Q,'+Q', ) is the center of mass of the pair (a,c).

The right-hand side of Eq. (33) cannot be reduced to a
simple function of c as in Eq. (28) because the forces ~8&
will depend upon the distance between the H atoms a and
e and their orientations with respect to the metal lattice.
Thus, if there are several types of pairs (a,c), where each
type has a specific separation and orientation, then each
type will have an indirect force-dipole tensor associated
with it. The total indirect force-dipole tensor will then be
a weighted average of the indirect force-dipole tensors of
each type of pair, with the weights being determined ac-
cording to the population of the individual types of pairs.
(The situation here is reminiscent of the case of interstitial
dumbbells, which are pairs of metal atoms that occupy in-
terstitial sites in a metal lattice. The force-dipole tensor
of a dumbbell will depend on its orientation with respect
to the lattice. ' } A few of the many possible orientations
and separations of H-H pairs in a bcc lattice are shown in
Fig. 2. For a completely disordered distribution of hydro-
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and yth sublattices

g(x,y) ~ kg(x, y)

k

=(NL /Nfr)g"'g[~, —z(Qi+Q;)]

~ (~8m+ ca8m)P P (36)

FIG. 2. Possible orientations and separations of pairs of H
atoms in a bcc lattice. Orientation I corresponds to
4(Q' —Q, )/a =(0,2, 2); orientation 11 corresponds to (2, —2, 2);
and orientation III corresponds to {2,2, —2). These pairs occur
in the P phase of Nb-H.

gen atoms, we can substitute g, ia =N and

~c = (~c ) =N/NH, so that the average force-dipole tensor
becomes

Il,„=(NL /2N~) g g[R, ——,'(Q', +Q', )]( 8„+"8„),

(34)

where g, is a summation over all interstitial sites around

a.
Although one can calculate II,& from experimental

strain data, there are too many possible types of H-H
pairs to permit each ~8„ to be determined separately.
Some restrictions must be placed on the types of pairs to
be considered. Because eve are interested in the high-
concentration region of the phase diagram, we will consid-
er only those pairs that occur in the P phase of Nb-H (see
Fig. 2). In the P phase the indirect forces will cause
orthorhombic (noncubic) distortions of the metal lattice.
This allows one to calculate "8& from the off-diagonal
elements of the stress tensor cr,&. We shall further restrict
the types of H-H pairs considered to be nearest neighbors
[4(Q'—Q )/a =(0,2,2)] and next-nearest neighbors
[4(Q'—Q )/a = (2, —2, 2) or (2,2, —2)] in the lattice
formed by the P phase. This will give only two different
indirect forces to be determined from the strain data. If
we denote the type of H-H pair by the index k, where k is
the number of the shell of interstitial sites that c is in with
respect to a, then we can replace the sum over c in Eq.
(34) with a sum over k. The H atoms at sites a and c
may be on different sublattices, in which case the values
of k will depend upon the sublattices that a and c are on.
If a is on the xth sublattice and c is on the yth sublattice,
then Eq. (34) is replaced by

(35)
X,g

where II,'„"'»' is the indirect force-dipole tensor for the xth

Here NQ is the number of interstitial sites on the yth sub-
lattice (for tetrahedral sites, N»H=NI, ), and the notation

g, '»' indicates a summation over all interstitial sites c on

the yth sublattice that surround site a, which is on the
x th sublattice.

Our ultimate goal in evaluating H~ is to be able to cal-
culate ~8&, and this requires a knowledge of the couplings

~+1 ~=(A)t ~
' because we want to

how 8„depends on Q' —Q' [see Eqs. (15) and (16)].
The customary approach would be to model them as
springlike couplings, ' ' but the experimental evidence in-
dicates that these couplings should be considered as being
"rigid" or nonspringlike. Schober and Lottner' calculat-
ed %&~ for nearest-neighbor hydrogen and metal-atom
pairs by fitting them to the high-frequency ( &20 T Hz)
vibrational modes of H in Nb, Ta, and V. They found
these coupling constants to be much larger than the
metal-metal coupling constants. At low frequencies, in
the range of the acoustic modes of the metal atoms, these
springs would be too stiff to stretch. Instead, the
tetrahedron formed by the H atom and its four nearest-
metal neighbors would move as a single unit, or a rigid
body. A similar situation exists for the couplings
%ay+I ~p ——A~, . Burkel et al. found intermediate fre-
quency vibrational modes in highly concentrated a-Nb-D
which they attributed to the stretching of the spring be-
tween adjacent Nb4D tetrahedra, the springs associated
with the %ay+I ~~ couplings. At lower frequencies this
spring would also be too stiff to stretch. From these ex-
perimental observations it is concluded that the couplings
Wa)s+ I'a& and %~ are not springs, but instead are rigid.

If the M4-H tetrahedron moves as a rigid body, then
translational in variance (see Ref. 24) requires that

g +mc( @ca++ca )
—t + 1 () (37)

which can also be written as

—g %p„'A'„~=5~ (38)

This gives for indirect force

y ac8m y @mcAcacI a cl a (39)

~gal I pC
P

if m is a nearest neighbor of c. The assumption of a rigid
structure is therefore equivalent to saying that the sum of
the indirect forces over the metal atoms exactly balances
the direct H-H force. With this result the indirect force-
dipole tensor [Eq. (36)] can be written
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11(Xyy) ( y(y)y [gm ) (QC+Qa)](CCOIII+CCOIII)

C NI

=-,' g"'g [(~.--g.')+-,'(Q', -Q', )](-8„-)+-,' g"'g [(~;—g, )+-,'{g,' —Q', }](-e„-}

(y) g (g III QC )CCgBl g(y)(QC
QC ) g CCelII

C Nl C Nl

t

g(y) g (g Ill QC }CCOIII g(y)(QC QC) g CCenI

C foal C

(41)

The first term vanishes because of the inversion symmetry
o~——g(c„ /Q) P(q)+ gcylI,'„'"'

x

g (gill gC)@IIIC ACCCPC (0)ACCCPC (42)

while the third term vanishes because g, 8„=0. The
second and fourth terms are equal because

g "8„=—g e„. The final result is

11(x,y) ) y(y)(QC gc)CI a (43)
C

where we have used the result of Eq. (40}.
The force cI'& is assumed here to be a central force

Equations (47) and (21) give us the information neces-
sary to calculate the force-dipole tensors from the experi-
mental strain data and elastic moduli. To do this, Eqs.
(31}and (45) are substituted into Eq. (47), and the result-
ing different tensor elements of ty+ (i.e., (T)),(r(2, o2i, etc.}
are equated with the experimentally measured values for
tensor elements of the product C,z„)(e„i, in Eq. (21). This
procedure gives the following relations between the com-
ponents of the force-dipole tensors and the experimental
strain data

'I ),=I ),2(Q)' —Qt ) (44) c(A+H2c) =Q(e»C() +2e33C)2) I

0 0 0
n,'„"&'= 0 H, H, +

0 Hi H)

0 0
0 H2 H2, (45)—

0 —H2 H2

where the first term in large parentheses is for nearest-
neighbor pairs, and the second term is for next-nearest
neighbors. The constants I'i and I 2 are determined from
the tensor components H~ and H2 by substituting Eq.
(44) into Eq. {43), inserting the values of Q' —Q' for the
different pairs and then equating the resulting tensors
with the ones in Eq. (45). This gives

I )
—— 4H i /a, I 2

————2H2 /a (46)

To determine the constants %'&, 4'2, I I, and I z, we take a
somewhat similar approach to that used in Refs. 11—14.
The force-dipole tensors are calculated from the experi-
mental stress-strain data in the following fashion. The
macroscopic stress can be written in terms of the force-
dipole tensors by substituting Eqs. (28), (30), (33), and (36}
into Eq. (23) to get

where I") is associated with the nearest-neighbor pairs
[4(Q' —Q')/a=(0, 2,2, ) and (0,—2, —2)) and I, is asso-
ciated with next-nearest neighbors [4{Q' —Q') /a
=(2, —2,2), ( —2, —2,2), (2,2, —2), and ( —2,2,2)] in the
P phase of Nb-H. The central forces I i and I'2 for the P
phase of Nb-H can be determined from the measured
values of the indirect force-dipole tensor, as was first
shown by Pesch et al.

c[8+(H)+H2)c)=Q[&))C))+e33(C)(+ (2)],

(H) —H2)c =2QC44e)2 yQ——c44,

(48)

,'(4H) 5Hi}c =—y'QC4—4, (49)

where Hi and Hz are the same quantities as in Eq. (48),
but y'&y~. Equation (49) differs from the last line in Eq.
(48) due to the different nuinber of nearest and next-
nearest H-H pairs in the e and P phases of Nb-H. In the
P phase, each hydrogen atom has two nearest H neighbors
and four next-nearest H neighbors. In the e phase the
number of nearest and next-nearest neighbors of a hydro-
gen atom will depend on its location in the superlattice on
the average, however, each H atom has —, of a nearest H
neighbor and —', of a next-nearest H neighbor, thus, the
equivalent of Eq. (45} for the e phase is

where y~{—=2e)2) is the angle in radians of the orthorhom-
bic distortion" in the P phase. The elastic constants C(),
C)z, and C44, the components of the strain tensor e)) and
e33 and the volume Q are evaluated at the concentration,
c. There are not enough relationships in Eq. (48) to deter-
mine A, 8, H), and H2 separately. Pick and Bausch"
chose H2 ——0 and were then able to determine A, B, and
H from the data, while Mair et al '" set A =. 8 and then
solved for Hi and H2. In this paper we can determine A,
8, H, and H2 separately by using additional information
from the indirect force-dipole tensor associated with other
ordered phases besides P-Nb-H. For example, the e phase
of the Nb-H system, having the stoichiometry Nb4H3,
would give
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TABLE I. Lattice expansion, eiastic properties, and coupiing constants for Nb-H.

y (deg)
Cr& (10" dyn/cm')
C~2 (10' dyn/cm )

C~ (10' dyn/cm )

Q (10 ~ cm3)

&11/C

633 /C

A (10 '2 erg)
8 (10 '2 erg)

(10 ~2 erg)
02 (10 ' erg)

P (Ref.)

0.75
0.526 (14)
2.52 (18)
1.49 (18)
0.451 (18)

20.03 (11)
0.0398 (13)
0.0351 (13)
5.82 (This work)
5.70 {This work)

—0.563 (This work)
—0.711 {This work)

e (Ref.)

0.75
0.774 (13)
2.58 (18)
1.64 (18)
0.489 (18)

20.03 (11)
0.0398 (13)
0.0351 (13)
5.82 (This work)
5.70 (This work)

—0.563 (This work)
—0.711 (This work)

0 0 0
II'"~~= 0 4a, /6 4H, /6

0 4Hi /6 4Hi /6

5H2 /6

0

0 0

5Hi /6 —5Hi /6
—5H2 /6 5H2 /6

With Eq. (49) used to evaluate data in the e phase {at the
e-phase concentration), and Eq. (48) used to evaluate data
in the P phase, the values for Hi, H2, A, and 8 can be
determined. The calculated values for the tensor com-
ponents, along with the experimental data used to calcu-
late them, are given in Table I.

a m DO, mn(ann)
P PV V

(a, c)&m DO, mn(caon+acOm)
P, jMV V V

so that the total displacement of metal atom m is

UO, m g(Nm+ g(a, e)&m& )&

(51)

(52)

(53)

The superscript 0 on the U indicates that these displace-
ments are the so-called permanent displacements which
are the displacements that would result if the forces were
acting in the ideal lattice (the lattice whose couplings are
those of the hydrogen-free metal, i.e., D =DO). (The con-
cepts of permanent and induced displaeements, forces,
etc., will be amplified in Sec. II A).

Equations (51)—(53) are used to calculate the direct and

D. Metal-atom displacements

In this section the metal-atom displacements are calcu-
lated and compared with results from other theories and
from experiment. The metal-atom displacements may be
broken down into contributions from the direct and in-
direct forces. The direct displacement 'ic& of metal atom
m due to H atom a acting via direct force 'g& and the in-
direct displacement s& of metal atom m due to the pair
(a,c) acting via the indirect force ~8& +"6)& are defined
to be

indirect displacements for the various metal neighbors
surrounding each defect. The direct forces 'g& are deter-
mined from the direct force-dipole tensor and Eqs. (29)
and (32) while the indirect forces "8&~ are determined
from the indirect force-dipole tensor and Eqs. (39}, (44),
and (46). Values for the force-dipole tensors are given in
Table I. The Green's function D&'„" was evaluated using
the formulas and programs described in Ref. 9.

In Table II the calculated (direct) displacements (denot-
ed by v) of the first and second neighboring metal atoms
surrounding an isolated H atoin are given in the first row,
along with the calculated results of Johnston and Shell~3

(second row) and the calculated results of Fukai24 (third
row}. The differences between the values calculated here
and calculated values from the other sources can be attri-
buted in part to differences in the calculation methods.
Johnston and Sholl used a force model that included only
forces exerted by the hydrogen atoms on their nearest
metal-atom neighbors, while Fukai used a force model
based upon a Born-Mayer potential. In the present case,
however, we have used a nearest- and next-nearest-
neighbor force model, and have empirically fitted these
forces to the force-dipole tensors. These calculated values
of

~

v
~

(
~

v
(
= absolute value of v) should be compared

with the experimental measurements of Behr et aL, ~~ who
found

~
v

~

=0.1 A for nearest neighbors. The direct dis-
placements calculated here for the isolated H atom are
comparable to the displacements obtained from previous
calculations and the experimental value, although there
are some differences which may be attributed in part to
the variation in the value of the force-dipole tensor used
in each calculation.

The fourth and fifth rows of Table II show the calcu-
lated indirect displacements of metal atoms due to the H-
H pairs (a,c) with Q'=(0, 0,0) and 4Q'/a=(0, —2, 2)
and (2, —2,2). If the center of mass of the defect is
denoted by Q [where Q =Q' for the isolated hydrogen
atom and Q = —,

' (Q'+ Q') for the H-H pair] then
4(R —Q )/a gives the distance from the defect to the
metal neighbor at R . Included in Table II is the value of
the direct force-dipole tensor used to determine the forces
in each calculation. The displaeements of the metal
atoms caused by the indirect forces of the H-H pairs
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TABLE II. Calculated displacements of metal neighbors around H defects in Nb.

(Rm qu)a

(~/4)
TrP

(10 ' erg)

Direct forces
Vy

(a /100) (A) Ref.

(1,0,2)
{3,0,2)
{1,0,2)
(3,0,2)
(1,0,2)
(3,0,2)

17.21

16.02

16.66

1.10
0.44
0.72
0.94
1.40
0.15

Experimental value

0 2.29 0.084
0 0.23 0.016
0 1.69 0.061
0 0.31 0.033
0 3.20 0.115
0 0.0 0.005

( u
~

'" '=0. 1 A (Ref. 24)

This work

23

(Q~ Q+) (Rns qu)a
(a /4) (a /4)

TrP
(10 'z erg)

Indirect forces

Vy

(a/100)

(0, —2,2)

{2,—2, 2)

(1,—1, 1)
(1,—1,—3)
(0, 1, 1)
(0, —1,—3)
(2, —1,—1)
{2,—1, —3)

—1.12

—1.07

0.046
0.004
0
0.14
0.08
0.16

—0.026
0.22
0.031

—0.13
—0.14
—0.16

0.026
—0.21

0.031
0.10
0.11
0.16

0.002
0.10
0.0015
0.0072
0.0063
0.0092

'Q~ is the center of mass of the defect. For explanation, see text.

are an order of magnitude smaller than those caused
by the direct forces of an isolated H atom
(

~

u ~'" ' '/~ u
~

" '-0.025—0.125). There is also an
order-of-magnitude difference between the displacements
of the nearest and next-nearest metal neighbors around
the isolated H atom ( i

u
(

" ' '/
~

u
(

"'"'" '-5).

II. ELASTIC BEHAVIOR
OF THE HYDROGEN-LOADED LA I I ICE

A. The transition matrix method

u~
—Dp„"['P"( )+0"„( )],

vvhere

(54)

D ma (@nm+ yam qgna gab ibm) 1—
]M,v = ~ ~ ve ep pp (55)

is the static Green's function of the defect (hydrogen-
loaded) lattice. The complicated couplings in D„„"
prevent one from performing a Fourier transformation to

Before one can determine the displacement fields or
elastic energy of the hydrogen-loaded lattice, one must be
able to evaluate the static Green's function of the loaded
lattice. In the FHLA this Green's function cannot be
determined exactly since the couplings between the metal
atoms will vary due to the presence of hydrogen. (In con-
trast, the Green's function used in the harmonic approxi-
mation is calculated for the unloaded lattice. ) To over-
come this problem the transition matrix methods'in'~7 29 is
used as an approximation to calculate the Green's func-
tion in the FBI.A. In this section the transition matrix
method is reviewed, and the equations for determining the
metal-atom displacements using the transition matrix are
de%Ud.

From Eq. (9) the displacement u„can be written

obtain D&~' as was done by Horner and Wagner for D„'~"
because D&~„" will now depend on the locations of both m
and n, and a and b In gene.ral, D&„"will be different for
each configuration of hydrogen atoms. To obtain DP
would require the inversion of the full matrix of force
constants (4~~ +%~ —%™~A'~%@)which has the dimen-
sions 3%I.X 3NL.

Instead of trying to invert such a large matrix, we use
an approximation to get Dp N. We assume that the lattice
can be separated into two regions: the defect space [the
area immediately around the H atoms (defe:ts) where the
couplings have changed]; and the undisturbed space,
where the couplings are those of the pure metal 4„„"
(Refs. 5, 27, and 30). In the defect space the metal atoms
respond locally to displacements with effective couplings

Green's function for the undisturbed space will be Dz'„",
which can be calculated by the Fourier-transform method
as in Horner and Wagner. To get the Green's function for
the defect space one need only invert 4„„"+%P for those
metal atoms m and n in the defect space. In general, the
couplings 4&„" will affect only the nearest neighbors of
the defect. The advantage here is that the defect space
will have a much smaller dimensionality than the total
space, since it includes only the nearest neighbors of the
defect.

If we consider only the defect space, then D„„"can be
written in matrix notation (where the superscripts mn
have been dropped for convenience),

D= —(4+4)

'(1++@ ')

=D (1—%D )
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where D = —(4) '. The matrices D D, 4, and 4
have dimensionality 3N& X 3N&, where ND is the number
of metal atoms in the defect space. Equation (52) can also
be shown to equal

D =(1 D—g) 'D (57)

mn ~b mn
trav

= ~ tpv+b-
b

(59)

Here we have assumed that there are no additional cou-
pling changes due to pairs of atoms, as did Kramer, 5 i.e.,
that the term +~~~A«~~p%'g, in Eq. (55) contributes a negligi-
ble amount to %' ~".

Because the potential %(R,Q, r) between the hydrogen
atoms and the metal atoms is unknown, it is not possible
to calculate 4 (and thus t) from first principles. It is
therefore necessary to be able to relate the r matrix to
some macroscopic quantity which can be measured exper-
imentally. This quantity is called the dielastic polarizabil-
ity 2~' 2s a,~i, and it is determined from the change in
elastic properties that occurs when hydrogen is absorbed
into a metal. The relationship between the elastic con-
stants and the r matrix is found by substituting Born's ap-
proximation (t=%) (Ref. 27) into Eq. (24):

C,„„i-(1/V)R, (4~„"+t„„")Ri

=C,„„x+(1/V)R~t„„"R«g, (60)

where C~„i is given by Eq. (27). The second term con-
tains the dielastic polarizability, a,&„~ which is given by
Eqs. (5}and (20):

( 1jV)R l«till«R II = (pf /V }Rill br «l«R «

= —g (c, /Q)aI„"„'i, (61)

(x) mb mn na~ g= —R, tq Rg

for an isolated defect at site b on the xth sublattice. The
notation g indicates a summation over all possible sub-
lattices. Thus, Eq. (60}becomes

(63)

The dielastic polarizability is seen to be a fourth-order
tensor having the same tensor symmetry as C~„~.

Schober and Lottner' have calculated the components

a result that will be used at a subsequent point. The ex-
pression for D in Eq. (56) can be expanded in powers of
the perturbation 4:

D=D +D JI(1 DJ—I) 'D =D +D rD . (58)

Equation (58) defines the transition matrix,
t=+(1—D 4) ' also called the "t matrix, " which acts
as a bridge between the properties of the pure lattice and
those of the defect lattice. It has the same matrix proper-
ties as 4 and 0', i.e., t„„"=t~"=t~. The total t matrix is
assumed to be the sum of the coupling changes for each
isolated hydrogen atom, or

where

vo=D (4+8)

(64)

v'=D'r D'(++8) .

The v are called permanent displacements, and are the
displacements that would result if the forces were acting
in the ideal lattice (the lattice in which the couplings are
those of the hydrogen free metal; i.e., D=D ). The v
are called induced displacements, and are corrections to
v that arise due to changes in lattice couplings caused by
the defect. Both the permanent and induced displace-
ments can be broken down into contributions from the
direct and indirect forces acting in the defect space. The
direct-permanent displacements 'w„of metal atom m due
to H atom a acting via direct force 'P&, and indirect-
permanent displacements "s„ofmetal atom m due to the
pair (a,c) acting via the indirect force "8„+"S„have
already been defined in Eqs. (51) and (52).

The induced displacements have not been calculated
here, since the formalism using the induced forces does
not require them. Beyond this, it would be pointless to
calculate the induced displacements, since they cannot be
compared with anything measurable. One might naively
think that the sum of the calculated permanent and in-
duced displacements would give the actual microscopic
displacements in the real lattice, but this would be in-
correct, since the t-matrix method is an approximation
that is best at the macroscopic level. The actual displace-
ments could only be obtained by calculating the full
Green's function [without the approximation of Eq. (58}]
for the full lattice, (not just the defect space) and using
this to solve Eq. (54).

The direct- and indirect-induced displacements can be
treated in the same manner as the direct- and indirect-

of the t matrix by fitting a,&„i to the experimentally ob-
see% chmgM in C.p.k with hydrogen concentration.
They chose a model that had couplings %'&„" between the
four nearest-neighboring metal atoms around a
tetrahedral site in a bcc lattice. The matrix 4 for their
model has a 12X 12 dimensionality, which makes it diffi-
cult to perform the inversion of 1 D—4 to get t. To
avoid this problem, Schober and Lottner used group-
theoretical partitioning to reduce the 1arge matrix to
several smaller matrices which can be manipulated more
easily. The irreducible representation for the Schober-
I.ottner model and the elements of the r matrix have been
used in our calculation of the induced forces, and of the
elastic interaction energy that is described in the next pa-
per.

In theories involving the r matrix, it is natural to intro-
duce the concepts of permanent and induced displace-
ments, forces, and interactions. ' ' ' The permanent and
induced displacements arise in the following manner.
Consider the metal-atom displacements as given by Eq.
(54). In the defect space, the v are given by

v=D(4+8)=D (0'+8)+D tD (0'+8)=v +v
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and the indirect-induced force Q as

Q" =tD Q" . (66)

The total induced force on metal atom m (in the usual no-
tation) can be written as

01' (r)+8' (r)=t„„"D'„y"'[%),(i)+ei(i)]
mnU0, n
PV (67)

The induced forces )I)&'m(~) and e&t' (r) will have a
hydrogen-concentration dependence determined by the
concentration dependences of t„„"and u„'". To keep the
nomenclature consistent in the rest of this paper, the
forces %„(~) and e„(~) referred to previously are hence-
forth called permanent forces, and their force-dipole ten-
sors, given by Eqs. (28) and (43), are called permanent
force-dipole tensors.

The direct- and indirect-induced forces can be given an
explicit dependence on i, in the following way. By sub-
stituting Eqs. (14), (17), (51), (52), and (59) into Eqs. (65)
and (66) the induced forces on the metal atom at m in the
p direction can be written as

4~™(r)=—g P' r, ~b,

O„' (r)= —g "8„' r, rbv;,
a, b, c

(68)

where the direct-induced force «g„' and the indirect-
induced force 8„' are defined as

b Ig, N! Q~Nvl p N

(69)

bgf, m btmn)ca) n,
jM PV V

The force P' is the direct-induced force of b on m
(caused by the displacement field of a ) in the p direction,

permanent displacements but it turns out to be more con-
venient to use the t matrix to define direct- and indirect-
induced forces. The usefulness of the induced-force con-
cept will be apparent from the following discussion. In
the ideal lattice the permanent forces cause the permanent
displacements. The permanent forces also act in the real
lattice, but because of the changes in the metal-metal cou-
plings the displacements caused by the permanent forces
will not be the same as the displacements they cause in the
ideal lattice. The induced forces are defined as effective
forces that, when acting in unison with the permanent
forces in the ideal lattice, cause the same displacements in
the ideal lattice as the permanent forces acting alone in
the real lattice. In this way the induced forces can be
thought of as additional Kanzaki forces. Recall that
Kanzaki forces are effective forces acting in the undis-
turbed lattice that cause the same displacements as the
real forces acting in the real lattice. It can be seen that
the term tD {4'+8) = tv in Eq. (64} has the units of
force; it is therefore called the total induced force to dis-
tinguish it from the total permanent force %'+8. We de-
fine the direct-induced force %' as

%'=t D'%

while «8& is the indirect-induced force of b on m [caused
by the displacement field of the pair (a,c)] in the)M direc-
tion. From these induced forces we can define induced
force-dipole tensors for the hydrogen atom at site b as

bpI [ ) ~ g bg, ~ g b&ngn a n

bgI, (a,c) ~ gm bgt, m ~ gm btmn (ac), (70)

«IIt, )a, c) ~ (g m gb)bgt, m
CP ~ I, I, P

(71)

Using Eq. (69), the direct and indirect forces of H in
Nb have been calculated for different H-M and H-H
separations. These are listed in Table III, for the case in
which sites a and b in Eq. (69} are the same, along with
the permanent-direct and permanent-indirect forces. The
induced contributions are about one third the size of the
permanent contribution, and are of opposite sign. The
significance of the induced forces will be addressed in the
discussion at the end of the paper.

B. The induced stress

In this section, we introduce the induced stress, which
is that part of the inacroscopic stress which results from
the microscopic induced forces. Values for the induced
stress, and in particular for the force-dipole tensor associ-
ated with the induced stress (the induced force-dipole ten-
sor}, will be necessary for paper II of this series, in which
we calculate the elastic energy of the finite lattice and the
so-called free-surface correction. The concept of the in-
duced stress may be motivated by considering how the
coupling changes caused by the hydrogen atoms will af-
fect the elastic energy of a metal hydride. On a macro-
scopic 1eve1, this energy is

1

HeIas~= TO~I &ip ~ {72)

where o,„is the permanent stress and e,„is the strain in
the defect (nonideal) lattice. The difficulty in evaluating
Eq. (72) is due to the fact that e,„will have both induced
and permanent contributions, and cannot be easily deter-
mined. It is more convenient to instead define an induced
stress, ' ' which when acting together with the per-
manent stress in the ideal lattice gives the same strain e,„
in the ideal lattice as would occur in the defect
(hydrogen-loaded} lattice:

e~=S,)n„io„i=S,)n„)„(cT i.+o'„g.""), (73)

where o'„~" is the induced stress. The induced stress
will be the result of the microscopic induced forces, which

The superscripts (a) or (a,c) appear on the induced
force-dipole tensors because these tensors will have dif-
ferent values depending on the location of site a or sites a
and c and the location of site b The. induced forces pos-
sess translational invariance g g' =0, just as the per-
manent forces do; therefore

bpl, )a) y (pm gb)bg, m
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TABLE III. Comparison of the permanent and induced components of the direct and indirect forces.

(R —Q')4/a
{1,0,2)
(1',0', -2)
( —1, —2,0)
(-1',2,0}

Direct, permanent

(10 dyn)

(0.7244,0,1.448)
{0.7244,0,—1.448)
(—0.7244, —1.448,0)
( —0.7244, 1.448,0)

Direct, induced
itgIII,

{10 dyn)

( —0.2858,0,—0.5602)
( —0.2858,0,0.5602)
(0.2858,0.5602,0)
(0.2858, —0.5602,0)

( Rill Qe }4/g

(1 0 2)
{1,0, —2)
( —1,—2,0)
( —1,2,0)
(1,0,2)
{1,0, —2)
( —1,—2,0)
{—1,2,0)

(Q' —Q'}4/o

(0, —2,2)

{—2,2, —2)

Indirect, permanent
AtgJN

(10 dyn)

(0,—8.22, —8.22)
(0,—8.22, —8.22)
(0,—8.22, —8.22)
(0,—8.22, —8.22)
(—20.8, +20.8, —20.8)
( —20.8,+20.8, —20.8)
( —20.8,+20.8, —20.8)
(—20.8,+20, 8, —20.8}

Indirect, induced
itel, III

(10 dyn)

(—0.9602,—0.6094, —1.304)
{—1.014,0.4106,0.1503)
(1.014,0. 1503,0.4106)
(0.9602,—1.304,—6094)
( —0.4424,0.1480, —1.002)
( —0.1511,0.1517,0.3720)
(—0.0990,0.5452, —0. 1234)
(0.6924, —0.8449, 0.7536)

have been described before as Kanzaki forces, in addi-
tion to the Kanzaki forces that cause the permanent dis-
placements.

In this section we will derive the relationship between
the induced stress and the dielastic polarizability, and the
relationship between the induced stress and the induced
force-dipole tensors. In order to obtain an expression for
the induced stress, we separate the force-displacement ex-
pression [Eq. (18)] written here in matrix notation:

( 1 /V)R m(gtllllR n~ + ( 1/V)R mtmnR n~0

= —(1 /V)[R, %„(r)+R, 8„(r)] . (80)

This gives a macroscopic stress-strain relationship in
terms of microscopic quantities. By substituting Eqs.
(23}, (27), (59), and (61) into Eq. (80), one gets the Hooke's
law relation for the defect lattice in which the elastic con-
stants of the ideal lattice (those of the pure metal) are
Used:

(4+ip }v= —4' —8, (74) 0

into terms associated with 4 and terms associated with %',

kv+% D(% + 8)= —It —0, (75)
(81)

where we have used v=D(4+8) as in Eq. (64). The
product %D can be written in terms of t using Eqs. (56),
(57},and (58),

CD=CD (1—%D )

~0 induced
Ccpcvx&va ~cp, =&cp ~

where cr+ is the permanent stress and

oinduced ( 1/V)R mtmttR m&0 ( 1/fl) g &(x) &0 c (82)

=0'(1 Du%') 'Du=t—Du. (76}

[The relationship D (1—AD ) '=(1—D qt) 'D
holds because of the equivalent derivations of Eqs. (56)
and (57).] Substituting Eq. (76) into Eq. (75) and using
the definition v =D (tCt+0") we recover

Ctv+tv = —O' —8.
With subscripts and superscripts included, Eq. (77) be-
comes

@ "u"+t "u "= p (r) 8(r)— —
J(cv v pv v p Ic (78)

Bg assuming homogeneous distortions u"„=e„iRi and
u„'"=e„iRi,Eq. (78) becomes 4~„"u"„=—%q' ( ) —8 ' (r) —lP~( )—8 ( ) . (83)

is the induced stress. From Eq. (81) it can be seen that the
coupling changes caused by the defects are equivalent to
an additional stress o',

&
"', acting in the pure metal (ideal

lattice) to give the same strain fields as in the real lattice.
The induced stress can be thought of as being caused by
the induced forces %„™(r)and 8„(r), just as the per-
manent forces %&m(r} and 8&(r) cause the permanent
stress o~. To get the induced stress in terms of the in-
duced force-dipole tensors requires a relationship between
the induced stress and the induced forces. The relation-
ship between o~m

"' and 4& (r) and 8& (r) can be de-
rived in the same way that Eq. (81) was derived, except
that we first substitute Eq. (67) into Eq. (78) to get

Ctmtte R Il + tttltleO R Il tItm(r) 8m(r)

which, when multiplied by ( R, /V) results in

(79)
Equation (83) states that the permanent and induced
forces, acting in the ideal lattice (with force constants
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SP), causes the displacements U"„which are the same as
the u", that occur in the real lattice. By assuming homo-
geneous distortions, v"„=e„~R~, and multiplying to the
left by (R m/V), Eq. {83)becomes

Comparison of Eq. (84) with Eq. (80) gives

(1/V)R, tq„"Rie„)„=(1/V)[R, %q (r)+R, 8„' (r)],
(85)

which with the aid of Eqs. (61) and (82) can be written

~induced (1/V}[Rm@I,m(&)+RmoI, m(&)] (86)

When Eqs. (68) and (71) are substituted into (86), we find

~induced (1/V) ~ bpl, (a)+ ~ blII, {a,c)r
CP cP ~ cP c a b

a, b C

(87)

For a homogeneous distribution of H atoms the average
concentration can be substituted for r„rb, and r, . If we
take site a to be on the zth sublattice, c to be on the yth
sublattice, and b to be on the xth sublattice, then Eq. (87)
becomes

induced (1/II) y y (bpI, (ai+ y y bIII, (a,c)

x,s a y C

(88)

(1/V)R @mnRn +(1/V)[RmqgI m( )+Rmol m( )]
= —(1/V)[R, %~(r}+R, eq(r)] . (84)

found, as well as its relationship to the induced force-
dipole tensors.

The evaluation of u,'„"""""requires the values of all the
induced force-dipole tensors P,&' and II~""as defined
by Eqs. (70) and {71}.The induced force-dipole tensors
are functions of the relative locations of a, b, and c, but
they appear in the expression for o',&"' [Eq. (88)] as

g, P~ and g, , II+"". These sums depend only on
the location of site b (and therefore only upon the sublat-
tice that b occupies). From these sums we can define two
new induced force-dipole tensors

PI, (x) (1/~g ) g bpl, a

III,(x) (1/pp ) ~ bllI, (a,c) ~ kl11, (x.y)

Q, C

(89)

The evaluation of Pr+'"' is considered first. If homogene-
ous distortions are assumed, then 'ui"„= —e„i(R i,

g')/Xg, and P"' becomes

p""'=(-1/~g) g g(R —Qb }'i "~.x{R~—Q~)/N4

where we sum over only those sites a on the yth sublattice
and those sites b on the xth sublattice. To evaluate the
sums in Eq. (89) would be a lengthy operation; however,
we can make use of the inversion symmetry of t&~„" to
evaluate the sums approximately. If Eqs. (69) and (71) are
substituted into Eq. (89}the result is

Pl (x) (I/~g) g g (R m Qb)brmn a~n
a m

111'(x)=(1/NQ) g y (R —Qb) bf n( ' )Sn .

A comparison of Eq. (88) with Eq. (47) shows that cr',"„"
is one order higher in c than the permanent stress, a,„.
Thus, the concentration dependence of o~d has been It can then be separated into two parts,

TABLE IV. Direct and indirect permanent and induced force dipole tensors for Nb-H.

Direct

Indirect
k=1,

(0,2, 2)a

Permanent

P'"' =(5.82,0,0)
=(0,5.70,0)
=(5.82,0,5.70)

H',~' ——(—0.563,0,0)
=(0,—0.563,—0.563)

=(0,—0.563,—0.563)

Induced

P~"' =(—0.978,0,0)
=(0,—1.917,0)
=(0,0,—1.917)

H~"'= (0.0675,0,0)
=(0,0.0961,0.0349)

=(0,0.0349,0.0961)

Indirect
k=2,

(2, —2,2)a

0'"'= (—0.356,0.356,—0.356)
=(0.356,—0.356,0.356)

= (—0.356,0.356,—0.356)

H~"' ——(0.0203,—0.0071,0.0071)
= (—0.0071,0.0472, —0.0149)
= (0.0071,—0.0149,0.0472)

Indirect
k=2,

(2,2, —2)a

II~' ——(—0.356,—0.356,0.356)
=(—0.356,—0.356,—0.356)

=(0.356,0.356,—0.356)

All tensors are in units of 10' ergs.

H~"' ——(0.0203,0.0071,—0.0071)
=(0.0071,0.0472, —0.0149)

=(—0.0071,—0.0149,0.0472)



ARTHUR I. SHIRLEY AND CAROL K. HALL 33

P~' '=( —1/NQ) g g(R, —Q, ) "t„„"e„(Ri,—Q }/NQ
a m

+( —1/NQ) g(R, —Q, ) t„„"e„k

x g(Qf —Qi. )/&0 .

The second term will vanish because lattice symmetry re-
quires that for every site a there must be a site a' such
that Qi —Qi —— (Q—kb Q—nk ). This result allows us to
write

Pt'"'=(1/NQ) g g(R, —Q, ) tq„ io"„

g (Rm Qb) btmn b~n

which can be evaluated easily with the t matrix. If the
same treatment is used for ll~"', we find that

kIIt, (x) ~ (R m Qb ) bt mn (bd)& n (94)qc ~ c c pv v

which is also easy to evaluate with the t matrix. The
values of P~„"' and II,„' ' (for k= nearest and next-
nearest H-H pairs) are given in Table IV.

components of the direct and indirect forces make a sub-
stantial contribution to the "total" force. Because the per-
manent and induced contributions are of opposite sign,
the total force is smaller than the permanent contribution
alone. Thus, in the FHI.A, the lattice forces which in-
clude permanent-direct, permanent-indirect, induced-
direct, and induced-indirect forces are smaller than those
in the harmonic approximation, which include only
permanent-direct forces. The smaller lattice forces calcu-
lated in the FHLA can be expected to give smaller elastic
energies than those calculated in the harmonic approxima-
tion. This is desirable since the critical temperature of the
a-a' phase transition for Nb-H can be shown to be pro-
portional to the elastic energy at the critical point (26) and
the critical point temperature estimated for the H-Nb sys-
tern by Horner and %agner using the harmonic approxi-
mation is too high. ' Similarly, harmonic-approximation
values for T, for order-disorder transitions are too big. 3

A lower (less negative} value for the elastic energy should
give a lower value for the critical temperature which
would be more in line with that observed experimentally.

In paper II of this series of papers, the elastic interac-
tion energies will be calculated in the FHI.A and com-
pared with harmonic-approximation values.

DISCUSSION

From a comparison of the forces listed in Table III (or,
equivalently, from a comparison of the force-dipole ten-
sors in Tables I and IV}, it can be seen that the induced
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