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Generalized Langevin-equation approach to impurity diffusion in solids:
Perturbation theory

T. Munakata
Department ofApplied hfathematics and Physics, Faculty ofEngineering, Tottori Uniuersity, Koyama, Tottori 680, Japan

4,'Received 5 November 1985)

We derive, from a microscopic viewpoint, a nonlinear and non-Markovian Langevin equation to
describe impurity diffusion in solids, assuming weak interaction between an impurity and the host-
lattice atoms. The memory function and the periodic potential in the Langevin equation are calcu-
lated for the isotropic Debye lattice which models the host crystalline solid. The diffusion constant
is obtained in a closed form with the use of a theory for noise-induced activation processes.

I. INTRODUCTION

Atomic diffusion in solids has important implications
in many branches of material science, ' and there has been
renewed interest in this field in connection with the rapid
transport of iona in superionic conductors and the hydro-
gen diffusion in metals. 2 Among various theoretical
models to deal with mass transport in solids, a hopping
model ' plays a central role in which the mean residence
time r„on an atomic site is assumed to be much longer
than the jumping time rz and the (tracer) diffusion con-
stant is calculated with use of a random-walk theory, a ki-
netic theory, or computer simulations. ' The hopping
rate 1/r„, an important parameter in the model, is calcu-
lated from a microscopic viewpoint based on the
transition-state theory5 (TST) or the dynamical theory
(DT) of the rate process.

To investigate ionic motion in superionic conductors,
Fulde et al. proposed, in 1975, a continuous diffusion
model in which a diffusing ion was assumed to perform
Brownian motion in a periodic potential Vp(X) produced
by the host crystal. They used the Langevin equation of
the form

P=dP/dt = —f ds E(t s)P(s)—
t)V (X)/dX—+F(t),

where P =MX; M denoting the mass of the diffusing ion.
The random force F(t), which satisfies the fiuctuation-
dissipation theorem (FDT)

(F(t)F ) =Mk TK(t), (2)

was assumed to be white and the potential to be sinusoidal

K(t) =2(5(t),

V~(X)= U cos(2srX/a) .

(3a)

(3b)

Because of the simplicity and the intimate relation to the
hopping model in case of large friction constant at low
temperature, the model and the extension thereof have
been studied by many authors. ' One point to be noticed
here is that the periodic potential and the random force,
as specified by Eq. (3), are introduced phenomenologically

II. MODEL

%e consider an impurity moving through interstitial
sites of a harmonic lattice consisting of N atoms each
with mass M. The lattice Hamiltonian is given by"

Hc = —,
' g[Q«, j)Q *«,j}

+to'(k, j)Q(k,j)Q'(k, j)], (4)

without recourse to microscopic properties of the system.
As is weil known, atomic jump events result from com-

plex interplay between the diffusing atom and the sur-
rounding crystalline solid and it is highly desirable if one
could derive a Langevin equation like Eq. (1) from a mi-

croscopic consideration. Recently we proposed a general
theory of self-diffusion in liquids and solids with use of a
linear-response method. When applied to diffusion of an

impurity put in a host lattice, it yielded a Langevin equa-
tion of the form of Eq. (1), together with microscopic ex-
pressions for Vp(X} and K(t) For exa. mple, the memory
function E(t) was expressed in terms of the dynamic
structure factor of the lattice and the self-correlation
function of the impurity. However, the random force
F(t), which was assumed to satisfy Eq. (2), was intro-
duced in an ad hoc manner into equation of motion of the
impurity based on a physically plausible argument.

The aim of the present paper is first to give a rigorous
stochastic description for impurity diffusion in solids,
thus putting the Langevin theory on a firm theoretical
basis, and secondly to calculate the diffusion constant
with the aid of theories for the thermal activation rate of
both Markovian and non-Markovian stochastic processes.
For this purpose we first define our model Hamiltonian to
deal with impurity diffusion in sohds (Sec. II) and develop
a second-order perturbation theory, regarding the interac-
tion between the impurity and the host-lattice atoms as
weak. Here we employ the exact Langevin theory by
Mori' (Sec. III). We then apply the result to a simple lat-
tice (a Debye model} to obtain analytic expressions for the
periodic potential, the memory function, and the diffusion
constant (Sec. IV). Section V contains some remarks
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where the asterisk means complex conjugate and to(k, j)
and Q(k, j) denote, respectively, the frequency and the
normal coordinate of the phonon with the wave vector k
and the polarization j ( =L,Ti,Tq). We note that hereaf-
ter the vector k is restricted to the first Brillouin zone
(FBZ) in contrast to the vector q which denotes a general
wave vector. The displacement of the 1th atom u(l ) is ex-

pressed as

readily see the relation

F(Rr,.k,j)=F*(Rr', —k j) . (13)

III. GENERALIZED LANGEVIN EQUATION

For a set of dynamical variables A, the following
Langevin equation holds

u(1) =(NM) 'ri g e(k,j)Q(k,j)exp[ik R(1)], (5) A(t) =i' A(t) f —dsP(t s—) A(.s)+F(t) .

where e(k,j) is the polarization vector and R(1) denotes
the equilibrium position of the 1th atom, expressed in
terms of the fundamental translation vector as

Based on a physical picture that the impurity moves in-
teracting with phonons in a periodic potential produced
by the host crystalline solid, we take as A

3

R(l}=g 1;a; .
Pr

exp(iG. Rr ) —y(G) AG
(15)

As the Hamiltonian of the impurity we take

Hz=MrVr/2++v[
~
Rr —R(l) —u(l)

~ ]
I

UWqVr/2++ u(
~
Rr —R(l)

~
)+g u(l)u(l) f(Rr, l),

I I

(7)

where Vr(Rr } denotes velocity (position) of the impurity
and v(r) is the interaction between the impurity and a
host-lattice atom. Assuming that each lattice atom per-
forms small-amplitude oscillations around its equilibrium
point, we retain in Eq. (7) terms up to linear in u(l),
where

f(Rr 1)= —VR, u [ ~
Rr —R(l )

~ ]

represents the force on the impurity from the 1th atom at
its equilibrium position. With use of Eq. (5) and the
Fourier transform as defined by

u(q)= f drv(r)e'q',

we rewrite Eq. (7) as

Hr=MrVi'/2+n gu(Go)e
' '"'

Go

where G denotes a set of nonzero RLV's with

y(G)=(exp(iG Rr)) and A is a (3+ Oo)-dimensional
vector. ' Some comments would be appropriate here as to
the choice of the variables, Eq. (15). First, we are mainly
interested in the Langevin equation for Pr ( =Mr Vr ) and

AG included in A serves to extract coupling of the im-

purity to the periodic array of lattice atoms. In this sense
our approach is similar to the mode-coupling theory, '

where the bilinear variables f(q}f(k —q) are included in
A only to obtain a nonlinear kinetic equation for the
mode f(k). Secondly, since higher powers of Pr are not
included in A the resulting Langevin equation [(30)] is
linear in Pr and from this linearity (in Pr), the choice of
the variables, (15), might be best suited to the case of
small fluctuations in a momentum space or strong cou-
pling (large friction) between the impurity and the host
lattice. However, as we take full account of non-
Markovian property of the Langevin equation (Secs. IV C
and IVD), which includes effects from higher powers of
Pr, ' we expect that our Langevin method can be used in
the full range of the coupling strength.

To make the average of A vanish we subtract y(G)
from exp(iG Rr). Since y(G) is an important quantity
for subsequent analysis, we first consider y(G) based on
the definition

where

+g Q(k,j)F(Rr,k,j), (10) y(G)=c f dP, f dR, g f dP(k, j)f dQ(k, j)
ki

ri(Hr +Hr j+iG RI —
(p k )

F(Rr,'kj)=ni(XM) ' ge( ,k)j. ( —k+Go)
60

Xu(
I

—k+G,
~

)e

and n ( =N/V) is the density of the host lattice. In deriv-
ing Eq. (11) use has been made of the relation

gexP[iq. R(l)]=X+5q G, (GoERLV) .
60

(12)

It is remarked that Go denotes a general reciprocal-lattice
vector (RLV) including the zero vector whereas G will be
specifically used for nonzero RLV. From Eq. (11) we

(16}

where the normalization constant c (and c' below) are
specified from the obvious condition y{0)=1. From Eqs.
(4), (10), and (13) it follows that

I

y(G)=c' f dRrexp iG Rr Pn g .u(G')e—

+Pg ~
F(Rr,'k, j)

~
[I/2' (k,j)]

k,j
(17)
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Since the integrand in Eq. (17) is too complicated to ob-
tain a closed expression for y(G), thus making subsequent
analysis a difficult task, we hereafter assume that the in-
teraction u(r} between the impurity and the host-lattice
atom is weak compared to the interaction among the
host-lattice atoms. This is implied in the Hamiltonian (7)
where each lattice atom was assumed to be tightly bound
to its equilibrium position. Thus, our task in this section
is to calculate y(G), iso, and P(t) to order u . For the lat-
tice with the inversion symmetry we obtain with use of
Eq. (11),

y(G)= —pnu(G)+(p n /2) g u(G')u(
~
G—G'

~
)

G' (~G)

+[Pn'/(&M)] g a(k,j I Go, Go+ G)=y( —G),

where

H(kj
I
Go Go)=u( 1k+Go I »( 1k+Go I

}

X e(k,j) (k+ Go)

X e(k,j).(k+ Go)/[2' (k,j)] .

A. The frequency matrix i p3

The frequency matrix is defined by'

ice=(A, A)(A, A)

(19)

(20}

Go, k,j
(18) with

0

Pl
A=

AG

ni g G u(G)e ' —g Q(k, j)P'R,F(Rt,'k,j)
G k,j

i G Pte . '/M
(21)

and the innerproduct (f,g) of two arbitrary dynamical variables f and g is defined by (fg ). Since (fg ) = —(fg ), we
see that

03x3
( A, A) =ikit T

Gy(G) 0„„ (A, A}=
Mrkg TI3

0-x3

03x m

a(G, G')
(22)

where 03x» 0~ x ~~ 03x ~p and O„x3 are the zero matrices
wit»izes 3 X 3, ~ X ~, 3 X oo, and ao X 3, respectively,
and I3 denotes a 3 X 3 unit matrix. The matrix
a(G, G') =(AG, AG ) is given by

a(G, G') =y(G —G') —y(G)y(G') . (23)

(i' A)p = in gG —u(G) (n/NM)—
G

The inverse is easily obtained as

a '(G, G')=5o o+Pnu( i
G —G'

i
)(1—5oo )+o(u ),

(24)

where the term of order u is not necessary for the calcu-
lations below. From Eqs. (20), (22), and (24) we obtain,
after some algebra,

where the subscript Pt on iso A of Eq. (25a) denotes the
upper three components of iso A and the subscript AG
has a similar meaning. We note from Eq. (18) that AG in
Eq. (25a) can be replaced by exp(iG Rt ). As is shown in
Appendix A it holds that

(26)

where the last equality defines the periodic potential
Vz(Rt). Thus the systematic force (iso A)p exerted on

the impurity turns out to be the average force with the
impurity fixed at position Rt.

B. The friction kernel P(t)

The random force F(t) in Eq. (14}isgiven by'

X g H(k, j ~
Go, Go+ G) A o,

Go, k,j
Fp,

F= A —ice.A=
G

(27)

(ice A)q i G Pty(G)/——Mt,

(25a)

(25b)
Since P(t)=(F(t),F}(A,A) ', ' we see from Eqs. (22)

and (24),
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[p(t s—) A(s)]p (——Mtktr T) '(Fp (t —s),Fp, ) Pt(s)

+g (Fp (t s—),FG)Ao
G:—Pp (t —s) Pt(s)+gP&(t —s)AG(s) ~

The first term on the right-hand side (rhs) of Eq. (28)
represents damping effects on impurity motion due to
dynamic coupling to phonons, while the second term
represents a retarded periodic force of the form

—2 g J dsgG(t —s)sin[G Rt(s)],
0

& ~ ~R„(~(F«t,o(t)'k J)

x VR,E(Rt,'k, j)}p, (29)

where the time evolution of Qo(k,j) and Rto(t) in Eq.
(29) is governed by the Hamiltonian Ho Hr +Mt Vt /2——
and the average ( }p is over the canonical distribution
zoexp( —PHo }.

where PG(t)=irltG(t) is pure imaginary and of order U .
[See Appendix 8 for detailed discussions on (I}(t)]. Since
the periodic force, Eq. (26), contains the dominant contri-
bution of order u, we neglect in this paper the second term
and will discuss effects of the retardation in the potential
on impurity diffusion elsewhere for the case of nonweak
interaction u(r). In Appendix 8 we show that to order
V

Np, (t)=(Mtkti~) 'g&Qo«J' t}Qo( —k j)&o
k,j

—f dsP p, (t —s) Pt (s) +Fp, (t) . (30)

IV. IMPURITY DIFFUSION IN THE DESYE LATTICE

A. Debye model

The results obtained above for the periodic potential,
Eqs. (25a) and (26), and the kernel, Eq. (29), involve the
details of phonon dynamics through cp(k, j) and e(k,j).
We now calculate them explicitly for an isotropic Debye
model,

co(k j=L)=toi(k), (P(k,j=T(,Tz)=ctk, (31)

where tpL(k) =cLk (ct . is the longitudinal sound velocity)
for an acoustic system and coL(k)=pip (the plasma fre-
quency) for an optic one. For the latter we have in mind a
one-component plasma (solid phase) or a simplified model
of a superionic conductor with the charge of one ionic
species smeared out to form a charge-neutralizing back-
ground. Assuming that e(k, L}is parallel to k, we have"

g e~(k, T;)ep(k, T )t=5Ntr k~kp—/k (32)

From Eqs. (19), (31), and (32) we see

Summing up the results in this section, ~e divide the
force Pt on the impurity into the periodic force due to the
static coupling to the host lattice and the random force
Fp, (t), Eq. (27), which gives rise to damping effects

through the FDT, Eq. (29). The generalized Langevin
equation for Pt is from Eqs. (14), (26), and (28):

d Pt(t)/dt = —(r(R, (,(Vp(Rt(t))

QH(k J I Go Go}=U( lk+Go I
}U(

I
k+Go

I

' +

and from Eqs. (25) and (26),

V (Rt)=ny U(G) (n/NM) y—H(k, j I Go, Gp+G) e
G Go" j

1 1

tp (k, L) tp (k, T)

(33)

(34)

Noting that Rt o(t) = Rt+ (Pt/Mt )t and from Eqs. (11), (32), and (88) we obtain

Pp, (t)=(n /MMTX) g u(
I
—k+Gp

I
)U(

I k+Gp I )y(Go+Go)(e ' ' '}o(k—Gp)(k+Gp)
k, Gp, Gp

X I( k+Go) (k+Gp—)DT(k, t)+k ( k+Go)k (k+Go)/—k [Di (k, t) DT(k, t)ll—(35)

with D;(k, t) =cos[pi(k i)t]/co (k,i) (i =L,T). Since y(Go) is of order U except for y(0) = 1 and from

(Pl'q /Ms ~ (ka T/2M&(
ye g0

——e , p(q, t

Pp, (t) is further simplified as

(36)
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Pp, (t)=(n /MMrN) g [u( i

—k+Go i )] g, u( i Gu —k i, t)(k —Go)(k —Go)

&& [ (k —Gu)'DT(k, t)+ [k.(k —Gu) ]'/k'[DL(k, t) —DT(k, t) ]I, (37)

where $, 0(k, t) denotes the self-correlation function of the
ideal gas. '4

B. Gaussian interaction

In order to evaluate the Vp(Rr ) and Pp, (t) explicitly we

now specify u(r) to be the Gaussian repulsive interaction

o Gi/4=(o/a) m. & 1, (40)

where Gi-2m/a denotes the magnitude of the smallest
(nonzero) RLV with a, a lattice constant. If we take a
simple cubic host lattice for simplicity and retain, basmi
on Eq. (40), the contribution from the smallest possible
RLV in the sums over G and Gu appearing in Eqs. (34)
and (37), we obtain for Vp(Rr )

u(r)= Voexp( r la—),
where o measures the range of the interaction and

u(q)=2 'n / Voo exp( —a q /4) .

Let us assume that a satisfies the condition

(38)

(39)

Vp(Rr ) = U[cos(2m'/a)

+cos(2m Fr(a)+ cos(2irZr /a)],

where Rr =(Xr I'r»r) and

(41)

U=2nu(2m/a) (n /N—M)gu(k)[u( ~k+(2m/a)i
~

)k (k+(2ir/a)i)+u(
~

k —(2n/a)i
~

)k (k —(2n/a)i)]/tu (k, L) (42)

with i denoting the unit vector (1,0,0) in the rtx:iprocal-lattice space. For the kernel it follows similarly as

Pp (t)=(n /3MMrN)g[u(k)] f, u(k, t)k DL(k, t)I .
k

(43)

From Eqs. (41) and (43) we see that the three components of the Langevin equation (30) decouple, yielding precisely the
one-dimensional form given by Eq. (1).

It is interesting to note that both Vp(Rr ) and the memory function K(t) (together with the retarded potential, see Ap-
pendix B) are independent of the transverse phonon modes. We showed above from a perturbation theory that density
fluctuations of the host lattice or longitudinal phonon modes are of crucial importance in impurity diffusion in solids.

Equation (42) for the amplitude U is transformed to
k

U=Ui 1 —(aVO/2Mir'/ )f dk [k ho (k, L)]e " [(1+o k /2)(sinhS)/S —coshS] (44)

where S =o mk/a,

~3/2 V (a/a)3e —(cr/a)420Oa e (45)

—c2t~/4r
Kq(t)=(v mB/8cr )e

X,(3r 3c t r +c—tv //4), (47)

f max 6 —k [e /2, +kg Tt /2Mr]

0
(46)

Since the integrand in Eq. (46) decays to zero rapidly
from the condition (40) as k becomes large, we set k,„
infinity mithoot appreciable errors to obtain

and k,„denotes the radius of the spherical FBZ,
ak,„=(6n )'/ . From the condition (40) we can replace
the upper hmit km, „ in the integral in Eq. (44) by infinity.
Although we retain only the dominant part Ui of U, Eq.
(44) is used to estimate the magnitude of the term of order

2

The function K(t) is from Eq. (43)

K(t)=(nn Voo l24MMr)

Ko(t)=(15~mB/16top)r cos(tort), (48)

where the subscripts A and 0 refer to the acoustic and
optic systems, respectively, and

B =mnVoo /(24MMr),

r=(a'+krr Tt'/Mr )/2 .

(49)

Asymptotically K (t) behaves as Kq (t) —t and
Ko(t}-t

C. The memory function K(t)

As an order-of-magnitude example we choose the fol-
lowing values for a (the lattice constant), M (mass of the
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comes more and more conspicuous as temperature be-
comes low and the ratio y becomes large. This is con-
sistent with a physical picture that a heavy impurity,
which moves slowly in the lattice, feels more or less
coherent "random" force through interaction with optic
phonon modes. The rapid decay of K„(t) results mainly
from the relation cu(k, L)=cr k, Eq. (31).

D. Diffusion constant

-05

FIG. 1. Memory function K(t) for y=—Mi/M = —,. The

solid and dashed curves represent K~(t) and Ko(t), respectively,
for T =100 K. Other values of parameters characterizing our
system are given in Eq. (51) and this is the same for Fig. 2.

host-lattice atom), o and Vo [Eq. (38)], and cr and eiz

[Eq. (31)]:

We first consider the acoustic case and calculate the
diffusion constant D under the Markovian approximation

K„(t)=2(5(t), g —= J dtK„(t), (52)

where g denotes the friction constant. We note from Eq.
(52) that Eq. (30) reduces precisely to the form assumed
by Fulde et al. , Eqs. (1)—(3). The approximation (52) is
based on the observation that the decay time of Kz(t) is
of the order of the period of the phonon with the largest
frequency. The constant is obtained from Eq. (43) as

M c2/2k T
g=(anVoo /24Mcr )(2n/krr TMr. )'r e ' . (53)

a =3X 10 cm, o=a/~3, ct ——10 cm/sec,

ai~ =cLk,„=1.3X 10' /sec,

Vo=(5X10 K)kti=6 9X10 ' erg,
(51)

The important parameter which measures the strength
of damping effects is g=g/too, where bio denotes the
natural frequency of the impurity at the bottom of the
sinusoidal potential (41),'

~= )00 amu= l.66/ Io g .
tuo=(2ir/a) Ui /Mr . (54)

The value of Vo in Eq. (51) came from the following con-
sideration. If we assume that the interaction between the
lattice atoms is given by Eq. (38) with Vo replaced by Vt,
the V is estimated, from the relation d u (r)/drL
(r =a)=Met la and Eq. (51), to be VL ——(10 K)kri,
leading to our choice Vo ——VL/2=(5 X 10 K)kq.

In Figs. 1 and 2 we show the memory function K (t) for
the case y=Mr/M= —,

' and y=3, respectively. We note
that Ko(t) exhibits an oscillatory behavior for long time
compared with K„(t), which decays to zero rapidly after
one overdamped oscillation. This feature of Ko(t) be-

1.0

o.o

-0.5-

r~I
I
I /8
I
I
I

(I 'y~ I
I . I I

I

L I II I
~+ aL a. i l~~~ I

10 'I )
'

I 20

I I P
I
l

I I
I /
I ~l
I

- 1.0"

FIG. 2. Memory function K(t) for y=3. The solid and dot-
ted curves represent K&(t) for T =100 and 1000 K, respective-
ly. Dashed and dash-dotted curves represent Ko(t) for T = 100
and 1000 K, respectively.

We note that the correction to Ui from the term of order
u2 is less than 10% of U, for the system specified by Eqs.
(51). For the range of the values of T and y we consider
(T &1000 K, y~0. 1) the condition (~0.01 is satisfied
and we can employ the following Kramers formula'5'
for the thermal activation rate I", valid for the under-

damped case:

I =(g/kri T)(4Eb/n)e' (55)

Dz I a l2=(2n. /k——rr TMr) (Ui Voa l6aMcLkrr T)
—E /k~TXe (56)

where we note that the activation energy
E, =2U&+MicL /2 has the contribution from dynamic
coupling to the host lattice, MIcL/2, in addition to the
one from static coupling, 2Ui. Impurity-mass depen-
dence of the prefactor, proportional to Mr 'r, is the same
with the result from the transition-state theory. ' As to
the dependence of D„on the velocity of sound we have

D~ cr exp( MrcL /2krr T), —

showing that the impurity has difficulty in moving
through the lattice as it becomes stiff due to strong cou-
pling among the lattice atoms. A similar result was ob-
tained by Kleppmann and Zeyher, ' who showed with use
of a mode-coupling approximation that the soft lattice (cr
small) leads to a sinall activation barrier. In Fig. 3 we
show the general dependence of Dz on T and y. Due to

where Eb (=2Ui) is the height of the barrier Vz(Rr). If
we neglect effects of successive jumps, the diffusion con-
stant Dz is given by
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100Q/& (K- j

FIG. 3. Temperature and y dependence of D& (cm~/sec) as
calculated from Eqs. {56}and (51).

I i I

50 &0

eOO/T [K')

FIG. 4. Temperature and y dependence of Do (cm'/sec) as
calculated from Eqs. (59), (51), and D = I a'/2.

the factor exp( Mtct /—2ktt T) in Eq. (56), small y results
in large Dz.

Next we turn to the optic case. Since the kernel Ko(t)
oscillates for a long time in general, we cannot employ the
Markovian approximation (52) as in the acoustic case.
Recently, considerable attention has been paid to the ac-
tivation rate of non-Markovian processes. ' ' Carmeli
and Nitzan derived from the non-Markovian Langevin
equation, (1) and (2), the folio ing Fokker-Planck equa-
tion for the action J=(1/2m) PdX in the underdamped
case

dP(J, t) 8 8e(J) to(E)+kg T P(J, t)
dt J J (57)

where tp(E) is the frequency given by dJ/dE = I/to(E).
The action-diffusion constant e(J) is defined by' '

e( J)= [Mt/to'(E)] f dtKp(t) ( Vt(t) Vt ), (58)

where the velocity-correlation function is defined for the
deterministic motion with ( ) denoting the average
over the initial phase Pp for a fixed action value J. From
Eq. (57) it follows that'

—17f (59)

where r„edntoe sthe mean residence time of the impurity
in the state E &Eb. As before, the constant Dp is given
by Dp ——I'a /2. For our sinusoidal potential it holds
that"

calculated from Eqs. (59) and (62). We observe the sharp
increase of Dp as y becomes small. The origin of this
behavior is traced mainly to the y dependence of the ac-
tion (or energy) diffusion constant e(J). As y becomes
small (a light impurity), the natural frequency Np and con-
sequently co(E), Eq. (60), become large and comparable
with top (=1.3)&10' /sec) near y=0.04. Since K3(x) de-
creases exponentially for large x, we have a large e(J)
for small y values, leading to the large hopping rate I
from Eq. (59). Expressed in a qualitative way, the dif-
fusion constant becomes large if the frequency 0 of the
random force, which characterizes the oscillatory
behavior of the kernel Ko(t) and in our case 0=cop, is
near the natural frequency top and the action diffusion
constant becomes large according to Eq. (61). This may
be considered as a kind of resonance and a similar prob-
lem is studied based on a simple stochastic model in Ref.
21.

to( E)=toom [2K{e)]

J(E)= (4Eb/mtpp) [E(e) (1—e)K (e)] (e—=E/Eb ), —(60)

where K(e) and E(e) are the complete elliptic integrals of
the first and second kind, respectively, and to a good ap-
proximation

e( J)=[J/tp(E)] f dtKp(t)cos[co(E)t] .

For the kernel, Eq. (48), we obtain

(61)

e(J)=w f )co(E) top [ K3[(cr Mt—lksT)'~ [tp(E) tpp
(
]-

+ (Q)p ~—Cilp ) j (62)

where

ip =15m BJMt /[16v'2l (
'
, )co(Ekopo (ks T) ]—

with B given by Eq. (49) and I (x) and Ki(x) denote the
Gamma function and the modified Bessel function of the
third order, respectively.

Figure 4 shows the impurity-mass dependence of Do

V. SOME REMARKS

In this paper we studied impurity diffusion in solids,
based on a simple Hamiltonian model and the exact
Langevin theory. Our approach is first to obtain sto-
chastic (kinetic) description for impurity (defect) dynam-
ics and then to study the resulting Langevin equation. Al-
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D = t Vr t Vr (64)

So far as we know, the velocity autocorrelation function
(VAF) for non-Markovian processes as governed by Eq.
(1) or (30) has not been studied in detail. Secondly, our
theory is limited to atomic diffusion via interstitial mech-
anism in contrast with the TST (Refs. 5 and 25} and the
DT (Ref. 6). In this respect we consider that a soliton pic-
ture might be useful in dealing with diffusion via vacan-
cy mechanism. Thirdly we chose a rather simple model,
e.g., a harmonic lattice, weak interaction u (r), and a one-
component host lattice in which acoustic and optic pho-
nons are not coexistent. This is mainly to present our ap-
proach in a transparent form, preventing a series of ap-
proximations necessary to deal with more realistic system
from obscuring the structure of our theory.

Finally we comment on our recent work which investi-
gates diffusion in liquids and solids based on a linear-
response method. In Ref. 9 we gave the following expres-
sions for the potential and the kernel:

V, (R, )=n g u(G)e
6

(65)

though the approach seems to be quite generai and able to
cope with both many-body and nonlinear effects in a sys-
tematic way, some problems to be stated below are left un-
touched and these need some elaborations.

First, effects of successive jumps, which may be im-
portant at low temperature, are neglected in our calcula-
tion of the diffusion constant. In order to include the ef-
fects, we should start from the well-known microscopic
expression for D, '

K(t) =n 2/(3MMtNkp 7')y [u(k)] e

X (Q(k, I., t)Q( —k, L) )1(,(k, t),

(66)

where W(k) denotes the Debye-Wailer factor,
W(k)=k2(u )/6, and f,(k, t) and (Q{k,L, t)Q( —k, L))
are the self-correlation function of the impurity and the
phonon-correlation function, respectively. Noting that
Eq. (43) for K(t) is rewritten from Eq. (BS) as

K(t) =n /(3MMtNktt T)

Xg [u(k)] k (Q(k, L, t)Q( —k, L))uf, ,u(k, t), (67)

we see that if W(k) is set zero and (Q(k, L, t)Q( —k, L))
and P, (k, t) in Eq. (66) are replaced by their noninteract-
ing [u (r) =0] limits, Eqs. (65} and (66) are reduced to the
perturbation results, Eqs. (34) and (67}.

APPENDIX A: DERIVATION OF EQ. (26)

In order to interpret Eq. (25a) physically, let us rewrite
it in a real-space form. With use of the Poisson sum for-
mula

pe ' '=+5(Rt —R(l)) (Al)
60 1

and Eq. (9) the first term on the rhs of Eq. (25a) is ex-
pressed as —Va, gt u( j Rt —R(l )

~
), representing the

periodic potential produced by the host-lattice atoms at
their equilibrium positions. Introducing the static
displacement-correlation function of the harmonic lattice
b ]1

G p{R(l)}=(u {R(l)}up(o))=(kttT/NM)pe~(kj )ep(k j)e'" 't'/tu'~(k j) (A2)

(A3)

with a and P denoting the Cartesian components, the second term on the rhs of Eq. (25a) is expressed from Eq. (19) as

au{ ~Rt —R(l}
~

) au( ~R —R(l')
~

)—VR (2k' T)— 6 p(R(l') —R(l ))
Mt Mt, p

1,1'

On the other hand, fixing the impurity at position Rt, we calculate the average displacement (u(l ) )a, to linear order in
u(r) to get

( u~(l))R =g G~p(R(1) —R(l'))
Bu{

( Rt —R(1')
~
}

fl p Mtp

(A4)

From Eqs. (A3), (A4), and (21) for Pt, we obtain Eq. (26).

APPENDIX 8: TIME EVOLUTION AND
THE MEMORY KERNEL

The random force F(t) in Eq. (14) evolves in time according to

F(t}=exp[(1 P)tLt]F= U(t)F, —

where L is the Liouville operator of the system H =HL +Ht and P is the projection operator onto A, Eq. (15). For per-
turbation calculations it is convenient to express iL, P, and the ensemble average ( ) in powers of u as follows:
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iL= {Pr/Mr) Vit, +y g(k j) . —co (k j)g(k j)a 2 a

i,r' J ag(k, j)

+ —Va Hr Vp g—F (Rr ', k,j}
i,j ag(k, j)

PB = (BPr )o.Pr/Mrkrr T+y(Be ' ')pe'

:—iI.0+iI.], (82)

r

+ &BP, ), Pr/Mrk, T+g&Be
' '),e' '+ g &Be

G G,G'

I

=—PpB+P, +o{u2),( )=Zo ' f dI'e '[ ] 1 —Pn gu(G)e '+gg(k j)F(Rr,kj)
k,j

(83)

&.+& &, +«") .

In Eq. (83) we assumed (B)=0 and Hp in Eq. (84)
denotes HL+Mr Vr/2. Since Fp, , Eq. (27}, is of order u

the kernel tI}p,(t) is written to order v as

Qp, (t) = (Fp, p(t)Fp, )o/Mrkrr T, (85)

where Fp, p(t) =exp[(1 Pp)iL p—t]= Up(t)Fp, For . a

dynamical variable linear in a phonon variable Q(k,j),
such as Fp, the projection operator Po in Up(t) is scen

from Eqs. (82), (83), and the fact ( Q(k,j))p

= (g(k,j))p ——0 to have no effects, leading to

U( —t) = Uo( —t)

+ dsUp( t ——s)[(1 Pp)iL i —PiiLo—]0

XUp(s)+o(u ),
we obtain

FG( —t) =FG,p( —t) +EG i ( —t) +o(v )

and consider first

FG o( t) = Uo( —t)Fo—

(89)

(810)

Uo(t)F p, exp(iLot——}Fp .

Thus for a variable of the form B =Q(k,j)g(Rr, Pr) it
holds that

U, (t)g(k j )g(Rr, P, ) =Qo(k j,t)g (Rr +Pit/Mr»r }

(87)

In passing we note the relation"

& Qo«,j t)Q«' j'}&o

=5i, z 5~ r'[krr T/or (kj )]cos[or(kj }t], (88)

which is used to obtain Eq. (35) from Eq. (29).
Next we consider the kernel

t!}G(t)=(Fp,(t) EG) =(Fp, EG( —t) }

(Ref. 10). With use of the expansion

f (ap)=apf i(ap) —(apf i(ap))o . (813)

For m =0, exp(i G Rr ) in Eq. (812) should be replaced by
Ao exp(i G——Rr ) y(G) —Howeve. r we can use Eq. (812)
for m =0 since the constant y(G) does not contribute to
PG(t). The polynomial f (ap) is successively determined
from Eq. (813) with the initial condition fo(ap) =a&.

From the fact that Fp is independent of Pr and

(f~(ap))p ——0, EG p( t) in Eq. (810) d—oes not contribute
to t!}6(t}. Now we turn to Fo,( —t) which is expressed
from Eqs. (89), {811),and (812) as

= g ( t) Im![—(1 Po)iLp] F—G . (811)
m=0

From Eqs. (82) and (83) we readily see that

[(1—Po)iLp] FG f (az)exp(iG R—r—) (m &1), (812)

where ap =iG Pr/Mr and

00 iG RrEo i( —t)= dsUp( t —s)[(1 Pp)—iLi —PiiLp] g—(s Im t)f~(az)e
m=0

(814)

Since Uo( —t —s)( PpiLi —PiiLo)g"—os f (az)exp(iG Rr)/m! on the rhs of Eq. (814}is independent of the pho-
non variable Q(k j) and the Fp, Eq. (27), is linear in Q{kj) this part does not contribute to po(t). Thus we may re-

place FG i( t) by—
G RrFo i( —t)= —J dsUp( t —s) QQ(k j)Va,E(Rr,k—j) Vpg(s, az}e.

k,j
(815)
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where we retained only a relevant term linear in Q (k,j) and

g(sap)=—g (s /m!)f (ap) .
m=0

(816)

Applying Eq. (87}to Eq. (81S) and taking the interproduct with Fp, we obtain, after some algebraic manipulations,

PG(t) =i (kr) Tn INMMr) g 2H(k, g ~
Gp, Go —G)Q.(Q—k —Qp)(k+Qp)

)S J ds coo[a()s j))s+s)](g'(s, —a, )s
+ ' ' ' '+*) (817)

fp(ap)=ap, fi(ap)=ap —(ap),
f2(ap ) ap ap (ap )

f,(,)=,'-,'&,' &
—(&,') —&,' &'} .

(818)

From this, it is not difficult to show that

g(s, ap)=ape P — ds'e P g [Ci /(2m)!](s —s')
m=0as, as'

=—ape P — ds'e P HG(s —s'),
0

(819)

where

Co= &ap &=( krr TG /Mr—)co(co= 1)= r, —

C =( ) —( ) =(—) C (C =3!!—1=2},
and in general

where g'(s, —ap ) means the value of Bg (s,x)/Bx at
x = —ap and for H(k,j ~

Gp, Gp) see Eq. '(l9).
From Eq. (813) we see that the first few f (ap)'s are as

follows:

c, =(," +")—g(,'")c,
n=1

=( r) —+' (2m+1)!!—Q(2n —I)!!C2~—2»
n=1

(820)

with r =krrTGi/Mr. i7 In deriving Eq. (820) the Gauss-
ian property of the variable ap is used. With use of the
relation (820) we can derive an integral equation for
HG(t), defined in Eq. (819}.as

—rt2 /2HG(t)=re "
( —1+rt )

dsH sr t —se

or, after partial integration

r t = dsHG(s)e + '. (822)
0

From the integral equation we see that
HG(t)= r+r t — for —short time and it goes to
zero faster than exp( rt /2). At —present we have not
solved the equation. However from a numerical point of
view, HG(t) is easily obtained from Eq. (820) in the form
of Taylor expansion around t =0. From Eqs. (819),
(817), and (36) we finally obtain

dl]'o(t)=i(krrTn INMMr) g 2H(ksj
I Go Go G)Go —(G k 'Go—)(k—+Go)

X J ds cos[to(kj)(t +s)] [ I (kr) Ts/Mr )[s—G —Q (k+Qo)(t+s)] j

["aTn~i ]~(&+00](~+s]—so
Xe

—]ksT/2Mr )[(4+Go)(t+s)—s'QP
dssHG s —s e0" (823)

It can be readily checked from Eq. (823) that for the isotropic Debye model Po(t) is independent of the transverse pho-
non modes.
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