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Energy averaging and the flux-periodic phenomena in small normal-metal rings
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The low-frequency ac conductivity, o, is evaluated numerically with use of the Kubo formula
with inelastic lifetimes for a small one-dimensional (1D) closed metallic ring with random potentials.
The effects of thermal excitations at finite temperatures and of increasing inelastic scattering are
considered. It is found that energy averaging over a range larger than the typical level spacing (in
1D) markedly reduces the fundamental (hc /e) and odd harmonic periodicities of o as a function of
the Aharonov-Bohm flux, ¢, through the ring. Thus, energy averaging makes the lowest even har-

monic (hc /2e) appear to be the fundamental period.

I. INTRODUCTION AND STATEMENT
OF THE PROBLEM

There has recently been a great deal of interest in the
question of the sensitivity of physical properties of a small
normal-metal ring-type structure to an Aharonov-Bohm'
magnetic flux, ¢, normal to the ring. All energy levels,
matrix elements, etc. (and, thus, all measurable proper-
ties), are guaranteed by exact and very general® theorems
to be periodic in ¢ with a period

do=hc/e , (1

where ¢q is the single-electron flux quantum. The effect
of ¢ is to change the phase relationships for the wave
functions, thereby modifying their interference around the
ring. For systems in which the electronic motion is effec-
tively ballistic—i.e., the system’s length, L, is less than an
electron’s scattering mean free path, /.;—the above oscil-
lations as a function of ¢ have been expected’~> and ob-
served.® The situation is more subtle when I <<L. It
has only recently been appreciated’ ~° that only effectively
irreversible scattering processes, such as inelastic ones,
really scramble the phase of the wave function to elim-
inate the interference effects and the ensuing ¢ depen-
dence. Purely elastic scattering, as long as it is not strong
enough to cause strong localization of the wave functiops,
does retain wave functions with definite phases that reach
around the ring and, hence, allows a significant sensitivity
to ¢. The condition for this is, therefore, just that

L, is the effective phase randomization length, usually
controlled by inelastic scattering. L >>! is possible, / be-
ing the elastic mean free path. When 7, denotes the
characteristic time between inelastic collisions that are
strong enough to wash out the electron’s phase, one has

VpTin, for Ly <l (3a)

Lo~ Dr)?, forLy>1. (3b)

vg is the Fermi velocity, and D is the diffusion constant
D ~vgl. According to Refs. 8—10, for L << L, the resis-
tance of the ring, measured between two appropriate con-
tacts made on its perimeter, should oscillate in ¢ with a
basic period ¢,. While the relative size of these oscilla-
tions is inversely proportional to the cross section of the
wires used (or to the number of channels,'® N, involved
in the transport), these oscillations should be observable in
realistic systems with N, <2x10% Prior to this,
Altshuler, Aronov, and Spivak‘1 (henceforth abbreviated
as AAS) have predicted that the resistance of such a ring,
as well as that of a long small-radius hollow cylinder,
should oscillate with ¢ with a basic period ¢o/2 (=hc /2e,
the superconducting flux quantum). This was based on a
perturbation-theory evaluation of the Kubo formula for
the conductivity, using the weak-localization-type, maxi-
mally crossed diagrams. This correctly took into account
the interference of the electrons in the weak-scattering
limit kgl >>1. Indeed, the predictions of AAS have re-
ceived ample experimental confirmation on both long
small-radius cylinders'>~'® and arrays of small rings.!” '3
The oscillation with period ¢,/2 is the second harmonic
of the fundamental one, with period ¢,. It is, of course,
not surprising that the second harmonic exists—since
there is no reason that the conductance G(¢) be a purely
sinusoidal function (see below). Calculations'® on one-
dimensional (1D) models indeed revealed that such a
second harmonic exists but that it is usually much smaller
than the fundamental ¢, oscillation. It is thus important
to understand why the fundamental ¢, period is absent in
the AAS theory and in the aforementioned experiments.
One might have thought that the ¢, component could
average out almost to zero in a more realistic N) >>1
case, in contrast to the 1D models mentioned above. In

7992 ©1986 The American Physical Society



33 ENERGY AVERAGING AND THE FLUX-PERIODIC PHENOMENA . .. 7993

fact, it is'® of relative size O(N fl) compared with the
average G. However, it turns out that the AAS contribu-
tion is also of this order, so that having N, >>1 does not
explain the absence of the ¢, component. In analogy,
Carini et al.?° found that the periodicity with period ¢o/2
is also valid to O(1/L) where L is the system length.
However, this follows from their averaging their calculat-
ed property, the “participation ratio,” over a whole band
of states. We believe that had they looked into the same
quantity for one state, or for a small number of states,
their 1/L result would not hold. It should also be kept in
mind that there might be a difference between the conduc-
tance of the ring as measured between two contacts, as in
the Landauer approach, and as measured via absorption
of electromagnetic radiation with no contacts. In this
work we are going to use the latter definition of the
conductance—and still obtain a basic period of ¢;. We
shall, however, present and demonstrate some of the phys-
ical ingredients needed to average out the ¢, component.

The key observation in this respect has been made by
Gefen.2! Carini e al.?° and Browne et al.?? have also ar-
rived at the same conclusions. The point is that when
considering the properties of small systems that are much
larger than microscopic (i.e., atomic size) but not yet in
the “macroscopic” limit (it has been suggested to denote
this novel size range as “mesoscopic”) there is a signifi-
cant difference between the specific behavior of a given
system? and the ensemble average. The latter means a
suitable average over a large number of such systems, pro-
duced under the same macroscopic conditions—for exam-
ple, a given average impurity concentration—but with
both the exact overall impurity number as well as the pre-
cise location of the impurities differing among ensemble
members. In fact, ensemble averaging should eliminate
the ¢g-periodic component in G(¢), but the (dg/2)-
periodic one might survive. A qualitative reason for this
is that an important contribution to the latter component
turns out in the weak-localization calculation to be always
minimal at ¢ =0 (for weak spin-orbit scattering) while the
former one does not have such a definite phase of oscilla-
tion.! The reason for the definite behavior of this
(¢o/2)-periodic contribution, the one obtained by AAS, is
that it is due to coherent backscattering.'>?*?* This
means that the probability for a diffusing particle to come
back to the origin is enhanced at ¢ =0 by the constructive
interference of each closed path with its time-reversed
partner. Those paths that encircle the ring’s opening to
lead to the AAS (¢,/2)-periodic contribution. In fact,
both the AAS calculations and the cylinder'>~'® and ar-
ray'"!® experiments involve ensemble averaging over
many incoherent rings. This explains why the ¢q/2
period becomes the fundamental one for these cases. A
proof for the vanishing of the ¢, component as well as nu-
merical demonstrations for the two-terminal geometry
utilized in the Landauer formula will be presented in Ref.
26. The calculations reported here show indeed that the
¢o/2 component survives ensemble averaging; however, its
phase of oscillations is different from the one mentioned
above. The different mechanism for that behavior will be
discussed below.

The above considerations suggest a fundamental differ-

ence between experiments that effectively ensemble aver-
age and those done on a specific ensemble member. In
this paper we find a condition for this to happen. We re-
mark that while earlier experiments?’~3 on single rings
have not shown a clear ¢, component, very recent experi-
ments,>! ~3* performed during the preparation of this pa-
per, have in fact revealed a large, clear, ¢y-periodic com-
ponent. The complicating aperiodic structure?®~* is also
understood as due to the non—Aharonov-Bohm flux in-
side the arms of the ring.3%33

Considering a single ring, one is led to the following ob-
servation: If an experiment is performed at a temperature
T, then electrons within a “thermal band” of width kzT
around the Fermi energy participate in the conduction
process. These electrons have different “optical path
lengths” around the system, so that their interference pat-
terns will shift relative to each other. Once kT is larger
than some appropriate energy-correlation range AE,,
these phase differences will be large enough for the
thermal band to mimic an ensemble averaging. Thus, we
may say that for k3T >>AE,, the system should be “self-
averaging” and, in particular, exhibit only the (¢o/2)-
periodic component for G(¢). It is the purpose of this
paper to demonstrate this idea by computations on a sim-
ple 1D model. This actually has an advantage, compared
to real experiments, that we can, in principle, vary kgT
and L, independently. In a real system they will be relat-
ed due to 7;, being a definite function of 7, so that it is
more difficult to separate the effects of energy averaging
from those of inelastic scattering. We shall find that in
our 1D model AE, is on the order of a typical level
separation at Er which we denote by w. This is apparent-
ly not a general result. In a higher dimension one may
put forward arguments,>6?%37:38 in the weakly localized
regime, that AE, is on the order of the “Thouless V’—the
sensitivity of the energy levels to a change in boundary
conditions. We also remark that the 1/N, estimate for
the relative size of the ¢y-periodic component has recently
been sharpened to / /N, in Refs. 35—39.

In the next section we describe the model to be con-
sidered and methods used. Results will be presented and
discussed in Sec. III.

II. THE MODEL AND EXPRESSIONS
FOR THE CONDUCTIVITY

We consider a small closed 1D loop, with a potential
modeling the disorder that leads to elastic scattering. We
evaluate o(w), the real part of the frequency-dependent
conductivity, by calculating the absorption of energy from
an electromagnetic field, such as would be observed by
placing the sample in a cavity. The sample, thus, has no
contacts and it may turn out that even in the dc, ®—0
limit, this conductivity will be different from the one be-
tween two contacts on the ring. We start with the usual
Kubo formula, written here for a finite system, i.e., with
sums instead of integrals over the initial and final states:

_ 2me’# fi—f;

P 2 3 — . —
O(@) =2 %Ej_E’_[v,j[S(EJ E,—#wn), @4

where E;,E; are the energies of the ith and jth states and
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fi their (Fermi) occupation numbers; i.e., we are working
in the grand canonical ensemble.* v;=(i [v|j), and v
should be thought of as an azimuthal velocity around the
ring (we shall later omit the x subscripts). This formula
is derived for an “infinite” system; the volume factor 2~
in the denominator makes o size independent in the mac-
roscopic limit.

Since we have in mind a finite system, Eq. (4) is really
inapplicable if the spectrum is truly discrete. Its deriva-
tion, in fact, assumes a continuous spectrum, in order to
have real transitions. If one insists on using (4) for a fi-
nite system, and monochromatic radiation, the result is
“zero” for almost all w’s. We are aware of two ways
around this difficulty. For a large ensemble of such small
systems, such as in the work of Gor’kov and Eliashberg®!
on small metallic particles, one may use the continuous
averaged level distribution. However, since we are in-
terested in the absorption by a single specific system, our
physical considerations are different. In fact, the small
system can absorb energy from the electromagnetic field
only by virtue of its being (albeit perhaps weakly) coupled
to a large bath of, for example, phonons. This coupling,
resulting in an inelastic lifetime for the electrons, endows
the levels with a finite width

N~H#/Tin , (5)

which now allows finite absorption of energy via the ir-
reversible processes in the bath.

An accepted procedure to take this into account first
suggested, as far as we know, by Czycholl and Kramer*
and used also by Thouless and Kirkpatrick,* is to add an
imaginary part, i7, to the frequency, which will broaden

the & functions into Lorentzians. In the dc limit

fi—f j 1

E;—E; (E_,-~—E,A)2+(77)2 ’
(6)

which is in agreement with the absorption, as obtained by
Van Vleck and Weisskopf* for collision-broadened lines
(see the Appendix). We remark that if we evaluate the
sums as if the system were infinite, we find, for 7 «<w,
where w is the level separation at Ep, that

O(in)~aKG—EUL 5 (7

2
a(in)=z;—ﬁ7]2

i,j

M‘j!z

where ogg is the usual zero-temperature Kubo-Green-
wood conductivity that one would obtain for this system,
assuming that | v;; | 2 does not depend strongly on i and j
and replacing sums by integrals. Thus o does vanish in
the limit 77— 0, as expected.

The latter result is opposite to that of Landauer and
Biittiker,* and Biittiker,*"3° who obtained the response of
a ring to a small emf around it, brought about by a time-
dependent flux ¢. In the limit that the frequency of this
time-dependent flux goes to zero their conductance is in-
versely proportional to 17.*” They have not used the Kubo
formula, and obtained a net energy absorption via the ten-
dency of the inelastic scattering to bring the levels, which
change with time due to the changing flux, into thermo-
dynamic equilibrium.
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We evaluate Eq. (6) for the following model: In polar
coordinates (7,0) the one-electron Hamiltonian for a ring
of radius R in a magnetic field H, normal to the plane of
the ring is*

%:%04— V(B) ’
2 (8)

Ho=—(#/2mR?)

’

0 .
ae—ub

where we have taken the vector potential to be
Ag=RH /2. ® is the flux through the ring in units of the
flux quantum ¢, and m is the effective mass. The poten-
tial ¥V (0) provides elastic scattering, and both % and V
are periodic in 6. The wave functions and energies corre-
sponding to #, are |n)=1/V2me™® and
E,=(#/2mR*)(n —®)?, (n =0,%1,+2,...). The veloci-
ty is diagonal v, =#i/mR (n —®). It should be noted that
these are not the only matrix elements of the velocity
operator, v(6). In general there are others corresponding
to all terms in a Fourier expansion of the operator.**>
The diagonal elements, which we have used, are the ap-
propriate ones for a 6-independent electric field, F, in the
ring, such as that due to a time varying flux; i.e.,
Fg=—c"'3944/3t. Our model, therefore, does not apply
to a ring with current flowing between contacts. The
latter case is briefly discussed in Sec. III.

We proceed by assuming a form for V(0)=V,f(0) us-
ing a basis set of | n | <N wave functions of %) and nu-
merically diagonalizing the (2N +1) X (2N + 1) matrix of
Eq. (7) with N =16. The initial values of the matrix
V,: , Were evaluated as the Fourier transform of V(6):

2N
fO= 3 Gie*?,
k=—2N
9)
Vn',n = VOGkak +n,n' "
Because the energies and velocities are periodic in ®, we
restricted the calculation to values of ® between +0.5.
We thus obtain the energies E; and the transformation
matrix, which diagonalizes 5#°. Ultilizing the latter, we
compute the velocity matrix v;; in the new representation
for insertion into Eq. (6). The density matrix p;; is diago-
nal in this representation, and its values were calculated
from the Fermi function f at the assumed temperature T,
with the Fermi level determined by the number of elec-
trons which we have usually taken equal to or less than N.
We have tried various forms for the function f(6) in-
cluding the following: (a) a single 8 function, (b) several
( < N)b functions at random positions around the ring, (c)
a normally distributed random function. We find that the
qualitative character of our results in their dependences
on T, n, and V, are only weakly influenced by the
choices of N, f(0), and the number of electrons; this
holds even for the single 8 function scatterer of case (a).

III. RESULTS

In Fig. 1 one of the random potentials used is shown
(for —m <6< ) along with its energy levels as functions
of ¢/¢o. (Note that in all figures energies are in units of
#/2mR? o is in units of 2e?R /7#; temperature T and
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level width 7 are in units of the average level separation
AE,vy.) A series of computed curves of o(¢/¢,) for that
potential at a number of increasing temperatures keeping
7 constant is given in Fig. 2. The crossover of the funda-
mental periodicity from ¢, to effectively ¢,/2 is clearly
seen.

We note that the averaged o(¢) is maximal at
¢=0, £¢o/2, which does not agree with the coherent
backscattering picture, in which ¢ is minimal at those
points.''?* The different behavior in our model results
partly because the smallest energy denominators in Eq. (6)
occur at the above points, especially for weak disorder.
More importantly, however, the velocity matrix elements
which we have used do not connect pure states, | n), and
so are greatest where mixing of the states is greatest.
Both these effects produce maximal ac absorption
(<[ |vy| /(E,-—Ej)]z), and therefore maximal conduc-
tivity, at ¢=0, +¢o/2. In the purely 1D case considered
here, this effect is stronger than the effect of coherent
backscattering. We leave open the question of the
relevance of this effect for finite cross section, not purely
1D, systems.

For this particular case, o{(¢/d,) is very nonsinusoidal
and has many higher harmonics. Figure 3 shows the
strengths of the successive (nth) harmonics as functions
of n for different temperatures. At low temperatures this
strength varies monotonically with n, while at higher
temperatures the odd harmonics (dg,¢,/3,. . .) are consid-
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FIG. 1. Top: a “random” scattering potential ¥(8) comput-
ed at 64 values of 6. (Dashed lines for visualization only.) This
particular potential was used in calculating all the results shown
in subsequent figures. Bottom: the first 32 energy levels E, vs.
¢ /do. The dashed line is Er for 16 electrons.
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FIG. 2. o vs ¢/¢, at the eight indicated temperatures for
7=0.037.

erably averaged out and the even harmonics
(¢0/2,¢¢/4,. ..) are much stronger. Figure 4 depicts the
strengths of the ¢-independent part, fundamental, and
second-harmonic components as functions of temperature.
It is clearly seen that the fundamental decreases sharply at
higher temperatures while the constant and second har-
monic have similar temperature dependences and seem to

1
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FIG. 3. Amplitudes of the first 10 harmonics, H, (normal-
ized to Hy), vs n corresponding to the conductivities shown in
Fig. 2.
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FIG. 4. HyH, H, as functions of temperature T for
7=0.037.

approach finite limits at high temperatures. The latter
behavior is due to the fact that n was kept constant. The
dependence of o(¢/dy) and the harmonics on n="%/7;, at
constant T are shown in Figs. 5 and 6, which again
demonstrate the averaging out of the fundamental and
odd harmonics with increasing 1. Surprisingly, it appears
that the strengths of the @-independent part, as well as
those of the fundamental and second harmonic decrease
with increasing 7 roughly like 7! and not exponentially,
as found in the weak-localization calculation.!! This
behavior appears to be a special property of the strictly
1D model considered.

As mentioned above, the phase of the oscillation in o(68)
appears to be the correct one for the strictly 1D case with
the particular field configuration we have chosen. How-
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FIG. 5. o vs ¢/¢o at the eight indicated values of 7 for
T =0.33.
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FIG. 6. Hy,H,,H, as functions of 1 for T =0.33.

ever, we note that had we considered instead an electric
field pointed in the same direction on opposite halves of
the loop, corresponding to a voltage applied across the
ring at contact points differing in 0 by 7, then we would
expect the phase of the oscillation to be opposite to that
found in the present case. This is because for that config-
uration the appropriate velocity matrix elements come
from higher-order terms in the Fourier expansion of the
velocity operator. These elements connect pure states but
only weakly connect nearly degenerate states i,j which
occur at ¢ =0, +¢¢/2. It follows that the absorption will
be minimal at these points and the resulting phase in o(9)
will agree with the results in Refs. 11 and 24. We have
carried out a preliminary calculation which indicates the
correctness of the above argument in the 1D case. Wheth-
er the argument also applies to a finite thickness mul-
tichannel ring remains to be seen.
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APPENDIX

The absorption can be fully treated in the follow-
ing way. A monochromatic low-frequency emf,
V = —c '8¢ /3t is introduced, starting from a given level
i. In the adiabatic approximation the energies vary in ac-
cordance with the time-dependent flux and the relaxation
processes try to maintain equilibrium with the bath. This
leads to a Debye relaxation-type absorption, previously
obtained by Landauer and Biittiker*® for a dc field, and by
Biittiker*® for an rf field. The contribution of Eq. (3) is
obtained thru the admixture of the higher-lying states j in
the adiabatic approximation. These are given by
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fie VU,’j

_ i(Ej—E)t/#
= LE,—E,) -
j i

(e 1). (A1)

The adiabatic approximation is valid in the small ¥ limit
because then the g;; are small.

The absorption of Eq. (6) is obtained by assuming that
the relaxation processes bring the populations to equilibri-
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um (with random phases) after each collision time 7, and
evaluating the energy flow to the bath. The relaxation
contribution of Landauer and Biittiker and the direct
transition contribution of Eq. (6) are different and depend
on different parameters. We have only considered the
latter contribution. Note that the former, for example,
vanishes in the T—0 limit.
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