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Perturbation theory for the two-dimensional polaron in a magnetic field
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The ground-state energy of a two-dimensional polaron in a magnetic field is evaluated in fourth-

order perturbation theory by a novel method. In this method complicated sums over products of
matrix elements and energy denominators are replaced by simple algebraic manipulations of opera-

tors. An analytical expression is derived for the high-magnetic-field limit; in that limit the sixth-

order perturbation contribution is also determined.

One of the most powerful mathematical techniques for
finding the ground-state energy of polarons is the Feyn-
man path-integral method. ' In the absence of magnetic
fields this method, which involves minimizing an energy
expression with respect to variational parameters, is
known to produce an approximate ground-state energy
which is an upper bound to the true energy. Furthermore,
it is believed that the Feynman energy is an accurate ap-
proximation to the true energy for all values of the
Frohlich electron —LO-phonon coupling constant, a, in
both two and three dimensions.

Less well understood is the situation when a magnetic
field is present. The Feynman method has been general-
ized by Peeters and Devreese (PD) in an attempt to pro-
vide a theory which approaches the Feynman theory at
zero field and which does not lose appreciable accuracy in
the presence of a magnetic field of arbitrary strength. Al-
though PD employed a path-integral variational method
similar to that of Feynman, they were unable to prove
that the approximate ground-state energy obtained from
their calculation is an upper bound to the exact ground-
state energy. Indeed, if for some range of field strengths
the PD energy were to lie below the exact ground state,
then it would seem difficult to justify a variational calcu-
lation for this energy and to attach physical significance
to the associated wave function.

Remarkably, the PD theory gives, both in two' and
three dimensions, cusps in the ground-state energy at suf-
ficiently large tz values and high magnetic fields. It
would be interesting to know whether the energies where
the cusps occur are above or below the exact energy.

In a first attempt to investigate this question, exact
ground-state-energy calculations were clued out for the
two-dimensional polaron in various limits. These calcula-
tions lead to the conclusion, presented in Ref. 4, that for
sufficiently strong magnetic fields the PD energy lies
below the exact ground-state energy. This conclusion. was
buttressed in part by weak-coupling perturbation-theory
results quoted in Ref. 4 but not derived there. The deriva-
tion is presented in the present paper.

Both the Feynman and PD theories have the desirable
property that in the weak-coupling limit (a—+0, magnetic
field held constant) the approximate ground-state energies
of those theories agree to order a with the result of
second-order perturbation theory. Thus to test the accu-
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kara&k= 0 k,

=(eBst /rnc)/coLo,

p=(x,y, O),

k=(k„ks,k, ),
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where 0 is the volume of the crystal in which the three-
dimensional LO phonons are confined, bk creates an LO
phonon with three-dimensional wave vector k, hcoI,& is
the I.O phonon energy, m is the band mass of the elec-
tron, and Bst is the static uniform magnetic field applied
perpendicular to the x-y plane, the plane of the electronic
motion. All lengths are. in units of the polaron radius,
(R/2mtoio)' and energies are in units of ficozo. We
shall take H, as the unperturbed Hamiltonian and H pQ
as the perturbation.

racy of either theory for weak coupling, one must evaluate
the next term of the expansion of the ground-state energy
in powers of a. In this paper the ground-state energy of
the two-dimensional polaron is evaluated in fourth-order
perturbation theory for arbitrary magnetic field strength.
(The results of this calculation have already been quoted,
in graphical form, in Ref. 4.) For the special case of weak
coupling and high magnetic field the perturbation theory
is carried out to sixth order.

The Hamiltonian H employed in this paper can be writ-
ten
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I. PERTURBATION THEORY
IN THE HIGH-FIELD LIMIT

The perturbation calculation is simplest in the high-
field limit, defined by

respectively, then

X~ ——const)((8 ) ~0&ii ~0&„

and

A, ~oo, aA, -+0. (2)
Ho ——A, (A A+ —,

' ),

The unperturbed eigenstates, which are, in general, prod-
ucts of a Landau level and a phonon state of the form

bk, bk,
' ' ' bk„ IO&

where
~

0& is the zero-phonon state, only involve, in the
limit defined in (2), Landau levels belonging to the n =0
(or lowest-lying) manifold of Landau states. These states,
omitting normalization, have the form

(» iy )Me k2pi/8— (&)

with

HOX~ ——(&'/2)X~,

where the z-angular momentum quantum number M is an
arbitrary positive integer or zero. (Note, in this notation
the z-angular momentum is actually —M. ) Excited
eigenstates of Ho, which are orthogonal to the X~'s, con-
tribute terms to the ground-state energy which are smaller
by order A, than those contributed by the Xkr's.

The perturbation calculation is greatly facilitated by
representing the Landau levels as products of two in-
dependent one-dimensional harmonic oscillator states.
Following Suzuki and Hensel, 5 we introduce harmonic os-
cillator operators

px — y —i p„+ X

~&-ph X vk LkMkbk+Lk Mk bk) ~

k

where

Lk ——exp ——(k, +ik„)A + —(k„ik»—)A1 . 1

= exp —(k, ik»)—A
1

—k', /n, '
X exp ——(k„+ik» )A e

Lk = exp ——(k» —ik„)A
—1 1

], . —k2 /2A,
X exp —( k~ +ik» )A e

Mk = exp —(k ik )—8— (k +ik )—81 . 1X» g Z»
Since in the limit of Eq. (2} the electronic states can be re-
stricted to the n =0 Landau state, one need consider only
the effective Hamiltonian (10} for calculating the energy
to lowest nontrivial order in A,

(x+iy ),
with the properties

(5)
H,rr = g (0

i
H

i
0 &„

2 ~ + g bkbk+ g vk& (Mkbk +Mk bk ),2 —k~ /2A, f )

k k

(10)

[A, A ]=[8,8 )=1 and [A,B]=[A,B ]=0. (6) where Lk has been replaced using

Here At lowers the quantum number M and raises the
Landau quantum number n by one unit, while 8 raises
M by one unit but has no effect on n Thus, if

~

.0&„and
~
0&s are the vacuum states of the A and 8 operators,

~ &0 ILk I 0&~ =e

The normalized unperturbed states of H,rr are denoted

, kN&=(M') '"(8') ~0&, bk, bk, bk ~O&—= ~M&, b,'b,'

and the ground state is obtained by perturbing any of the states

~M 0&=(M~) ' (Bt)~ ~0& ~0&

where M is 0 or a positive integer.
The perturbed ground-state energy is found by expanding first in Wigner-Brillouin perturbation theory (WBPT), then

the energy denominators appearing are expanded to obtain a power series in the relevant small parameter of the problem,
which, in this case, turns out to be not a but aA. .

Measuring the perturbed ground-state energy Ep from A, /2, one has in second order
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&E' '=(E —1) 'gv»e ' g(J;OlM» 'b»
l
J',k)(J', k lM»b» l
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l &k lb»10& I'g((&JIM» 'I J')((s&J'IM»

I J)~

=(E —1) 'gv»e ' (((J lM(, 'Mi,
l
J)g

1)-'a f dk, e ' = ,
'

M~—aA,/(E, 1) —.

In obtaimng (11) the passage from summation to integration

g |( a f dk, f dd~

is employed.
It is easy to see that the factorization of the M and b operators performed above can be done in any order of perturba-

tion theory for H, rr. This is because the M and b operators commute and the electronic intermediate states are degen-
erate. Thus in fourth order one has

—(k +l )/A,
di.E' '=(E —1) (E —2) 'gv»v(e ' ' (((J l

(M» 'Mi '+Mi M» )MiM»
l J)((

k, I

-{kg+l~J )/A~ 2l= g ~av(e ' " 1+exp, I,ki sin(P» (t(()—
k, l A,

2

where we have used

(12)

M( 'M» ——M»M( 'exp
q (I„ky —k„l(, )X P x P

which is a special case of the operator identity

exp(y+A +y A)exp(/+A +g A)=exp(/+At+( A)exp(y+At+y A)exp(y g+ —y+g )

where the y's and Ps are c numbers. A closely related identity, which was used in (9), is

y+A +y A y+A y A y+y /2e+ =e+ e e+

b, E&
' —(Ez —1) z(E& ——2) 'a f dki e ' f dl( e ' 1+Jo

Converting the summations to integrations in (12) and integrating over k„ l„and the angles P» and P( gives

2k(l
2

(14a)

(14b)

=(Eq —1) (E~ —2) '(ad(, ) [n'/4+IC(0. 5)/v 8]

=-1.4($91(aA, ) /(Eq —1) (Ep —2), (15a)

where 11'(z) is the complete elliptic integral of the first kind,
%'/2

K(z) = f (1—z sin 8) '~ d8 . (15b)

The correction in sixth order is

az"'= xv'„vjv', e ' '+"
ld x(M, 'M( 'I, 'lM, Mr~a d)(& —&) '(&—&) '(& —&~

k P

+(J
l
(M» 'M '+M 'M» ')M M( '(M(M»+M»M()

l
J)

(16)
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where g ( ) means a sum on all permutations of indices of operators enclosed in the parentheses. The indicated expec-
tation values in (16) can all be evaluated by moving M ' operators to the right (until they annihilate their matching M
operator) and using (13).

Introducing the shorthand notation

(l Xk), =1~k@—k„ly,

one can write

b EB
' (Io——+2IOI)+2I2+I3)/(EB —1) (EB—2} (EB—3)+(Io+2IOI (+I2)!(EB—1) (EB—2)

Io gv——ke ' =aviv m/2=0. 881627ak. ,

I~ ——g vkvte ' ' exp (k X l), =(aA, ) E(0.5)/v 8=0.655 514(ak)
k, l

(17)

I2 ——g +qvtv~e ' ' ' exp, [k X(l+q)], -=0.50509(a}{,)',
k, l, q A,

2

I3 ——g vkviv, e exp
—{k2~+l~2+q2~)/P2

k, i,q
2 [k X(l+q)+l Xq], —=0.44747(aA)' .

(18)

The expansion of the ground-state energy in powers of aA,

is obtained from the sum b,EB '+hEB"'+b,EB
'

by ex
panding the energy denominators of (11) and (15) to the
appropriate order and setting EB =0 in (18}. One obtains

aA, + z [n/4 —K(0.5)/W8](aA, )

The integrals I2 and I3 in (17} were reduced to three-
dimensional integrals and performed by computer; the last
quoted digit in their numerical coefficients has an es-
timated uncertainty of + 1.

Inserting values for the integrals gives finally

b,EB
' ——3.315 56(ak, ) /(EB —1) (EB—2) (EB—3)

+2.36300(aA, ) /(EB —1) (EB—2)

(n)M})—&/2(gt)n
~
0& (gt)M 0&

with the initial unperturbed state taken as

10&~ f~&B I0& .

Again setting the unperturbed n =0 Landau state ener-

gy as the zero of energy, the second-order corrtx:tion be-
comes

~E,"'=pe I &k lbk 10& I'B&~ IMk Mk l~&B

X g~&0ILk 'In&~
EB nA—1.—

X~&n ILk I0&~

—0.02442(5)(aA, )

=—0.8862 27aA, +0.064 941 9(aA, )

—0.02442(5)(aA, )3 . (19)

Extension of this series to higher order in ak, is feasible
but requires the evaluation of additional integrals which
are of higher dimension than those of (17).

where

I
n &~ =(nl) '"(a')"

~
0&g

and the M operators have been factored out as before.
Anticipating that Ez &0, one can write

—{1+nb~—E )lg

EB nA, 1=——f dt—e

so that (20) can be written

II. FOURTH-ORDER PERTURBATION THEORY
FOR ARBITRARY MAGNETIC FIELDS

b, E' '= —gv f dte
k

In the more general situation in which magnetic fields
of arbitrary strength are considered, it is not possible to
restrict the intermediate states to the n =0 Landau levels
and to replace the Hamiltonian by H, tt of (10). Instead,
the full Hamiltonian H of (1} is required and the pertur-
bation H, ~h takes the form given by (8). The intermedi-
ate states can be written

where the relation

has been used. From (9) we obtain

X &0 (
L„'e 2.~'" aI

~
0&, (21)
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A&OILk 'e '" "Lk
I

0&A ——e ' 0 exp —(k +i')A e '" "exp (—k„—ik„)A (}

One way to evaluate (22} is to expand exponentials in the matrix element on the right-hand side to obtain
', N N

—k'/2, 2 " 1 ki

[] (n!) A, 0
(23)

= exp[ —(ki /A, )(1—e ~ ')] . (23)

This result is inserted into (21) and the sum converted to an integral to give

k»e ' ———a J d(e e f dkx exp[ —(k] /k, )() —e ')]

v n'aA,
d

—(i —xP)P(1 —]„2t)—]/2
2

(24)

in agreement with Eq. (2) of Ref. 7 if Ei on the right-hand side above is set equal to zero.
Another way of evaluating the matrix element of (22) is to apply the operator identity (2S},derived in Appendix A, to

the left-hand side,

-rA ~A
e '" "exp(y+A +y A)=exp(y+e 'A +y e'A)e

where y+ and y are c numbers. The resulting matrix element becomes

(2S)

0 Lk 'exp (k ——i')e 'A ——(k, +ik„)e 'A 0(A A

—k~ /A. ~ 1=e ' 0 exp —(k, +ik~)A exp —(k„ik~)e "—'At 0
A A

e

—A ~ —A, 2~=exp[ —(k[/k)(1 —e ')]e0 exp[ —,(k, —ik„)e 'd]exp —(k, +ik„)d 0)

= exp[ —(ki /A, )(1—e ')] .

The identity of (2S), while offering no major simplification for second-order perturbation theory, is very useful «r
evaluating matrix elements appearing in fourth order.

One finds that the fourth-order term in Wigner-Brillouin perturbation theory, hE[ ', can be expressed as

aE"'=~,+~,

Il = g~kv2i A &0l Lk 'e ' Li 'e ' Lie ' ALk
I 0&A a&0

1
Mk 'Mi 'Milk

I
0&a

k, l

I2=+va~iA&0ILk 'e ' Li 'e ' Lke ' Lilo&As&olMk 'W 'Mali lo&a
k, l

&i =A, ti

It is convenient to introduce

x =(k» i' }/A, y—=(I» ,i' )/& . —
Consider first Ii and apply (2S}to obtain

L,e """L, IO&„=L,, exp(xe "At x'e"A) IO&„—
=Liexp(xe 'At) Io&„e

= exp(yA }exp( —y'A ) exp(xe 'A t)
I 0&„e ' '"! +!~ ' '

=exp[(y+xe ')At]
I o&„exp[—y'xe ' —( Ix

I

2+ Iy I2)/2] .

(26)

(27}
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Similarly

—r AtA„(0~Lk 'e '
L&

' ——„(0~ exp( —xe 'A +x'e 'A)Lt '

=exp[ —x'ye ' —( ~x [z+ ~y [ )/2]g(0~ exp[(y'+x'e '}3].

Here the operator identity of (14b) has been employed.
The above results are inserted into I

&
to give

Ii ——g vk vtexp[ —( )x ( + ~y ~

+x'ye '+xy'e ')]z(0( exp[ —(y'+x'e ')A)
k, l

x exp( riA—tA)exp[ —(y+xe ')At] ~0)„. (28)

Notice that the matrix element in (28) is very similar to the one already considered in (22};it can be evaluated in a similar
way, giving

exp[(y*+x'e ')(y+xe ')e '],
so that

Ii ——gvkvt exp[ —
~y ~

(1—e ') —~x
~

(1—e ' ' ')]exp[( —xy'e ' —x'ye ')(1—e ')] .
k, l

The same kind of calculation leading to (29) gives, for I2,

I2 = g vkdjB &'I
I
~k 'Mt '~a%

I
J&a exp[ —ly I

' —
I
x

I

'—x'y(e '+e '}]
k, l

Xz(0~ exp[ —(y'+x'e ')A]e ' exp[ —(x+ye ')At] ~0)„,

(29)

B(J IMk 'W '~kW
I
J&a = exp«'y —xy'} .

Thus

I2 ——gvkvi exp[ —
~y ~

(1—e ' ') —~x
~

(1—e ' ')]exp[qx'y —(1—e ')xy'],
k, l

T3 7 ) v2 T3q=1 —e —e +e
(30)

Appendix 8 shows how I& and I2 can be evaluated
analytically as functions of ri, rz, and r&. The expressions
obtained are then inserted into (26) which is integrated nu-
m erica11y.

For purposes of expanding the ground-state energy to
order a, E~ is set equal to zero in (26) and to EG ', given
by

(31)

in (24}.
The correction to order a arising from ~FG ' in (24)

can be obtained by expanding

The total fourth-order correction to the ground-state
energy of the two-dimensional polaron in a magnetic field
is Wi+Wz+W&. In general, Wi and W2 are both negative,
whereas W& is positive. For strong fields Wi exceeds

TABLE I. Numerical values for hE~', the fourth-order
Rayleigh-Schrodinger perturbation correction to the ground-
state energy of a two-dimensional polaron, and the various ener-

gies W which contribute, versus the dimensionless magnetic
field, A,i. The energies W~ are defined by Eqs. (26), (27), (31),
and (32). See also Eqs. (84) and (85) of Appendix B. All ener-

gies are in units of a hcoqo.

exp[ —(1 EG ')t) =e '(1+EG t—),
which contributes in order a the term

(32}

where g is the digamma function, defined by

1 dl'(z}
I (z) dz

EG dtte (1—e )
(&) * i k t——1/2—

2

= (EG ')'
z

',f( 1 /&'+ —, ) —$(1/&') ],

0
0.2
0.4
1.0
1.5
1.8
2.0
3.0
4.0

10.0

—0.8229
—0.9028
—0.9862
—1.2452
—1.4625
—1.5921
—1.6780
—2.1018
—2.5179
—4.9403

—0.4747
—0.5191
—0.5661
—0.7208
—0.8598
—0.9462
—1.0048
—1.3057
—1.6154
—3.5362

1.233 70
1.361 37
1.496 30

. 1.928 01
2.303 88
2.532 88
2.68649
3.46099
4.24097
8.945 11

gg(4)

—0.0639
—0.0605
—0.0560
—0.0380
—0.0184
—0.0055

0.0037
0.0534
0.1077
0.4686
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~
Jri+&2~ and the fourth-order correction is positive,

whereas it is negative at weak fields. Results for Wi, &2,
and W3 and their sum are presented in Table I. Values
listed there for Wi, W2, and 9'3 are believed to be accurate
to within +2 units in the last quoted digit.

The zero-field correction of Ref. 8 is recovered here to
within the claimed accuracy of the present calculation as
is the fourth-order correction of (19) in the limit A, ~ ao.

It would be of interest to apply the perturbation method
described above to the problem of calculating the per-
turbed n = 1 level energy so that the relative accuracies of
various theories of the cyclotron resonance frequency
could be compared in the weak-coupling limit.

The extension of the present method to three dimen-
sions seems straightforward, but the required integrals ap-
pear to be much more difficult to evaluate.

x/2 0
—TAA g ( Q )tl 0 —T/2

yg f

0 0
0

e t/2

(A3)

exp(y+A +y A)

„n! 2
R+ P

(y —y+) (y +y+)
2

1

—f+

By substituting for the operators in (A2) their correspond-
ing matrices from (A 1) and explicitly exponentiating, one
can solve for g+ and g in terms of y+, y, and r T. hus

01
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0 0

so that Eq. (A2) becomes

e '"" exp(y+At+y A)

e s/2
y e g/2

y y
v/2

APPENDIX A 0 e —r/2

0 1

A +A~P= 0 0
0 0

0
—A +A~R= 0

0

0
1

0

1 0
0 —1

0 0

Since the commutation relationship of Eq. (25) may not
be well known, a derivation is presented here. The vector
space with basis comprised of the harmonic-oscillator
operators A~+A, —At+A, AA~, and 1 is closed under
commutation, where 1 denotes an operator which com-
mutes with all of the others in the basis. These operators
can be represented by 3X3 matrices which are isomorphic
to the operators under commutation. The representation
1s given by

0 0 e V/2

e r/2
g e

—r/2 &

g g e r/2

By inspection, a solution is

0 e
—w/2 e r/2

e V'/2

y e', g+=y, e- . (A4)

Substituting (A4) back into (A2) and replacing AA by
A A gives Eq. (25).

It is worth pointing out that Eqs. (14) can also be de-
rived using the representation (Al). For example, an an-
satz of the form

y+At y A
exp(y+At+y A)=e + e e~

AA =Q= 0

0

0I
2

(A 1) is assumed for (14b) with z the unknown parameter. Ex-
plicit matrix exponentiation of both sides shows that
z =y+y /2 is the solution. Finally, one should note that
Eq. (25) can also be derived from an identity given in Ref.
9.

APPENDIX B

0 0 1

1.~= 0 0 0
0 0 0

Assume that there exist constants g+ and g such that

—wAAe '"" exp(y+A +y A)= exp((+A +g A)e

(A2)

Both integrals Ii of Eq. (29) and I2 of Eq. (30) are very
similar in structure. It will suffice to describe the evalua-

tion of I2.
'«a —&I ~

Note first that x'y =ki lie i ' /A2 and ~y'
=kali e ' /1, . Also note that

g vkvi a f dki f dl~ f dgk f dt))i .

When one expands the exponential in (30) which involves
x*y and xy, all terms drop upon the angular integration
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'~&k —&I)
except those with e ' raised to the zero power. Thus
one can make the replacement

exp[qx 'y —xy'(1 —e ')] so that

exp(+b u /2c )Io(b'u'/2c ) if q=+
~ q ~,

[—q(1 —e ')kali /A, ]"
—0 (n!)'

The power series in (81) is equal to

Jo(2q' (1 e— )' kali /A, ) if q &0,
and to

Io(2 ~q ~

'~ (1—e ')'~ kali /A, ) if q&0.

(81) I2 ——(aA, ) f duexp[( a—+b /2c )u ]2c

XIo(b u /2c ) .

The change of variables z=(b /2c )u puts this in the
standard form"

I2 ——(alj, ) f dz exp[( 2a c—/b +1)z]
4b

With the change of variable tu =ki /A, , u =1t /A, , one has

, , Jo(2butu)
I2=(aA) f due f dtue

XIo(z)z

aA,
Q i(2(2a c /b +1) if 2a c /b +1& 1,

where

a =(1—e ' '),
bz=(1 —e ')

~ q ~,
c'=(1—e ' ') .

The inner integral is given by'

(82)

(83)

where Q i&2 is a Legendre function. One can show that
for all positive values of r, , r2, and ri such that q g0,
2a c /b'&2.

Employing the identity

Q i'(z)=[2/(z+1}]'~2K(2/(z+1)},

where K is defined by (15b), one can write, from (26), ta}t-
ing Ez ——0„

T

t, K(b —/(a c +b )) ~ 2ti K—(b /a c )
z
———a tie tie t2e

o o 2( 2 2+b )i/2 t+ tie (84)

where

1 A t3 At (t] +t3 )
t = — ln[( —1+e +e )e ],

provid& that this expression give a rM positive t . Othe~ise, t = M. The paramete~ a, b, and c are defin& by
(83). + similar expression is obtained for W, . For that integral the analog of q is, from (29), —(1—e ')e ' ', which
is always negative for positive r;. One obtains

—zt, E(b /ac )~i ———(aA, ) f dtie ' f dtie ' f dt2e
0 0 0 2Qc

where, for (85},

2 —A, t2 —A, t~ 2
—A, (t)+t3) 2 —A (tl+t2+t3)a =1—e, b =(1—e )e, c=1—e

Useful approximations to E(z) may be found in Ref. 12.
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