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Perturbation theory for the two-dimensional polaron in a magnetic field
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The ground-state energy of a two-dimensional polaron in a magnetic field is evaluated in fourth-
order perturbation theory by a novel method. In this method complicated sums over products of
matrix elements and energy denominators are replaced by simple algebraic manipulations of opera-
tors. An analytical expression is derived for the high-magnetic-field limit; in that limit the sixth-

order perturbation contribution is also determined.

One of the most powerful mathematical techniques for
finding the ground-state energy of polarons is the Feyn-
man path-integral method.! In the absence of magnetic
fields this method, which involves minimizing an energy
expression with respect to variational parameters, is
known to produce an approximate ground-state energy
which is an upper bound to the true energy. Furthermore,
it is believed that the Feynman energy is an accurate ap-
proximation to the true energy for all values of the
Frohlich electron—LO-phonon coupling constant, o, in
both two and three dimensions.

Less well understood is the situation when a magnetic
field is present. The Feynman method has been general-
ized by Peeters and Devreese? (PD) in an attempt to pro-
vide a theory which approaches the Feynman theory at
zero field and which does not lose appreciable accuracy in
the presence of a magnetic field of arbitrary strength. Al-
though PD employed a path-integral variational method
similar to that of Feynman, they were unable to prove
that the approximate ground-state energy obtained from
their calculation is an upper bound to the exact ground-
state energy. Indeed, if for some range of field strengths
the PD energy were to lie below the exact ground state,
then it would seem difficult to justify a variational calcu-
lation for this energy and to attach physical significance
to the associated wave function.

Remarkably, the PD theory gives, both in two® and
three dimensions, cusps in the ground-state energy at suf-
ficiently large a values and high magnetic fields. It
would be interesting to know whether the energies where
the cusps occur are above or below the exact energy.

In a first attempt to investigate this question, exact
ground-state-energy calculations were carried out for the
two-dimensional polaron in various limits. These calcula-
tions lead to the conclusion, presented in Ref. 4, that for
sufficiently strong magnetic fields the PD energy lies
below the exact ground-state energy. This conclusion was
buttressed in part by weak-coupling perturbation-theory
results quoted in Ref. 4 but not derived there. The deriva-
tiomis presented in the present paper.

Both the Feynman and PD theories have the desirable
property that in the weak-coupling limit (a—0, magnetic
field held constant) the approximate ground-state energies
of those theories agree to order a with the result of
second-order perturbation theory. Thus to test the accu-

33

racy of either theory for weak coupling, one must evaluate
the next term of the expansion of the ground-state energy
in powers of a. In this paper the ground-state energy of
the two-dimensional polaron is evaluated in fourth-order
perturbation theory for arbitrary magnetic field strength.
(The results of this calculation have already been quoted,
in graphical form, in Ref. 4.) For the special case of weak
coupling and high magnetic field the perturbation theory
is carried out to sixth order.

The Hamiltonian H employed in this paper can be writ-
ten

H=Hu +He-ph ’

H,=Ho+ 3 blb, ,
k

—ik, - ik .
H, =3 v (e ”’b,l‘+e'kl i),
k

A2 2
Dx — Ty

2

A
py+7x

172
/k , (1)

;\,2=(9BM /mc )/(DLO ,

Ho= 4

Vi =

4ra
Q

p=(x,y,0),
kz(kxyky»kz) s
k; =(k,,k,,0),

where ( is the volume of the crystal in which the three-
dimensional LO phonons are confined, b,f creates an LO
phonon with three-dimensional wave vector k, hwyq is
the LO phonon energy, m is the band mass of the elec-
tron, and Bj, is the static uniform magnetic field applied
perpendicular to the x-y plane, the plane of the electronic
motion. All lengths are .in units of the polaron radius,
(fi/2mwy)'/? and energies are in units of fiw . We
shall take H, as the unperturbed Hamiltonian and H,
as the perturbation.
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I. PERTURBATION THEORY
IN THE HIGH-FIELD LIMIT

The perturbation calculation is simplest in the high-
field limit, defined by

AMo>w, al—0. (2)

The unperturbed eigenstates, which are, in general, prod-
ucts of a Landau level and a phonon state of the form

bibi, -~ b, 10), 3

where |0) is the zero-phonon state, only involve, in the
limit defined in (2), Landau levels belonging to the n =0
(or lowest-lying) manifold of Landau states. These states,
omitting normalization, have the form

Xy =(x —iy Mo —A9"/8 4)
with
HoXpy=(A2/2)Xy s

where the z-angular momentum quantum number M is an
arbitrary positive integer or zero. (Note, in this notation
the z-angular momentum is actually —M.) Excited
eigenstates of H,, which are orthogonal to the X,’s, con-
tribute terms to the ground-state energy which are smaller
by order A~2 than those contributed by the X ,’s.

The perturbation calculation is greatly facilitated by
representing the Landau levels as products of two in-
dependent one-dimensional harmonic oscillator states.
Following Suzuki and Hensel,® we introduce harmonic os-
cillator operators

/*

A= —i

)»2
py+ —4"‘

}\2
DPx — Ty

(5)
B=A'r——%(x+iy),

with the properties
[4,4T1=[B,B']=1 and [4,B]=[4,BT]=0. (6

Here A" lowers the quantum number M and raises the
Landau quantum number n by one unit, while B raises
M by one unit but has no effect on n. Thus, if |0), and
|0)p are the vacuum states of the 4 and B operators,

| Mikika, oo k) =(M)™V2BTM0)5 b b, - by, |0)= | M) bl b, - b] |0},

respectively, then
Xy = const X (BHM |0), |0) 4 (7
and

Ho=AX4'4+1),

(8)
Hopn= 3 vi (LMl + L' M 'by)
k
where
L= Lk ik 4+ Ltk —ik, 4"
k=exp | —~ <+ y)A+I( x —ik,)A
1 , t
= exp x(kx——tk,)A
12 ;932
X exp w%(k,—kik,)A e KL/ ,
Li'=exp —i—(k,—ik,)AT
k2 2
X exp |3k, +ik,)4 e T ©)
1 . 1 . t
M, = exp I(kx—’ky)B”“I(kx'Hky)B .

Since in the limit of Eq. (2) the electronic states can be re-
stricted to the n =0 Landau state, one need consider only
the effective Hamiltonian (10) for calculating the energy
to lowest nontrivial order in A2,
Heff=A<OlH|O>A
—k3 /222 _
=3+ D bibe+ Svee N (Meb+ M by
k k
(10

where L; has been replaced using
k2 2
£{0| Ly |0) = K172

The normalized unperturbed states of H .4 are denoted

and the ground state is obtained by perturbing any of the states

| M;0)=M)~12BYHYM [0), |0),

where M is O or a positive integer.

The perturbed ground-state energy is found by expanding first in Wigner-Brillouin perturbation theory (WBPT), then
the energy denominators appearing are expanded to obtain a power series in the relevant small parameter of the problem,

which, in this case, turns out to be not a but aA.®

Measuring the perturbed ground-state energy E, from A%/2, one has in second order



33 PERTURBATION THEORY FOR THE TWO-DIMENSIONAL POLARON . ..

k2 a2

AEP=(E,~ 17" 3 vie NS (130 | M0 | 73K ) ('K | My | 50)
k J!

—k? /a2

=(E,—1)~' 3 v}e | e |8 10) 123 5T | M [J) 5 5¢I" [ Mic | )p
k J

_ k2 2
=(E,— 1) S vke N (I | M My | )
k

—k? /A%

=(E,~1)7'a [ “dk,e =3VTaA/(E,—1) .

In obtaining (11) the passage from summation to integration
o 1 27
g,vi—»a o dkis- [ dd

is employed.

801

(11

It is easy to see that the factorization of the M and b operators performed above can be done in any order of perturba-
tion theory for H.g. This is because the M and b operators commute and the electronic intermediate states are degen-

erate. Thus in fourth order one has

(k2 2 2
AEM =(E,—1)"UE,—2)~' 3 vivpe <1717

k,1

B | (M M M7 MMM, | T )

— (k2 412)/A2
=S vivle 1T 14 exp
kI

%Ilkl sin(éx —d;) ] l ,
where we have used

MI—IMk =MkM,’lexp

’

%(I,ky-—kxl,,)

which is a special case of the operator identity
exp(y A +y_A)exp(E, A" +E_A)=exp(E, AT +E_Aexply A +y _A)exply &, —7.£.)
where the y’s and £’s are ¢ numbers. A closely related identity, which was used in (9), is

At4y_4a 4ty 4 72
YA A_ rial v A vy /2

Converting the summations to integrations in (12) and integrating over k,, /,, and the angles ¢; and ¢, gives

2%, 1
A.Z

132

®© —k2 /2 poo -
AEM =(E,—~1)"AE,~2)~'a® [ " dk e N [T alje 1+Jo

=(E,—1)"XE, —2)""(ah)}[7r/4+K(0.5)/V8]

=1.44091(ar)*/(E, — 1)H(E, —2) ,

where K(z) is the complete elliptic integral of the first kind,
K2)= [ (1-zsin%0)1d6
= J, .

The correction in sixth order is

AE® = 3 vivivte "Hitirab Al J>(E—1)_2(E—2)—2(E—3)_1
k

(v

+ (T | (M7 M7 M M DM M (MM + M M) | )

3 (M MMM MM,
P

X(E—1)"%E—-2)"2

b

(12)

(13)

(14a)

(14b)

(15a)

(15b)

(16)
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where zp ( ) means a sum on all permutations of indices of operators enclosed in the parentheses. The indicated expec-

tation values in (16) can all be evaluated by moving M ~
operator) and using (13).
Introducing the shorthand notation

(Ixk), =k, —kel, ,

one can write

! operators to the right (until they annihilate their matching M

AES =(I§+2IoI, +21,+1;)/(E, — )XE, —2XE,—3)+Ug+20od,+1,)/(E,— 1)XE, —2)?,

Io= 3 vie " _aav7/2=0.881 627ah |
k

zvkv,e E+1DA2 xp %’;(kxl), —(aAYK(0.5)/v/8
—(k2 402 2 2i
L= 3 vivivie IO o 1 2y,
k,l,q A
— (k2 12 +q2)/A2 2i
Is—kzwc"l"q i p'—kéth<1+q>+l><q1,
Lq

The integrals I, and I; in (17) were reduced to three-
dimensional integrals and performed by computer; the last
quoted digit in their numerical coefficients has an es-
timated uncertainty of +1.

Inserting values for the integrals gives finally

AE,”=3.31556(ak)*/(E, — 1) E, —2)XE, —3)
+2.36300(aA)*/(E, —1)(E, ~2)2 (18)

The expansion of the ground- state energy in powers of aA
is obtained from the sum AE +AE 4)-f-AE by ex-
panding the energy denomlnators of (ll) and ( 15) to the
appropriate order and setting E, =0 in (18). One obtains

=_%—Eal+ L7 /4—K(0.5)/V8](ak)?

—0.02442(5)(a)r)}

~—0.886227aA+0.064 941 9(aA )?
—0.02442(5)(a))? . (19)

Extension of this series to higher order in aA is feasible
but requires the evaluation of additional integrals which
are of higher dimension than those of (17).

II. FOURTH-ORDER PERTURBATION THEORY
FOR ARBITRARY MAGNETIC FIELDS

In the more general situation in which magnetic fields
of arbitrary strength are considered, it is not possible to
restrict the intermediate states to the n =0 Landau levels
and to replace the Hamiltonian by H . of (10). Instead,
the full Hamiltonian H of (1) is required and the pertur-
bation H,., takes the form given by (8). The intermedi-
ate states can be written

=0.655514(alr)?, 17)

=0.50509(ar)?,

=0.44747(a))’ .

r
(ntM)=2(4%y [0) 4 BYM [0)5 6] b) - - b] |0)
with the initial unperturbed state taken as

[0}, |J)p |0).

Again setting the unperturbed n =0 Landau state ener-
gy as the zero of energy, the second-order correction be-
comes

AEP= 3 | (k|b][0) |25¢J | M My |J)p
k

1

X OILg | n) gy ——F5—
?A ’ k I AEp—nAZ——l

XA<n|Lk]0)A, (20)

where
[n)=(D~124""|0),

and the M operators have been factored out as before.
Anticipating that E, <0, one can write

2 4 ® —(1+nA2—E )t
E,—nX—1=— [ “dte :

so that (20) can be written

«© —(1—E_Nn
AEP=—3 v} dt »
P k kfo e

X 40| Lle =244, 10y, | (21)
where the relation
ATA ln)A=n |n>,4

has been used. From (9) we obtain
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_ t —k? /A2
(O LML, [0y, =17 <o exp %(k,‘—f—iky)A e—Mta'Aeyn %(k,,—iky)AT 0) : (22)
A

One way to evaluate (22) is to expand exponentials in the matrix element on the right-hand side to obtain

e 1K (0] 4%4M|0) =e IN $ L LIt e 23)
neo (n1)? | A2 4 4 <on! | A?
= exp[ —(k} /A)(1—e "] . 23)
This result is inserted into (21) and the sum converted to an integral to give
AEP'=—a [“dre™ 7" [T ak, expl — (kI /AN(1—e A1)
=~—‘/—_’§‘17i [ dre™ T e N1 (24)

in agreement with Eq. (2) of Ref. 7 if E, on the right-hand side above is set equal to zero.
Another way of evaluating the matrix element of (22) is to apply the operator identity (25), derived in Appendix A, to
the left-hand side,

e—A'4 exp(y AT +y_A)=exply e "4 +y_eTA)e —ra'a @3

where ¥, and y _ are ¢ numbers. The resulting matrix element becomes

R o).

ke ik, 14

1

(ke —ikyJe 04" — Lk, ik, e

—k2 /a2
=e ! 0
A

Li'exp

exp exp %(kx —iky)e —A gt

)

A
1
A

— exp[ — (K /A2)<1_e—“')]A<o expl +(ky —iky e =4 T exp | L (ky +ik, )4

o).

= exp[ — (k2 /A})(1—e—¥)] .

The identity of (25), while offering no major simplification for second-order perturbation theory, is very useful for
evaluating matrix elements appearing in fourth order.
One finds that the fourth-order term in Wigner-Brillouin perturbation theory, AE‘¥, can be expressed as

AE(4)=JI+J2 Py
© —(1—-E )t ® —(2—E )t «° —(1—E )t~ .
Sj=— fo dt e » ‘fo diye » 2f0 dtse P (j=1,2), (26)

- et oatd gt
Ti=Svivi 40| Lile ™ L e T Le T L 10) 4 5(O | MM MM, | 0) 5 27)
k,l

~ _ t _ t _ t
=3 0| L ™ L e T e T L, |0) 4 540 | M MMM, [0) 5
k1

=\, .
It is convenient to introduce

x =(ky—ik,)/A, y=(;—il,)/\ .
Consider first I; and apply (25) to obtain

—rat -
4 ALk |0)=L;exp(xe '4T—x*e"4)|0),

=Lyexp(xe "A%)[0) e~ 1x172

L,e

= exp(yA V) exp(—p*A) exp(xe "' at)|0) je—Ix 1P+ Iy 12

=exp[(y+xe” )AT]|0) 4 exp[—p*xe " —(|x |2+ |y |2)/2].
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Similarly

t
_1 —TA'A
4(0|Lg'e™™

Li'= 4(0] exp(—xe™ A +x*e AL

= exp[ —x"ye " —(|x |2+ |y [2)/2] 40| exp[(y* +x*e 4] .

Here the operator identity of (14b) has been employed.
The above results are inserted into I; to give

I,= Zvivfexp[—( |x |2+ |y |2+x‘ye—f3+xy'e—11)],4(0| exp[—(y*+x*e” *)A]
K1

X exp(—71,4 7 4)exp[ —(y +xe” A4T]|0), .

(28)

Notice that the matrix element in (28) is very similar to the one already considered in (22); it can be evaluated in a similar

way, giving
exp[(p* +x%e¢ )y +xe e 7],
so that
I,=Sviviexp[— |y | H1—e ) —|x | H1—e ") ]expl(—xp*e '—x*ye *Nl—e ). (29)
k1

The same kind of calculation leading to (29) gives, for T,,

=3 vivip{J | M M7 MM, | ) pexpl— |y | 2= |x [2=x*ple P4e” ™)
k,1

- —rat -
X 40| exp[ —(p*+x*e P)A]e 72 Aexp[——(x+ye Ma'110),,

{J | M MM M, | J) g =exp(x*y —xp*) .
Thus

L=3viviexp[— |y | 21— > ™)— |x |A1—e 7 ")]explgx*y —(1—e 2xp*],
k,1

T

g=l—e "—e Pie

Appendix B shows how I, and I, can be evaluated
analytically as functions of 7|, 75, and 73. The expressions
obtained are then inserted into (26) which is integrated nu-
merically.

For purposes of expanding the ground-state energy to
or<7ier a?, E, is set equal to zero in (26) and to E((;Z), given
by

E§'=—ZET(1/0)/D1/A+ 1), (31)

in (24).
The correction to order o arising from AES in (24)
can be obtained by expanding

exp[ —(1—E@P)t)=e "(1+EZ't),

which contributes in order a? the term

S = ___‘/._?}_Eg) fow dtte'(1 _e—kzt)—llz
=(E‘GZ’)2%{¢<1/A2+§)—-¢<1/AZ)] , (32)

where ¢ is the digamma function, defined by
1 dI(z)

YO=T &

(30)

r

The total fourth-order correction to the ground-state
energy of the two-dimensional polaron in a magnetic field
is £+ ,+S ;5. In general, #| and .#, are both negative,
whereas #; is positive. For strong fields #; exceeds

TABLE 1. Numerical values for AEY’, the fourth-order
Rayleigh-Schrodinger perturbation correction to the ground-
state energy of a two-dimensional polaron, and the various ener-
gies # which contribute, versus the dimensionless magnetic
field, A2. The energies .#; are defined by Egs. (26), 27), (31),
and (32). See also Egs. (B4) and (B5) of Appendix B. All ener-
gies are in units of a’hwyo.

A? g ) S AEE
0 —0.8229 —0.4747 1.23370 —0.0639
0.2 —0.9028 —0.5191 1.36137 —0.0605
0.4 —0.9862 —0.5661 1.496 30 —0.0560
10 —1.2452 —0.7208 192801 —0.0380
15 —1.4625 —0.8598 2.303 88 —0.0184
1.8 —1.5921 —0.9462 2.53288 —0.0055
20 —1.6780 —1.0048 2.686 49 0.0037
3.0 —2.1018 —1.3057 3.46099 0.0534
4.0 —2.5179 —1.6154 424097 0.1077

10.0 —4.9403 —3.5362 8.94511 0.4686
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| £ 1+, | and the fourth-order correction is positive,
whereas it is negative at weak fields. Results for ./, £,
and #; and their sum are presented in Table I. Values
listed there for ., #,, and #; are believed to be accurate
to within +2 units in the last quoted digit.

The zero-field correction of Ref. 8 is recovered here to
within the claimed accuracy of the present calculation as
is the fourth-order correction of (19) in the limit A2— co.

It would be of interest to apply the perturbation method
described above to the problem of calculating the per-
turbed n =1 level energy so that the relative accuracies of
various theories of the cyclotron resonance frequency
could be compared in the weak-coupling limit.

The extension of the present method to three dimen-
sions seems straightforward, but the required integrals ap-
pear to be much more difficult to evaluate.
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APPENDIX A

Since the commutation relationship of Eq. (25) may not
be well known, a derivation is presented here. The vector
space with basis comprised of the harmonic-oscillator
operators AT+A, —At4+ 4, AA*, and 1 is closed under
commutation, where 1 denotes an operator which com-
mutes with all of the others in the basis. These operators
can be represented by 3 X 3 matrices which are isomorphic
to the operators under commutation. The representation
is given by

010
AT+4oP=10 0 1|,
000
01 0
—A'y4oR=10 0 -1,
00 0
(A1)
-3+ 0 0
Ad'eQ=|0 L+ o |,
0 0 —+

Assume that there exist constants &£ and £_ such that

e”"“yexp(y+AT+y_A)= exp(é, AT +E_A)e ~rda"

(A2)

By substituting for the operators in (A2) their correspond-
ing matrices from (A1) and explicitly exponentiating, one
can solve for £, and £_ in terms of ¥, ¥ _, and 7. Thus

1 e‘r/2 0 0
—‘rAAt_ < n__ —7/2
e =3 - (—1Q)'=1| 0 e o |,
n 0 0 e‘r/2
(A3)
exp(y+A*+1/_A)
ol | r—=74) (y_+7y)
B 2,," n! I
Lys vovs
=0 1 Y+ ’
0 0 1
so that Eq. (A2) becomes
e‘“’ATexp(erAT—{—y_A)
ef/2 ‘}’_eT/Z %,y_,y_‘-e‘r/Z
— 0 e-‘r/2 ,y+e—1'/2
0 0 er/2
er/2 é-_—e —1/2 _;_§‘§+61/2
=10 e~ T/? §+e-r/2
0 e‘r/Z

By inspection, a solution is
E_=v_e’, §,=y.e". (A4)

Substituting (A4) back into (A2) and replacing A4t by
A' A4 gives Eq. (25).

It is worth pointing out that Egs. (14) can also be de-
rived using the representation (A1l). For example, an an-
satz of the form

t t
exp(y+AT+7_A)=ey+A PLEPLY
is assumed for (14b) with z the unknown parameter. Ex-
plicit matrix exponentiation of both sides shows that
z=v .y _ /2 is the solution. Finally, one should note that
Eq. (25) can also be derived from an identity given in Ref.
9.

APPENDIX B

Both integrals I, of Eq. (29) and I, of Eq. (30) are very
similar in structure. It will suffice to describe the evalua-
tion of T,. )

Note first that x‘y=kllle'(¢"_¢’)/k2 and xy*
=k, l,e "% /32 Also note that

) ®© 1 2 1 2T
%vwaaz S ak [Tl o [ dee s [ den

When one expands the exponential in (30) which involves
x*y and xy*, all terms drop upon the angular integration
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Ly =) .
except those with e’ %) raised to the zero power. Thus
one can make the replacement

explgx*y —xy*(1—e )]
o [—g(l—e K212 /A%

- 2 (n!)?

n=0

(B1)

The power series in (B1) is equal to
Jo(2¢'%(1—e

and to

T2 1 /A?) if g>0),

Io(2|q|2(1—e " ™)V2% 1, /AY) if ¢<O.
With the change of variable w=k, /A, v=I, /A, one has

Jo(2bvw)
=(ar)? fowdve““z"z fowdwe—czwz I(2bvw) |
(B2)
where
at=(1—e 7Y,
br=(1—e ™)|q| , B3)
ci=(1—e 7).

The inner integral is given by'”
|

—2‘? exp(+b2?/2c)o(b%?/2¢?) if q=TF |q | ,
so that

(ak)2 f dv exp[(—a?+b?/2¢*?)

XIo(b™?/2c?) .

The change of variables z=(b2/2c2)v? puts this in the
standard form'!

I,=(ak) ——f dz exp[(—2a%2/b*+1)z]

X Io(z)z~1/2

(az)»)2

2b Q_1/2(2a2c2/b211)

if 2a%c2/b*F1>1,

where Q_,,, is a Legendre function. One can show that
for all positive values of 7;, 7, and 73 such that g <0,
2a%c?/b?> 2.

Employing the identity

Q_122)=[2/(z+D]1"?K(2/(z+1)),

where K is defined by (15b), one can write, from (26), tak-
ing E, =0,

_ 2, =ty —tzK(bZ/azc +b2)) ©  —u, K(b*/a%?)
FH=—(al) fo dt;e fo dtye ' f dtye PN + [ dtye o , (B4)
where
2 22 2
1y = — 2 ln[ —l+e k'1+e )\.13)8)»(11-{-!3)] ,

A

provided that this expression gives a real positive ¢,,.

is always negative for positive 7;. One obtains

® —t o© —t ® —2t, K(b
Si=—(ar? [ Tdrye™" [Tdise™ [ Tdre ™"
where, for (BS5),
_az a2 . a2
a’l=1—e Atz, b2=(1—e " "2)% A“‘HS), cl=1—¢

Useful approximations to K(z) may be found in Ref. 12.

2/a%c?)

Otherwise, t,, = . The parameters a, b, and ¢ are defined by
(B3). A similar expression is obtained for .#;. For that integral the analog of g is, from (29), —(1—e

'“TZ)e_Tl—Tl
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