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Optical absorption by clusters of small metallic spheres
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An ansatz for the distribution of depolarization factors, based on a theory of the optical response
of nearly touching spheres, is used to calculate the optical absorption of a medium containing isolat-
ed clusters of small metalhc spheres. The calculated absorption agrees qualitatively with experi-
ments over the entire frequency range. In the far-infrared region we find enhanced absorption and

predict a small deviation from an u frequency dependence.

I. INTRODUCTION

The anomalously large far-infrared absorption of small
metallic particles has been the subject of numerous experi-
mental and theoretical studies. ' The particles are gen-
erally spherical, with radii on the order of 100 A and are
contained in an insulating host. Far-infrared measure-
ments can be summarized by writing the absorption coef-
fic1eilf, aS

a=Efco

where f is the volume fraction of the particles, co is the
photon frequency, and E depends only weakly on fre-
quency co, particle material, and radius a. The weak
dependence on particle size suggests that (i) magnetic di-
pole absorption is not involved in the enhanced absorp-
tion, (ii) the electron mean free path, which enters into the
electric dipole absorption, is determined by scattering
within the particle rather than scattering from the surface.

Recent experiments and theories ' suggest that particu-
lar clustering is responsible for the enhancement. Sen and
Tanner have attempted to model particle clusters by ran-
domly oriented needles. By making the lengthlwidth ra-
tio of the needles large, the depolarization factor L along
the needle axis is small, leading to a low-frequency electric
dipole resonance. This resonance can give low-frequency
absorption many orders of magnitude larger than predict-
ed for spherical particles, but one does not find even an

approximate co dependence as in Eq. (1.1). They con-
clude that clusters cannot be considered as needle-shaped
particles.

Curtin and Ashcroft consider three models of fairly
compact, roughly spherical clusters of radii R-2000 A,
much larger than the individual particle radii a. In their
first model, a fused cluster model, the particles are con-
nected by conducting paths. The magnetic dipole absorp-
tion, which is proportional to the square of the particle
size, is thereby greatly enhanced, as it contains the factor

in place of a . In this model a~~ . Their second
model, the cluster percolation model, considers clusters as
spheres with a distribution of filling fraction f of particles

within each sphere. Each spherical cluster has a dielectric
function e(f,co). By choosing a reasonable distribution of
filling fractions f, they find that the Frohlich resonance
factor [e(f,co)+eh] ', eh being the dielectric function of
the host material, leads to enhanced absorption. However,
a(co) ccco rather than co . In their 'third model, the cluster
tunnel function model, each particle in the cluster is con-
sidered to be joined to its neighbor by a resistor and capa-
citor in parallel. This model again gives enhanced absorp-
tion with a(co) =co as co~0, but there may be, large devi-
ations from an co behavior at frequencies that are some-
what higher but still in the far infrared.

With the exception of the fused cluster model, all of
these models have some difficulty obtaining sufficient ab-
sorption together with an co dependence at low frequen-
cies. None of the models gives a reasonable frequency
dependence over the entire frequency range, from the far
infrared to the ultraviolet. The clusters often observed ex-
perimentally have a loose, open appearance, and are nei-
ther needlelike nor compact.

In this work we propose an ansatz for the distribution
of dipolarization factors which is suggested by calcula-
tions of optical absorption by pairs and chains of spheri-
cal particles. The absorption is calculated over the entire
frequency range, from the far infrared to the plasma fre-
quency; the results appear to be consistent with experi-
ments, even though the low-frequency dependence differs
slightly from co .

II. OPTICAL ABSORPTION
OF CLUSTERED SPHERICAL PARTICLES

A. Average dielectric constant

We take a system of clustered spherical metallic parti-
cles with a small volume filling fraction f«1. The par-
ticles are assumed small enough that retardation can be
neglected, and one has only electric dipole absorption. '

The host material is taken to be vacuum (et, ——1). A real-
istic dielectric constant eI, for the host can easily be in-
cluded, as will be discussed below, but the qualitative
behavior of the optical absorption is not affected by the
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value of ei, . The sphere radius a )50 A, and we neglect
effmts of band structure so we use a Drude dielectric
function

e(co ) = 1 co—z /co(co+i /r) (2.1)

for the sphere material.
The average dielectric constant of the medium can be

written in the form

(2.2)

where

~l 3 C' (m)

4 I'; 3, [{)—1] '+ (2.3)

is the average electric susceptibility of the clusters. ' The
susceptibility of a given cluster, denoted by the index i, is
expressed as a sum over modes labeled by the index m,
with depolarization factors n

' and dipole strengths
C~(m), where a is a Cartesian index. An average over
orientation is given by —, g; U' is the volume of the par-
ticles in cluster i and Vis the total volume of the particles
included in the average. The depolarization factors n'
are a set of numbers lying in the range 0 & n' & 1. When
the above averages are performed, the values of n' will
become continuously distributed, leading to the result"'

e,„=l+ff, dn,
[e(co)—1] '+ n

(2.4)

Q C~~(m) =1, (2.5)

which is equivalent to the oscillator strength sum rule,
and

g g C' (m)n' =1,
a=1 m

(2.6)

which states that the average depolarization factor of an
arbitrary cluster is the same as that of a sphere. ' As an
example, for an ellipsoid, where there is only one mode,
with dipole strength 1, along each axis, this sum rule gives
n~+n2+n3 ——l, where n&, n2, and n3 are the depolariza-
tion factors along the three axes. ' For the trivial case of
a sphere, ni nz n3 —————,'. T——he function g(n) in Eq. (2.4)
satisfies the corresponding sum rules

f g(n)dn =1, (2.7)

where g(n)dn is the average number of depolarization
factors lying in the range (n, n +dn), multiplied by their
average dipole strengths. The depolarization factor is
often denoted by the syinbol L; in this work we use n in
order to avoid confusion with L, which labels the mul-
tipolar polarizability of a sphere.

The dipole strengths C~ (m } and depolarization factors
n' which appear in Eq. (2.3) satisfy the sum rules

The optical absorption coefficient is calculated from the
expression

a= Im[(e,„}'~]
C

=—fIm f, dn
CO g(n)
e (e 1—) '+ n

(2.9)

(2.10)

If the host has a dielectric constant es&1, Eq. (2.10) must
be multiplied by (ei, )'~, and the e which appears in the
integrand must be replaced by e/ei, .

Cii (1)
+II 4ir i i (e—1} '+n(~(1)

(2.11)

B. Ansatz for g(n)

We cannot actually calculate g(n) starting with Eqs.
(2.2) and (2.3), since we would need information about the
sphere configurations in all clusters as well as the depolar-
ization factors n' and dipole strengths C~~(m) for each
cluster. Instead, we use calculations for simple clusters
and make an ansatz for g(n) which appears consistent
with these calculations. Although there have been many
calculations of the polarizability of sphere clusters of vari-
ous kinds, no calculation has been able to obtain accurate
results in the limit of touching spheres.

The dipole polarizability of a cluster involves infinitely
many multipolar polarizabilities of the individual spheres
in the cluster. As the spheres approach each other, the
high-L multipoles become increasingly important. Calcu-
lations by Clippe et al. ' and by Gerardy and Ausloos'
for several kinds of clusters are generally restricted to di-
polar (L =1) terms, although some calculations keep up
to octupolar (L =3) terms. Ruppin's has treated a cluster
of two spheres by introducing bipolar coordinates; this
method also becomes inaccurate for nearly touching
spheres.

We shall consider in detail the calculations for a pair of
spheres described in Refs. 19 and 20. The spheres have
equal radii a, and their centers lie on the z axis and are
separated by a distance D. A spacing parameter
a=D/2a is equal to 1 if the spheres touch. These calcu-
lations are more accurate than those of Refs. 16—18 be-
cause multipolar polarizabilities up to order L =50 are
kept; this allows good results to be found for nearly
touching spheres (cr ) 1.01). Since the modes evolve con-
tinuously from those of an isolated sphere as the spheres
are brought together from an infinite separation, each
mode can be labeled by the index I, equal to the order L
of the multipolar polarizability of an isolated sphere Dif-.
ferent symbols 1 and L are used because at a finite separa-
tion between spheres a mode with a given index I involves
infinitely many multipole orders L.

The susceptibility of the pair of spheres, for an electric
field in the z direction, is

1
1ng(n)dn = —, ,

which is valid for f« 1.'5

(2.8)

and for an electric field in the x or y directions,

Ci (1}

4~ 1=1 (e 1) '+ni(1)— (2.12)
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Here C~~(l), n~~(l), Ci(l), and ni(1) depend only on the
spacing o. For spheres with an infinite separation
(o~ ao ), the depolarization factors are
n

~ ~

(1)=n i (1)= 1/(21 + 1), and all of the strength is in the
1 = 1 (dipole) mode: C~(1)=Cj ( I ) = }„C~~(1)=Ci (1)=0
for 1 & l.

How do these modes change as the spheres are moved
into contact? Consider first the I modes, for which the
solution converges rapidly even for touching spheres.
As o decreases, all of the ni (1) increase. For example, as
o goes from co to 1, nj (1) changes from 0.33 to 0.36,
nj (2} from 0.40 to 0.42, ni(3) from 0.43 to 0.44; the
values of all ni(l) remain less than —,'. We see that the
shift in positions is small. There is some transfer of
strength from the 1=1 mode into higher-1 modes. At
o =1 the average depolarization factor is

(n ) = g C (l}n (l)=0 375. ,
E=1

(2.13)

g C(((l)n)((l)+2 g Ci(l)ni(l)=1
E=1 E=](

(2.14)

Of

(n~()+2(ni )=1. (2.15}

Using the value of (ni) given in Eq. (2.13), we find

(n~~ ) =0.25 when o =1, which is a downward shift from
the value (n~~ ) = —,

' at o = ao. The modes for other con-

figurations of spheres, such as a linear chain, a square lat-
tice, or a cubic lattice, behave in a similar way qualitative-
ly as the spheres approach each other if the applied elec-
tric field has a component along the lines joining sphere
centers, and we assume that this is true also for irregular
clusters.

We now imagine carrying out the average in Eq. (2.3)
which leads to the function g(n) in Eq. (2.4). If the sys-
tem contained only identical touching sphere pairs, g(n)
would consist of a continuous function in the range
0 & n & —,', originating from the

~ ~

modes, and a series of
spikes in the range 0.36&n & —,, originating from the l
modes. If the spheres have unequal sizes, g (n} is qualita-
tively similar, but is more closely centered at n = 3.
More complicated clusters can also contribute to g(n) in

which is a moderate change from (n j ) = —,
' at o = oo.

For the
~~

modes, a solution was found only for
cr~1.01, but this gives us important insight into what
happens when the spheres touch at er =1.0. There is a re-
markable shift of the depolarization factors: as cr~ 1

every n(1)~0 for a fixed value of l. The modes continue
to leave the accumulation point n = —,

'
and move down to

n =0, so at er =1 there must be a continuous distribution
of modes between n =0 and n = —,'. This behavior is
similar to that which occurs for two touching cylinders,
where there is an exact solution. ' The small-1 modes car-
ry significant strength with them as they move to smaller
n values, as is evident from Fig. 8 of Ref. 20. Of course,
any given mode eventually loses its strength as it ap-
proaches n =0. Rewriting the sum rule (2.6) in the
present notation, we have

O. B

0.0
0.0 0.2 0.4 0.6 0,8

DEPOLARlZATION FACTOR n
1.0

FIG. 1. The distribution of depolarization factors, g (n).

the range —,
'

&n &1. We assume that the final result of
averaging is the function g(n) shown in Fig. 1, a Gauss-
ian function centered at n = —,'. The true g(n) will de-

pend on the nature of the system; however, the most im-
portant feature of g(n) is that it is quite broad and has a
value considerably different from zero near n =0.

The most speculative part of our ansatz for g(n) is the
behavior near n =0, where the existing calculations for fi-
nite clusters give us no clear guide. If the system contains
finite, isolated clusters, we must have g(0) =0; otherwise
Re(e,„) would diverge as ln(1/e0) in the limit co~0, as
can be shown from Eqs. (2.1) and (2 4). We assume that
near n =0, g (n) ~ n, and propose the function

g(n) =C tanh(8n) exp[ —iu(n ——,
' )2], (2.16)

The absorption coefficient has been calculated using
Eqs. (2.4), (2.10), and (2.16), with parameters in the Drude
dielectric function appropriate for Sn: fico~ =7.7 eV and a
Fermi velocity uF ——1.24&(10 cm/s. The scattering rate
is r '=uF/1 where 1=25 A is a mean free path arising
from scattering by impurities within the spheres rather
than by the surface. We introduce the reduced frequency
Q =co/co& and scattering rate y= I/cour, and plot the ab-

sorption coefficient (in arbitrary units) as a function of Q
for both clustered spheres and separated spheres
[g(n) =5(n ——,

' )].
It is evident from Fig. 2 that clustering broadens and

lowers the height of the Frohlich resonance peak at
Q= I/O 3 and enhances the low-frequency absorption by
a factor of 2&10 to 4X10 . %%ereas the low-frequency
absorption a, for separated spheres is proportional to Q,
it can be shown that for clustered spheres a, is propor-
tional to Q ln(Q '). The ln(Q ') factor originates from
the linear dependence g(n) ~n near n =0. If g(n) were

where iu is a parameter which controls the width of g (n},
8 controls the slope at n ~0, and C is a normalizing con-
stant. 8 is a large constant which increases as the aver-
age cluster size increases, approaching infinity for an in-
finite cluster size. This behavior is consistent with calcu-
lations for an infinite cubic lattice of touching spheres,
which give g(0)&0. ' We have taken iu=7. 4 and
8 =10~ in Eq. (2.16).

C. Calculation of absorption coefficient
and discussion
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FIG. 2. Optical absorption coefficient, in arbitrary units, of a
medium containing small metallic spheres, as a function of re-
duced frequency fl =m/co~. The curves labeled a, and a, refer
to a system of clustered spheres and separated spheres, respec-
tively.

equal to zero between n =0 and some higher value of n,
the limiting low-frequency dependence would be exactly
Q . The ln(Q ') factor causes only a slight deviation
from a straight line on the log-log plot in Fig. 2, so the
departure from an Q~ dependence would not be easily
detected experimentally.

We have used a filling factor f=0.03 and a host dielec-
tric constant eI, ——4.84, corresponding to KCl, to calculate
the actual absorption coefficient of Sn spheres (in cm ')
at the frequency v=10 cm ' or 0=1.6X10 . For
separated spheres, a, =3.1X10 cm ', and for clustered
spheres, a, =8.1 cm ', which is close to the measured
value of 6 cm '. The calculated values of both a, and
a, are proportional to y or ~ ', so they depend strongly
on the, assumed electron mean free path. The low-
frequency enhancement a, /a, decreases if g(n) is made
narrower by increasing the width parameter m in Eq.
(2.16), and it increases if the slope parameter 8 increases.
For example, if 8 = 10, the enhancement is approximate-
ly 10, but the deviation from an Q dependence is more
noticeable. Because of the somewhat arbitrary choices v,
w, and 8, the close agro:ment between the calculated and
experimental values of a, is fortuitous. It is clear, howev-

er, that the required low-frequency enhancement can be
achieved while maintaining an approximate Q frequency
dependence.

III. CONCLUSION

Previous work on clustering models indicates that it is
impossible to obtain sufficient enhancement of the far-
infrared electric dipole absorption while maintaining an
co dependence over a frequency range where such a
dependence is, in fact, observed. We have constructed a
function g (n), a continuous distribution of depolarization
factors, which can achieve the necessary enhancement.
The frequency dependence of the absorption differs from
Q by a slowly varying ln(Q ') factor; although this is a
small effect it would be of interest to confirm this predict-
ed frequency dependence experimentally. Our ansatz for
g(n) is based on extrapolated results of calculations for
nearly touching spheres, and hopefully it will be con-
firmed by more accurate theories. It is not clear that the
standard model, based on spheres with sharp boundaries
and a local dielectric constant e(co), can successfully treat
the problem of two spheres moving into contact, as one
wonders how it can make any difference if the "surfaces"
of two spheres 100 A in radius are separated by 1 A, 0.1

A, or 0.01 A. In this limit one may have to use a nonlocal
theory, in which the cause of the low-frequency absorp-
tion is the generation of electron-hole pairs by the
rapidly-varying electric field near the point of contact.

ACKNOWLEDGMENTS

One of the authors (R.E.) wishes to thank the Universi-
dad Cat6lica de Chile for its hospitality, the Organization
of American States and the United Nations Program for
Development for financial support. We are indebted to
Mr. Roberto Rojas for assistance with the numerical cal-
culations. The Ames Laboratory is operated for the U.S.
Department of Energy by Iowa State University under
Contract No. W-7405-Eng-82. This research was sup-
ported by the Director for Energy Research, Office of
Basic Energy Sciences, U.S. Department of Energy (under
Contract No. WPAS-KC-02-02-3), and by Direccion de
Investigaciones Universidad Catolica de Chile, Grant No.
22/85.

'D. B. Tanner, A. J. Sievers, and R. A. Buhrman, Phys. Rev. 8
11, 1330 (1975}.

2G. L. Carr, J. L. Garland, and D. B. Tanner, Phys. Rev. Lett.
50, 1607 (1983).

3R. P. Devaney and A. J. Sievers, Phys. Rev. Lett. 52, 1344
(1984).

4R. Ruppin, Phys. Rev. B 19, 1318 (1979).
5P. N. Sen and D. B.Tanner, Phys. Rev. 8 26, 3582 (1982).
%. A. Curtin and N. %'. Ashcroft, Phys. Rev. 8 31, 3287

(1985).
~We also assume that the particles do not form compact clusters

with conducting paths, which could lead to large magnetic di-
pole absorption as in the fused cluster model of Curtin and

Ashcroft, Ref. 6.
D. Stroud, Phys. Rev. B 19, 1783 (1979).

9For smaller spheres nonlocal effects become exceedingly impor-
tant, and may be significant even for larger spheres. See, for
example, &. Ekardt, Phys. Rev. 8 29, 1558 (1984); M. J. Pus-
ka, R. M. Nieminen, and M. Manninen, ibid. 31, 3486 (1985};
B. B. Dasgupta and R. Fuchs, ibid. 24, 554 (1981); D. R.
Penn and R. %.Rendell, ibid. 26, 2047 (1982).

~ R. Fuchs, Phys. Rev. 8 11, 1732 (1975). The word "particle"
in this reference is now being considered as an entire cluster
of particles, and the volume U represents the total volume of
the particles in the cluster.
D. J. Bergman, in Electrical Transport and Optical Properties



33

of Inhontogeneous Media, Ohio State University, I977,
proceedings of the first conference, edited by J. C. Garland
and D. B.Tanner (AIP, New York, 1978), p. 46.

t~R. Fuchs, in Electrical Transport and Optical Properties of In
homogeneous Media, Ref. 11, p. 276. The strength Co of the
"percolation mode, "which appears in Eq. (5), is zero because
the clusters are separated so that no percolation through the
medium can occur.
R. Fuchs and S. H. Liu, Phys. Rev. B 14, 5521 (1976).

~4C. E. Bohren and D, R. Huffman, Absorption and Scattering
ofLight by Srnal! Particles (Wiley, New York, 1983), p. 146.

'slf the right-hand side of Eq. (8) is replaced by —,(1 f), t—his
sum rule becomes exact. See Ref. 8 and D. J. Bergman, Phys.
Rep. 43, 3777 {1978).

'6P. Clippe, R. Evrard, and A. A. Lucas, Phys. Rev. B 14, 1715
{1976).

'7J. M. Gerardy and M. Ausloos, Phys. Rev. 8 22, 4950 {1980);
25, 4204 (1982); 27, 6446 {1983).
R. Ruppin, Phys. Rev. 8 26, 3440 (1982).
F. Claro, Phys. Rev. B 25, 7875 (1982).

2OF. Claro, Phys. Rev. B 30, 4989 {1984).
2 R. C. McPhedran and %. T. Perrens, Appl. Phys. 24, 311

(1981).
2~The function g (n) is only indirectly related to the distribution

of sphere sizes. One might expect a narrow distribution of
sizes in a cluster with a small number of spheres to give a

g (n) with more structure than that shown in Fig. 1.
~31n Eq. (2.16) the Gaussian part of g(n), exp[ t—o(n ——, ) ],

resembles the function g(n) found in Ref. 12. The system
treated in that work consisted of randomly located identical
spherical particles. There was a percolation mode at n =0
and a shift in the peak position away from n = —,; this is

qualitatively different from the g (n) of Eq. (16), which has no
percolation mode and no peak shift.

2~8. K. Batchelor and R. %'. O' Brien, Proc. R. Soc. London,
Ser. A 355, 313 (1979).

5R. C. McPhedran and D. R. McKenzie, Proc. R. Soc. London,
Ser. A 359, 45 (1978).
G. L. Carr, Ph.D. thesis, Ohio State University, 1981.


