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%e study the effects of twisting on the low-energy excitations of superfluid 'He-A. They are

small compared to the effects of bending, but they have a different symmetry which makes them

important. The structure of the excitation wave functions has strong analogies with the eigenstates

of a charged particle in a magnetic field. The group velocity is parallel to curl I. The density of

states at zero energy has a contribution proportional to twisting which is odd with respect to k. Be-

cause of this term a density fluctuation produces a fluctuation of the current carried by the excita-

tions. This current fluctuation turns out to be exactly equal to the fluctuation of the C0 term in the

current. This shows that the C0 term fluctuation is carried by the normal liquid and leads us to be-

lieve that the C0 term as a whole is linked to the normal liquid. Since calculations making use of
the Bardeen-Cooper-Schrieffer wave function consider only the condensate, our results offer a possi-

ble explanation for the "angular-momentum paradox. " %'e physically interpret the v„ term in the

Josephson equation at T=0 and show that it is readily obtained from the microscopic description of
the normal liquid. In the same way we deduce from the momentum conservation law an equation of
motion for v„and we show that it can be entirely understood from the microscopic framework.

I. INTRODUCTION

In several papers' we have studied the low-energy ex-
citation spectrum of He-A in the presence of textures.
We have found that the density of states for zero energy is
nonzero, which gives rise to a nonzero normal density at
T=O, together with a corresponding change in the super-
fluid density. These effects are dominantly due to the

bending (1 V)1 of the texture.
In this paper, we shall be concerned by the more subtle

effects of twisting 1 (VX13. Although the modifications
of the excitation spectrum and wave functions due to
twisting are small, they are of essential importance for the
statics and the hydrodynamics of iHe-A at T=O. The
reason is that twisting gives rise to a qualitatively new
feature: the density of states is no longer even with
respect to k. Precisely, we obtain for the density of states
at zero energy
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is an excellent approximation, except in the peculiar case
where
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5lEF. In all other cases we see that
twisting B~~ leads to a small correction compared to the
effect of bending Bi, in agreement with our earlier ap-
proximation. ' The total density of states
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agrees with our earlier result'
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and take into account (1.V)1= —1 X curl/, we can rewrite

A. A.
where e =k I=+ I, depend. ing on whether we consider ex-

citations with wave vectors k parallel or antiparallel to 1;

No is the density of states in the normal state and 5 the
A A.

maximum of the A-phase gap I
bk

I
=5sin(k 1). If we

introduce the notations

in the standard case
I Bi I » I 8~~ I5/EF.

We note that our distinction between excitations with k~
~

parallel or antiparallel to 1 is somewhat artificial. Indeed,
for the energy band which produces the density of states
at zero energy, one can show that there is no physical
difference between creating an excitation k and destroying

an excitation —k. Therefore one can very well work out
A.

everything by considering only excitations with k=1.
However, we feel that our picture is physically more con-
venient and more appealing. We shall defer the proof of
this result to Sec. V. In the following sections we shall in-
stead look for the consequences.

33 79 1986 The American Physical Society



80 R. CGMBESCOT AND T. DOMBRE 33

II. THE CURRENT

We shall first investigate the expression for the current.
There is a general agreement on the following result
for the superfiuid current under static conditions at T=O,

fi A $ A A A
g=pv, + VX(pl) — Col(1 &X 1),

4m 2172
(7)

if we forget momentarily the contribution due to the small
normal density. ' ' Here, Co~ to a very good approxi-
mation. The correction is of order (T, /EF), which is too
small to be considered in this paper.

In hydrodynamics one must use expression (7) since one
assumes local equilibrium. One naturally has to wonder
about the relaxation time necessary to reach this equilibri-
um since hydrodynamics is valid only for very slow
motion compared to this time. In He-8 at T=O there is
no problem since the excitations have completely disap-
peared. Physically, only the superfluid is present and its
relaxation time is very fast, of order of i'/b, . In He-A, as
we will see, the situation is quite different because there is
no gap for the excitations and the density of states N(0)
is nonzero, which opens the possibility of normal liquid
effects.

In order to look for these effects we want to calculate
the current under dynamical conditions. Phase fiuctua-
tions are linked to density fluctuations through the
Josephson equation. To lowest order, which is enough for
our present purpose, we have

5p =p po=——No~ik——
2

where 5p is the particle density fluctuation around some
equilibrium value po. Phase fluctuations of the order pa-
rameter induce corresponding fluctuations in the current.
We will exhibit normal liquid effects by calculating the
response under two different boundary conditions. First,
we can calculate in a collisionless situation: %e start with
the system in equilibrium with an external bath and give a
time dependence to the phase of the order parameter. The
superfluid reacts, but there is no relaxation process which
allows the excitations to come into equilibrium with the
superfluid. In practice, the current is calculated by direct-
ly solving Gorkov s equations with an explicit time depen-
dence in the order parameter. On the other hand, we can
easily perform a second calculation where, in the same
dynamical situation, the excitations are allowed to relax
toward the instantaneous equilibrium given by the super-
fluid, which corresponds to the hydrodynamic regime.
This is done by performing a gauge transformation which
eliminates the time dependence of the order parameter.
One is left with a static order parameter in the presence of
a gauge field, which in our case corresponds merely to a
shift in the chemical potential, 5p=5p/No ———AB,Q/2.
If we calculate the current by solving Gorkov's equations
under these conditions, the excitations are physically in
equihbrium with the gauge field, that is, the superfluid.
The result of this last calculation must obviously be Eq.
(7) with p=po+5p, and this is indeed what is found. This
means that the current fluctuation 5gi, under hydro-
dynamic conditions is given by

A A A
5gi, ——5pv, + curl(15p) — 5p1(l curll } .
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if we take Eq. (1) into account. Upon comparison with
Eq. (9), we obtain

5g, =5p v, + curl(15p) .
4m

The physical picture revealed by Eqs. (7), (9), and (11) is
very simple, even if it is somewhat surprising. The
current in Eq. (7) was considered until now as being all
supercurrent. Actually, we see that the fluctuations of the
first two terms of Eq. (7) are carried by the superfluid
since it already exists in the collisionless situation. How-
ever, the fluctuation of the Co term is carried by the exci-
tations since it appears only when we let these excitations
relax to equilibrium with the superfluid.

It is natural to generalize this result and consider that
excitations are responsible for the whole Co term in Eq.
(7). This can be done in the following way. We start with
a superfluid with a very small density, which therefore
carries almost no current. We work with a fixed texture;
that is, v, and 1 do not change. We raise the density step
by step. In each step we slightly increase the chemical po-
tential, while keeping, at first, the excitation distribution
frozen. This gives an increase in density, 5p, and a corre-
sponding increase, Eq. (11), for the current carried by the
superfluid. Then we let the excitations relax to the new
equilibrium, which gives rise to an additional current, Eq.
(10). If we stop at some density p, we find that the sum of
all the superfluid-current increases is given by the first
two terms of Eq. (7), while the sum of all the currents due
to excitations will just give the Co term.

Our result provides a physical explanation of all the dif-
ficulty' ' encountered in trying to build the hydro-
dynamics of He-3 at T=O. This hydrodynamics would
actually be a dynamics of the superfluid alone. Let us re-
call that all the problems come from the Co term.
%'ithout it the current would be the same ' as in a Bose
condensate of diatomic molecules, each carrying an intrin-
sic angular momentum fil. More generally, the hydro-

The difference 5gi, —5g, between 5gi, and the current
fluctuation 5g, under collisionless conditions will give us
the part of the current fluctuation carried by the excita-
tions. Since the result is fairly obvious physically, the de-
tails of the calculation are given in Appendix A. The
difference between the two terms comes from the fact that
in the hydrodynamic situation the excitations have relaxed
to the equilibrium corresponding to the chemical-potential
shift 5p, , while in the collisionless situation they have not.
Therefore, in the hydrodynamic situation, we have an ad-
ditional number of excitations, N+ (0)5p, each carrying a
momentum A7c =iiikF l, and an additional number of
excitations, N (0}5p, each carrying a momentum
Rk= —AlcFl. This gives rise to an additional current,

A'kF AkF
5gi, —5g, = lN+ (0)5p — 1N (0)5p

m + m
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dynamic equations would be the same as for this Bose
condensate. However, if we have in the current a term
which is physically linked to the excitations and not to the
superfluid, it is easy to understand that one cannot obtain
a satisfactory hydrodynamics without allowing the excita-
tions to be described by some degrees of freedom.

This physical interpretation of the Co term may also
facilitate understanding of the discrepancy between vari-
ous calculations of the angular momentum of iHe-A sam-

ples. Indeed, direct calculations using the symmetry of
the Bardeen-Cooper-Schrieffer (BCS}wave function agree
with the calculations using Eq. (7) for the current only if
Co ——0: they apparently take properly into account the
first two terms of Eq. (7) only, which are related to the su-

perfluid, as we have seen. This can be understood if we
consider that the Co term does not originate from the
condensate but from the excitations; in other words, it is a
term related to the normal liquid. In this view it is not as-
tonishing that calculations working directly with the BCS
wave function miss the Co term, since they clearly consid-
er only the condensate and ignore any normal liquid de-
gree of freedom. We may also say that the condensate
alone corresponds to a highly excited state with the nor-
mal liquid far from equilibrium with the superfiuid. In
contrast, Eq. (7) corresponds to a different state where su-

perfluid and normal liquid are in equilibrium. Naturally,
the real physical situation is described by this last state. It
would obviously be advantageous to have a direct calcula-
tion explicitly showing that the contribution of the nor-
mal liquid to the current is the Co term. However, this
would involve the consideration of very-high-energy exci-
tations which are beyond our study. We just note that the
expression of Mermin and Muzikar for Co is suggestive
of such a result since it contains the one-particle density

matrix for k parallel to I and integrated over k.
We note, finally, a result' of Volovik and Balatskii that

is rather similar to ours. They studied the response of the
current to a time-dependent external potential and found
that Co does not change, except at zero frequency. How-
ever, they interpreted this result as an intrinsic dynamical
invariance of Co within the hydrodynamical regime. This
is in contrast to our physical picture, where the Co term is
linked to the normal liquid. In their paper this normal
liquid plays no role in hydrodynamics. We remark also
that their result is obtained within a gradient expansion
that is invalid and leads to singular results.

A' BP fg~

2 Bt
=p+mv .v +—I-Vgvn s 4 n ~ (12)

where the chemical potential p is the functional derivative
with respect to the density p of the energy density e at

III. THE JOSEPHSON EQUATION

We will now make use of the same kind of arguments
as were used in the preceding section to show that the
problems arising in the Josephson equation come from the
presence of the excitations, and that it is possible to
understand them in detail. The problem is the follow-
ing. * Formal hydrodynamics" gives the Josephson
equation

constant current g. By making use of a Leg endre
transform, we express it with derivatives at constant v„:

p= (e—g v„)—8; (e—g.v„)=a (13)

A, A.
Since we have a small normal density p„—(

(I V)I ~, we
must consider the term —,v„p„v„ in e. However, this term

gives a third-order contribution in p, which must be
neglected since hydrodynamics retains only second-order
terms. At this level we have

E—g'v =pa(p)+m(v, —v„) g —Tmpv, +1 (14)

where the ellipsis corresponds to all the terms which do
not contain v, or v„, and po(p)=IJO(po)+5plNO is the
chemical potential of the homogeneous system at rest.
Equations (12), (13), and (7) lead to [we omit the unimpor-
tant constant pp(pp)]

+—
Vs

A' db 5p m

28' N, 2

——[(v, —v„}1][l curll]+ (15)

=No v, 1(1 curll)—02 s (16)

to the density fluctuation which agrees exactly with Eq.
(15).

In the presence of a normal velocity v„, the distribution
of the excitations of energy Ek is given by f(Ek —k v„),
where f(Ek } is the Fermi distribution, in our case a step
function. Since we have excitations with only k=+1, the
normal velocity amounts to a chemical potential shift

~ ~ ~+kFl.v, for the excitations with k=+1. This modifies
Eq. (16) into

=—(v, —v„).l(1 curll ) .$p

0
(17)

In agreement with Eq. (15). This result is also obvious
from Eq. (16) by Galilean invariance. Since hydrodynam-
ics is independent of any microscopic picture, it is a rath-
er remarkable feature of hydrodynamics that the trouble-
some terms containing v„at T=O are only functions of
I.v„. This feature finds a simple explanation in terms of
our k =+1 excitations. Conversely, since the term

If we want to forget about the normal liquid, it is impossi-
ble to understand the second term since it contains v„at
T=O. Dropping the U„ term leads to a Josephson equa-
tion which is no longer Galilean invariant, as was found
by Volovik and Mineev.

Now we show that this term is directly produced by the
excitations. Indeed, we know that in the presence of a su-
perfluid velocity v, all the excitation energies are shifted
by an amount Sr. v, . If we let the system relax to equili-

brium, a number fikFv, IN+(0} of excitations with k=1
disappear and it appears a number of Rkzv, IN (0) of ex-

citations with k = —1. The result is a contribution:

5p = —irikF v, .I[N+ (0)—N (0)]
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(v, —v„) l(l curll) in Eq. (15) originates from the Co
term in the current, this is an additional reason to believe
that this term has nothing to do with the condensate but
rather originates from the normal liquid.

We note finally that if we consider a collisionless situa-
tion where the excitations do not have time to relax, the
above contribution to the density fluctuation will not
arise. Therefore in this regime the Josephson equation

A A,
should not contain the term (v, —v„) l(1 curll ). Such an
equation would describe physically the motion of the su-
perfluid alone.

g=g'+p„[l (v„—v, )], (18)

where g' is the superfluid current given by Eq. (7) and p„
is the small normal density at T=O:

2
&O 2 4EF

p„=N (0)kF kF 8
ii + — 8 j$2

3
~

(1.V)l= 2PUF (19)

We know the time derivative of g from the momentum
conservation law:

Bt +Bjog~ ——0 . (20)

The time derivative of g, is obtained from Eq. (7) and hy-
drodynamic equations. Finally, hydrodynamics gives that
al/at is second order in gradients. This makes the terms
coming from al/at and ap„lat in the last term of Eq.
(18) negligible, because they are fourth order in gradients.
This leads to

IV. THE MOMENTUM CONSERVATION I.A%

In He as well as in iHe-B, the momentum conservation
law becomes an identity at T=O. Indeed, the super-
current is expressed in terms of the order parameter and
the conserved quantities, and one can calculate its time
derivative from the conservation laws and equations of
motion for the order parameter. Then one can check that
momentum is conserved and identify the stress tensor. In
contrast at T+0, the momentum conservation law is an
independent equation and it provides an equation of
motion for v„.

In He-A one can try to proceed in the same way, start-
ing from the supercurrent Eq. (7). As pointed out by
Volovik and Mineev, it appears impossible to write the
time derivative of this supercurrent as the divergence of a
stress tensor: the supercurrent is not conserved. This
prompted Volovik and Mineev to propose the existence of
a normal fiuid at T=O.

The excitations that we have found provide a quantita-
tive description of the normal fluid and we will show that
this allows an understanding, in detail, of the momentum
conservation law. Actually, we are in situation analogous
to He and He-8 at T+0: the momentum conservation
law gives an equation for v„. It is obtained by starting
from the full expression for the current,

p„l; 1 —(v„—v, ) = —ajo;J— (21)

The tedious explicit calculation of the right-hand side
(rhs) of Eq. (21) is done in Appendix B and here we only
give the result. We first note that the rhs of Eq. (21) is
indeed proportional to 1; as required by the lbs. This is a
remarkable result since again the calculation of this rhs
involves only hydrodynamics. However, this result is not
obtained for the most general hydrodynamics. We have
to assume some specific values for the unknown coeffi-
cients entering the hydrodynamic equation" for a1/at,
namely

fi 1
ai —a2 ———,ai+a2 ——PCO . (22)

2m p —Cp 2ply

The second relation is imposed by hydrodynamics. " The
third one can be obtained from the requirement that for
T =0 the terms proportional to a;uj" disappear from the
al/at equation. This is a natural requirement since these
terms are present even if there is no texture. In this case
there is no normal liquid and the v„ terms should all
disappear. The first relation comes from microscopic
theory' ' (naturally, we have to consider here that

p —Co~0).
Since

a(l v„,)/at=1 av„, /at,

we can introduce the scalars v„,=1 v„,. Then Eq. (21)
can be transformed into (cf. Appendix B)

a 1 ac,p„—(u„—u, ) — 1 V)& 1

3 al
Co +Vu„V x l =0, (23)

2m at

a rather simple result for the equation of motion for v„.
The al/at term has already been obtained under another
form by Volovik and Mineev. s

Now we interpret Eq. (23) as the equation for the time
evolution of the momentum carried by the normal liquid.
Since p„av„/at=a(p„v„)/at, the av„/at term is the time
derivative of the normal current p„u„(all the currents are
parallel to 1). We have also seen that the fluctuations of
the Co term in the current are carried by the excitations.
Therefore the au„/at term and the aCO/at term together
represent the rate of change of the momentum carried by
the normal liquid. This rate would be zero if the super-
fluid did not act on the excitations. The other terms in
Eq. (23) represent the momentum transferred from the su-
perfluid to the excitations, as we wi11 see now microscopi-
cally.

If we insist we are at T=0 and in the hydrodynamic
regime, the excitation distribution is very simple to
describe since we have only excitations for k = +l.
Indeed, by definition of the normal velocity, the excitation
distribution is given by 6(Ak.v„—Ek), where e is
the unit step function. This gives a distribution
e(«... E,) i«=kg a—nd e( «F.„E,) if—-
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—(Ek+k v, —k v„)=0, (24)

where we have written explicitly the contribution k v, of
the superfiuid velocity to the excitation energy. The exci-
tation energy Ek+k v, can only vary because of the
motion of the superfluid (otherwise the excitation moves
at constant energy). On the other hand, v„can vary be-
cause of its time dependence or because the excitation
moves with its group velocity vs. This leads to

5Ek
dt dt

n s g n
——k (v —v ) —v V(k v )=0. (25)

We see that the freezing of the excitation distribution
leads to a time dependence for v„.

We obtain dEk /Bt from the expression for Ek,
A A

Ek= —5k Bi .
~

A A,
Because of the motion of 1, Bi changes. Since k=+1, the
main contribution to B,Ek comes from the components of
B,Bi parallel to 1. With/ B,Bi———Bi B,/, this leads to

A A5E"
=5(k/)B, ~/= 5"' ~/ Vx/

at ' Bt [(/.V)7[ at

since 1 B,l =0. This result is justified in detail in Appen-
dix C, where the effect of twisting, neglected in Eq. (27),
is also considered. The result is to replace Bi by Bi jyB.

We will show in the next section that the group velocity

vs of the excitations is given by

(27)

5 B 5 Vxl
kF [Bi+(5 /4EF)B~~] kF

~
(1 V)7

~

(28)

where the last approximation holds for the standard situa-
tion (Bi

~
&& (B~~ ( /EF. This result and Eq. (27) leads

from Eq. (25) to

k= k—F/. We note that u„ is the only physically mean-

ingful quantity, as opposed to v„, since k=+1. Now
since colhsions conserve momentum they are unable to

A
give a net transfer of an excitation from k=/ to k= —7

vice versa. Therefore the two excitation distributions are
frozen and no excitation will be created or destroyed. If
because of the motion of the superfiuid the energy of an
excitation changes, this will not change the occupation of
this excited state. The condition that the distributions are
frozen can be written explicitly as

In closing this section let us point out that hydro-
dynamics is not expected to apply to the real system and
our discussion is only of formal interest. Indeed, hydro-
dynamics holds only if the excitation mean free path / is
small compared to the typical length L for variations of 1,
so that we can define a local v„(r). We have
7-use-&/kp and we can estimate the relaxation time
from an extrapolation of the "high"-temperature expres-
sion'

A/r-(ktt T) /EF(ktt T, )

down to the crossover temperature TL, where the thermal
energy ks TL is equal to the typical energy of the quan-
tized spectrum (MuF /L )'/ [this is the temperature where
only the zeroth energy level is occupied and where the ex-
pression of the normal density saturates to its zero-
temperature expression, Eq. (19)]. The relaxation time for
T ~ T~ will be longer than this crossover value ~I . We
have rL, -mL /R, which leads to //L -L j(0»1, where

ge ——Au+/5 is the He-A coherence length. Therefore the
condition / «L is never satisfied.

V. EXCITATION WAVE FUNCTIONS

In this section we want to find the wave functions of
the quasiparticles trapped in a texture. We have already
considered this problem' and found the corresponding
Green's functions, excitation spectrum, and wave func-
tions. But, in this treatment we have systematically
neglected correction of order 5/EF. However, it is known
from gradient expansions that such terms give important
contributions in hydrodynamics because their symmetry is
different from the dominant ones. For example, it is im-
portant to retain the q in the argument of the gap hi, +q,
even if this contribution is of order 5/EF compared to
similar terms coming from the kinetic energy. Here we
want to handle our problem to a similar level of approxi-
rnation.

For our purpose we do not need the Green's functions.
All the information that we want is contained in the exci-
tation wave functions, and we will solve directly for them
as it has been done by Ho et a/. ' (the mathematics is ba-
sically the same, but the physics is more transparent).
The spinor wave function (Pi, Pz) is solution of the Bogo-
liubov equations

p /2m —p —,'(h.p+p 5, )

—,
' (h~ p+p. d, *) —(p /2m —IM) 4z 4'z

A kg A A ()+Vu„VX/ —
i
(/. V)/

i

—(u„—u, )=0.
dt t

(29)

If we take C0 ——p and take into account Eq. (19) for p„,
we see that Eq. (29) agrees exactly with Eq. (23) for the
superfluid contribution to B(p„u„)/Bt We note .that the
BCu/Bt term represents the momentum change of the ex-
citations in the hydrodynamic regime under a change of
chemical potential of the superfluid. Therefore we could
also obtain this term from Eq. (24) by taking into account
the effect on the excitations of a shift in chemical paten-
tial.

(30)

where p, =kF/2m is the chemical potential, p= i V, and-
in He-A

[b, ,(r)+ia, (r)],
kg

with h, )-h, 2
——0 and I =h, ) Xh,p.

We consider a low-energy excitation and look for its
wave function around some arbitrary origin 0 in space.
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The spinor wave function (P„Pz) for such an excitation
must have around 0 a rapid spatial variation e'"' with

k=kFl(0). We take the x, y, and z axes along di&(0),

b,z(0), and 1(0), respectively. We can set, without loss of
generality,

(4i 0z) =e ' (4»42» (32)

where (t'ai, f2) is slowly varying on an atomic scale. This
gives the Bogoliubov equations:

—i m V —luFdz
—1 2 ib, V—+kFb, —,'i d—ivV

i d—» V+kFE,' —,'i di—vh» —,
'

rri 'V +iuFd,
(33)

h»(0) [p—kFl(r)]

T

h(0) [p—kFl(r)]

4i

(34)

We note that this approximation is in agreement with
what we would obtain from a semiclassical approxima-
tion' by assuming p and l(r) almost parallel to the z axis
in order to have a small energy. Then

p h, (r)=kFb„(r)+p h(0)

to lowest order in the small quantities b,,(r) and p h(0),
in agreement with our off-diagonal term. In the same

way, if we set p =krl(0) + p', we have, for the kinetic en-

ergy, p /2m —p=uFp, ', which corresponds to our approx-
imation. We note also that some features of our preced-
ing solution will be missing since we used a rapid varia-

tion e'"' for the wave function instead of e, as we do
here. In order to recover the same results, we should keep
the r dependence in d, (r).h. However, the missing terms
are small and they do not have the symmetry we are look-
ing for.

The approximation made in our preceding work corre-
sponds to retaining only the iurB, and the kryo, terms.
The others are expected to give corrections of order 5/EF
at most. However, the term b,(r}.V has a different sym-

metry which corresponds precisely to the q dependence in

hq+z mentioned above. So we keep this term, but we can
simplify it somewhat: Since we are interested in the wave
function around the origin, we may approximate h(r} by
h(0}. Since this amounts to neglecting the spatial depen-
dence of h(r), we have consistently to drop the div/k term.
This is also necessary if we want to keep the Hamiltonian
Hermitian. In the spirit of our preceding work, we

expand —in the dominant term kgb, (r)—the spatial vari-
ation of h to first order, which gives h, (r)=r Vh, . Since

(dh) 1=—h dl, we obtain h, (r)=—l(r) d(0) with

l(r)=l(0)+(r V)1. Finally, as before, we neglect the
V /2m, which gives a correction with no particular sym-
metry. This leads to

We now solve Eq. (34). This rather simple if we notice
that the only operator appearing in the Hamiltonian is

p —A(r), where

A(r)/kF ——l(r) —Rl, (r) .

This is similar to the problem of a charged particle in a
magnetic field with vector potential A(r). We know that
the only physically relevant field is VX A(r), and since we

have linearized the r dependence of l(r), this field is actu-
ally constant over space. We find

V X A(r) =kFV X l(r) =kr B (35)

because V1,(r)=0 since 1 =I implies 1;B~l; =BJI,=O.
Therefore a more convenient vector potential is

A'(r) = —,kFB Xr, (36)

and we can eliminate all the physically irrelevant parts of
l(r) by the gauge transformation g, 2

——exp[i/(r)]it'i 2,
with V/=A —A'. This amounts to replacing A and A'

and P by P' in Eq. (34). It is clear that our eigenstates
will be closely analogous to Landau levels.

We choose a new set of axes X, I;Z We can .safely as-
sume that B is in the x-z plane since a rotation of Ri and

dz in the plane perpendicular to 1 is equivalent to an ir-
relevant overall change of the phase of the gap. We take
Y along y and Z along B. The component pz of p along
B is a good quantum number and the wave functions have
a plane-wave factor exp(ipzZ) As for L. andau levels, we
have degeneracy because the operators p~+ A~ and

pal+A~ commute with the Hamiltonian but not with
each other. This is clearly seen if we use a Landau gauge,
for example, Ail=kFBX, Ax' ——Az' ——0, instead of A'.
The two preceding operators become pz+k+BY and pz,
and we can take p~ as quantum number. Physically, the
wave function will be centered around Xu pi /kFB and-—
the freedom in the choice of this point gives rise to the de-
generacy. We set X'=X—Xo.

After the change of axes, Eq. (34) gives, with the Lan-
dau gauge A", the one-dimensional problem:

uF(pzsin8 pxcos8)o i+ —[(pzcos8+pxsin8 }cri+krBX'cri] P"=cop",
kp

(37)
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f"=exp i a—
2 X',

2
(38}

where 0.
$ 2 3 are the Pauli matrices and 8 the angle be-

tween B and the x axis. As in our preceding work, this
can be solved by a pseudospin rotation. By a rotation
around axis 2 we can eliminate pzo3 and keep only pea. I,
which makes px only appear in the off-diagonal terms.
This is done by setting

length (yuF/58)'~2-($0L)'~ [our preceding results with

wave functions localized along k=1(0) correspond to
cross sections of the present ones along l(0); this gives a
localization length (yuF /58 )

' /cos8=(go/Bi )', in
agreement with our earlier results]. Naturally, as for Lan-
dau levels, we could use another gauge and have another
set of eigenstates free along X and localized along Y. The
localization length

which makes o i+i cr3~(a, + io&)e'" W. e choose

1
sinu =—cos8,

y

cosu =— sin8,
2EFy

y= cos 8+ 2
sin 8

4EF

(39)

(s/2z, kFBy )'"-(g~)'"5/zF
would be much smaller. This corresponds to the very
strong anisotropy factor 5/2ZF, which makes —in our
problem —the effects of twisting B~~ much smaller than
those of bending 8&.

As expected, the spectrum (46) is almost identical to
our earlier result. Indeed, from the expression of the
wave function, the component k„of the wave vector k
along Bz is given by

which gives

[Orr3 'YuF(Px —Po)&i+—SBX a2]X =~X

where

cos8
pzcos8+ppsin8=pz y'

which gives

(47)

5 pz
cop= — pz pp =

2
sin8cos8 1—

ykF
'

y2

52
2

. (41)
4EF

a = (p+BF), a+= (p —BF), [a,at]=1 .1 + 1
P P

2 P 7

Then Eq. (40) reduces to

(ru coo)Xi+i (2y—B suF
)'~ a Xz ——0,

(ro+ruo)X2 i (2yB suF—) '~ aX1 =0,
which leads to

(42)

(43)

The term pp gives a plane-wave dependence in I and is el-
iminated by setting X'=exp(ipoX)X The .resulting equa-
tion is solved by introducing the new variable

p =(58/yuF )
' X' and the harmonic-oscillator operator:

A
coo= —5k, =—5k, ," cos8

(48)

2 [(p, kF/ ) +(p~ —kFI~)~]+uFP, , —
kF

(49)

and yB-&i. Therefore the effect of twisting is very
small, except when bending is completely absent, in which
case y=5/2ZF instead of y=cos8. We notice that when
only twisting is present, the energy bands still have a gap
5(2'/kF)'~ which is much smaller than the gap pro-
duced by bending. This is in contrast with the result of
Ho er a/. ,

' who do not take effects of order 5/ZF into ac-
count. We also note that the similarity between the spec-
trum (46) and the one of a charged particle in a magnetic
field is quite deep. Indeed, in the classical limit the Ham-
iltonian of our problem would be

2y85uF a aXi —(co —coo)Xi .

The solutions are

Xi(p) =fF(p),

(2pyB suF)'~
X2(p) =i fF i(p),

CO+ COp

(44)

(45)

which is basically the Hamiltonian of a charged particle
with an anisotropic mass tensor in a magnetic field.

The group velocity is easily obtained from Eq. (41).
The energy depends only on pz and, therefore, the group
velocity is along B. This is what is expected physically:
In the classical limit the particle is trapped by the magnet-
ic field in closed elliptical orbits and is only free to move
along B. The group velocity for the p =0 energy band is

where fF (p) are the harmonic-oscillator eigenfunctions,
and the eigenvalues are given by

o~ P
CO=

+coF =+(coo+2pyB 5uF },p ) 1 .I /2 (46}

As we mentioned, our wave functions are very similar
to those of a charged particle in a magnetic field. They
have a plane-wave dependence along 8 and are localized
in the plane perpendicular to 8 with an arbitrary center
leading to the degeneracy. Our solutions (45) are free
along F and localized along X with a typical localization

Bop
Ug =

~pz

N+(0)= g ~
Pi(0)

~

5(coo), (51)

where the sum is over all states of the p =0 energy band.
In this case X2 is zero and we have, from our solution,

which coincides with Eq. (28).
The density of states X+ (0) at the origin at zero energy

for states with k=1(0) is given by
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~" 2Ek8F F V

1/2
u

cos
2

(52}
in agreement with Eq. (1). It is easy to perform the same

calculations with k= —1(0). It amounts to making
uF ~—UF in (most of) our equations and gives

cos —=— 1 — sin8
u 1 5
2 2 2EFy

and therefore

(54)

Xp 2EF
N+(0) = y8 —8 sin8

F
(55)

The summation is performed by g~ f dprdpz, but one

needs to add a prefactor (58/yu~)'~ /(2m. ) in order to
have properly normalized eigenstates. This leads to

NP 78UF 2 u
(0)=+ 2 5 2

cos (53)

with

EP 2EF
N (0)= y8+8 sin8

F
(56)

We see that the crucial point in obtaining the difference
between N+(0) and N (0) is that, because of twisting,
the angle u of our pseudospin rotation is shifted slightly
away from u =n/4 and the sign of this shift is odd in

k 1(0).
It is interesting to note that this odd contribution to the

density of states is already present in gradient expansion,
although in a singular way. Indeed, Gorkov's equations
read

—6 k —b, p+ —,
'

i divh

2
—h'k —6'p+ ,'i div—b,' co+gk+k ~+ p

m Zm

gk(r)=1 (57)

[it is obtained from Eq. (30}by assuming a rapid spatial variation e'"']. To first order in the gradient, we can neglect

p /2m. If weset

g =g +g, P =A P+A 1,
where g is zeroth order and g' first order in the gradient, and

(58)

4
~0

hk
y

h~ p —,'i dive, ~—

6 p ——,'i divh

(59)

we have

g =(oi ~0) i g =go~lgo ~

—1 1

The density of states at zero energy is obtained from

(60)

N+(0)=No f dpi, Nl, (0)= — 1.VX1 (63)
4m F

and, similarly,

Nk(0)= ——Img»(co=is), @~0,1

7r
(61)

where gii is the upper left matrix element of g'. After
performing the algebra, we find two contributions to
Imgi&(iE). The first gives zero after integration over g»,
whether because the terms are odd with respect to gk (we
assume particle-hole symmetry) or because the explicit in-
tegration over gk gives zero. The second is

N (0)= 1.V&&l
4k@

(64)

for k= —I. Equations (63) and (64) are in agreement with
the odd contribution in Eqs. (55) and (56). Naturally,
Eqs. (63) and (64) make no sense by theinselves since one
of the density of states N+(0) or N (0) is necessarily
negative. One needs the even contribution to recover a
physically meaningful result. However, this cannot be ob-
tained from a gradient expansion since it is not analytic.

Nk(0)= —
2 i 2 (k1)1 Vxl .(~'+4+

I
~k

I

')' ~kF'

For @~0we obtain a singular contribution from the node
of the gap 5k=0 and /k=0, in contrast with the full
solution which is regular, the contribution to N(0) com-

ing from a range of values for k and gk. Nevertheless, if
we integrate Eq. (62) over gk and k with k=1, we find

VI. CONCLUSION

In this paper we have studied the rather subtle effect of
twisting in a He-A texture. Broadly speaking, the effects
which we have considered are of order 5/EF compared to
those produced by bending. However, they have a dif-
ferent symmetry, which makes it necessary to take them
into account to understand the physics of He-A. Our
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basic result is that the density of states is no longer even
with respect to k when twisting is taken into account.
The odd contribution proportional to twisting is usually
small compared to the even one. However, it has impor-
tant effects.

The most important effect is the following. If in a
fixed texture there is a density fluctuation, a correspond-
ing fluctuation in the current appears to be carried by the
excitations. This current fluctuation turns out to be ex-
actly identical to the fluctuation of the Co term in the
standard expression for the current. Therefore the fluc-
tuations of the Co term in the current are carried by the
normal fluid and not by the superfluid. It is very tempt-
ing to generalize and to view the Co term as being linked
to the normal fluid and not the superfluid. It would be
caused by the deformation of the excitation wave func-
tions under the influence of the condensate. The conden-

sate alone would give a current pv, +(1/4m)V Xpl, but it
corresponds to a highly excited state. One goes back to
the ground state by removing excitations, but in this pro-
cess the additional Co term in the current appears. This
interpretation leads to an easy explanation of the differ-
ence between calculations of the angular momentum of
He-A samples using the BCS wave function directly and

the other ones that make use of the current expression6:
the former take only into account the condensate and miss
the contribution of the normal liquid. Our explanation is
a local one, in contrast with the global one recently pro-
posed by Stone et al. ,

' where the difference is attributed
to surface currents.

Our results allow us to understand physically the origin
of the term in the Josephson equation containing v„at
T=O: one can calculate microscopically the density fluc-
tuation due to the excitations produced by the appearance
of a normal velocity v„. The result is precisely the term
required by the Josephson equation, and its expression is
directly proportional to the odd term in the density of
states. In the same way we have been able to rewrite the
momentum conservation law as a rather simple equation
of evolution for the normal velocity. This equation lends
itself to a simple physical interpretation: at T =0 the ex-
citation distribution is frozen and the equation for ci,v„ is
a simple translation of the adiabatic evolution of an exci-
tation energy under the influence of the moving super-
fluid.

In order to obtain the above results, one needs a precise
knowledge of the excitation wave functions. This has
been obtained by an approximate method where the spa-
tial variation of the order parameter are linearized. This
approximation is well suited to the local study of these
wave functions. The problem turns out to be very similar
to that of a charged particle with an anisotropic mass ten-
sor in a magnetic field parallel to curl/. Accordingly, the
motion of an excitation is free along curll and the group
velocity is along curl/.

APPENDIX A

In the collisionless regime we have to solve

i B,G, (r, t') A—(t)G, (r, i') =6(t c'—)

for the matrix Green's function G, ; P (t) is given by

ae'&("

(Al)

G, (r, r') =

x G'(r, r')

e -iP(t)/2

e
—I'P(t')/2

ei P(t')/2 (A3)

One finds that G' satisfies Eq. (Al), except that the phase
factor has disappeared and p is replaced by p —B,(I}/2.
We linearize the time dependence of P(t) since only B,P is
of interest in hydrodynamics: ct)(t)=tB,ct). After Fourier
transformation with respect to t t', we—find, for the
particle-particle component G,

" of the matrix Green's
function,

G,"(co,p) = 9' "(co+ ,' B,P, p ,—' B,P), —— (A4)

where 9 satisfies Eq. (Al) without the phase factor. On
the other hand, in the hydrodynamic regime we perform a
gauge transformation on the Hamiltonian and this
leads —for the corresponding Green's function Gs —to Eq.
(Al) with p replaced by p —B,(t}/2 and without the phase
factor. In other words,

GI,"(co,p, )= 8 "(co,p, ——,
'

B,)I}) .

Therefore,

m(g~ —g. )=Z f '. &(G~"(~ p) G"(~,p)j-
2l&

(A5)

(A6)

=g f . k[u"(~)—u"(~+T)a,y)]
k 2lg

(A7)

to first order in B,(l}. The integral over co is not zero be-
cause in the change of variable co+ —,

'
B,(t)~co the position

of the cuts of the (time-ordered) Green's function 9 is
also shifted. This leads to

m(gI, —g, )= g f . kS "(co),
2l&

(A8)

where the clockwise contour C encircles the real axis and
cuts it at co=0 and co= —,'B,P. The result is expressed in
terms of the density of states

Nk(0) = — Im/k'(0+—i 5)

(A2)
(H,——p, )

and H, is the kinetic energy. The phase factor e'('(" can
be removed by the transformation

e i/(t)/2

We are grateful to K. Maki and D. Rainer for useful
d1scusslons.

in the following way:

m(gh g ) 2 c)t4 y ~k(0) .
k

(A10)
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Taking into account

N+ (0)= g Nk(0),
k +kf1

(Al 1)

Therefore a superfluid velocity produces a density fluctua-
tion

5p= g f [9'"(co—k.v, ) —9'"(co)]
2l 7T

we obtain Eq. (10).
In the same way, if we consider the effect of a phase

gradient in the Josephson equation, we can handle it by a
gauge transformation, which amounts to co~co —k.v, .

= —v, .g kNk(0),
k

which agrees with Eq. (16).

(A12)

APPENDIX 8

We sketch here the steps which lead from Eq. (21) to Eq. (23). We restrict ourselves to second-order terms in the stress
tensor, so the modifications' to the hydrodynamics of Hu and Saslow" are negligible and we make use of their equa-
tions and notations. The time derivative of the current equation (7) is calculated from (ir!=1)

1 A A A
p+V g=o, u,'= a,~,— 1—a, 1xl,

2m

g~ ——p+v" v'+ 1 VXv", (81)

T 5
li —— v" Vl;+Pl X%'—(ai5jlk+ap5iklj )ljuk,

2m 2m

where 5;~ =5ij —1;lj. In the mass conservation law, we can take Eq. (7) for g; because the p„contribution would give
higher-order terms For. these reasons, terms containing c);Co-c);p will be discarded.

Making use of Eqs. (Bl) and (22) and trying to express the result as a divergence of a stress tensor, one obtains, after
some algebra,

g';+5 o',j=— 1;(1'VXl)— 1;(1'VXl)+ IB;1 1X[(l V)v"+(v" V)l] —(1B;v")(l'VXl)I,
zm '

zm
'

2m

where 1, 1 „Co — 15-+2 Nkjalk+u'g'+4 6~1 Buk-2 i!i-4 e'ka(plk}
2m 4m 2m 4m

(82)

(83)

with p=l X/. The pressure P is defined by

I' =pp+v" g —e,
where e is the energy density. This leads to the Gibbs-Duhem relation,

1 1
d;P =pa, &+ga, v" Va, v' i}'!—a, l ——y, a, (a 1„),

2m ''' 2m

from the defining relation

de=p. dp+v" dg+A, 'dv'+ f dl + iI)„jd(c) 1„),1 1

(84)

(85)

(86)

where

&'=g —pv", ~, =y, ajar,, e,,„V—Vl„. —
When cTij is closely compared with the stress tensor of Hu and Saslow,

1aj =P5; + pk &;lk+g;u" +u,'A,' —(ail;0'+atlj%;)
2m

s [&) [2) (3) [3) 11+ 4 ~ijklkV ~ +f3 i! &j pq3+jq &i l p1+j! eipq+1 iq apl]lpc)qu!4m

(87)

one finds them rather similar. If we forget momentarily the terms including c)qu!", one obtains that cT;j —iT;j is merely
given by

1;[uj"1 VXi+[1X(v". V)l]j J
—=8;j . .

2m
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Now since g —g' is Galilean invariant, there is an identity obtained by comparison of ()J(cT(J—o,j ) and the rhs of Eq. (82)
under Galilean transformation. One finds

();(I;/ V x I }+V.(I;/ x();I}—3/;B, l.V x I +I (),./ x c),.1=0,
which can be checked directly. This allows us to rewrite Eq. (82) as

e

~ g
3cp A A Co

g';+()J((rj+AJ. —BJ}=— I;[I+V(v"~ I)] V xl —/;I Vxl,

(810)

(811)

where

and

Cp
/c!k(Vuk x/)J

2m
(812)

A.

d; A;, =I;I.(d, / XVuk+V Xld, u„") 31;/„V—u,
" V Xl+/„d;u„l V Xl 8;I —I X/, Vu„" .J tJ (813)

If we identify o,1+A,&
—B;J with cr;J,

Jji=~ij +~ij Bij (814)

Eq. (811) leads to Eq. (23). When the terms with Bsu(" are
compared in Eq. (814), they are found to coincide and
this leads to the explicit expressions for the y's of Hu and
8aslow:

(i) (&) (2) (3)
Vl +Pl Fj. + Vl 4m

'

(815)

II II II 8m p

in agreement with their general relations between the y's.

APPENDIX C

Eq. (27).
Since we are interested in the behavior of excitations for

small time intervals, we shall treat the temporal variation
of I to first order and write near the origin r =0, t =0,

l(r, t)=l(0)+(r V)/+tB, l, (Cl)

where c},l has only two components in the plane perpen-
dicular to l(0), B,l„and 8, / .

M
~

In hydrodynamics, the motion of I is by definition very
slow, so that at each time local equilibrium can be
reached. We may therefore consider that the excitation
wave functions follow adiabatically the motion of I and
are determined as the instantaneous solutions of the Bogo-
liubov equations:

In this appendix we study how the excitation energies
are affected by a motion of I and justify the result given in

6~(0) [p—kF/(r, t) ]

h(0) [p—kF/(r, t)]
i/z—UFPz

~ ~

where l(r, t) is given by (Cl) and we have taken the wave vector of the excitation k=kF/(0).
Now performing the set of transformations leading in the static case to Eq. (40}, we get from (C2) an equation with

essentially the same structure as (40) (here we use the notations introduced in Sec. V),

cos8 5 sin8
coo+t 5(),I cri —yuF(p» po) t —(),/ —o)+(5BX'+t5d, l&)oi X'=c0X' .

y
t X (C3)

c)Ek cosl9tkt ix=5
Bt y

((),/. V x l ) .
yB

We see that the component of B,l perpendicular to 8
((),l„with our choice of axis) may be eliminated by a shift
of the X' coordinate. This corresponds physically to a
translation of the wave function's center along X' at velo-
city —(),/„/B. In the same way, the t-dependent term in-
volving (),1„(r) may be eliminated by a redefinition of po
which is of no importance for the energy. Finally, only
d, l~cri is able to modify the energy value and we find,
from a comparison with Eq. (46),

For k= —kF/(0) we would obtain the opposite quanti-
ty. Therefore our result is actually

P

(c),/ V XI), (C5)
dt yB

and thus takes the form anticipated by the qualitative ar-
gument presented in Sec. IV [see Eq. (27)]. If we keep yB
in Eqs. (27) and (28) instead of using the approximate re-

sult yB=Bi, we obtain Eq. (29) with
~
(I V)l

~

replaced
by yB. From expression (19) for p„, this is just what is
needed to agree with Eq. (23), even for the exceptional sit-
uation Bi &B))~/EF.
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