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Photoemission spectroscopy for the spin-degenerate Anderson mode[
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A procedure that calculates excitation properties for the Anderson model is reported and applied to pho-

toemission. In the mixed-valence regime, hybridized in the ground state, the one- and two-electron impur-

ity configurations generate two spectral resonances. In the Kondo regime, a phenomenological expression
describes the narrow peak at the Fermi level.

In the last decade, the computed equilibrium properties'
of dilute magnetic alloys attracted new attention to the An-
derson model. 3 Applications of the Hamiltonian to chemi-
sorbing surfaces, ' mixed-valence materials, and heavy
fermions —systems outside its original scope —raised in-
terest in its excitation properties, featuring particularly the
valence and core-level spectral densities. "0" For large
impurity-orbital degeneracy N~, these" ' and other" dy-
namical properties were recently computed. For Nf-2, in
contrast, only special exact results are available.

%e present here a numerical renormalization-group'
method to calculate excitation properties for spin degenera-
cy. Applied, as an illustration, to valence photoemission
spectroscopy, the procedure tests perturbative results,
bridges the gap between the analytically soluble limits Nf -1
and Nf ~, and, most important, probes the as yet unex-
plored parametrical half-space mixing in the ground state of
the singly and doubly occupied impurity configurations.
The resulting twice-resonant spectra mimic the double-
humped photoemission curves characteristic of valence fluc-
tuations. '4 Thus, even to the well-documented photoemis-
sion problem the computation contributes important quanti-
tative conclusions.

Defined as in Ref. 1, the Anderson Hamiltonian
comprises spin-degenerate s-wave conduction states ck

forming a structureless half-filled conduction band, of width
2D, orthogonal to a spin-degenerate impurity state cf. For
occupations nf-0 (configuration f ), nf= 1 (f') and nf-2
(f'), the impurity energies are 0, et, and 2ef+ U, respec-
tively. A coupling between the conduction and impurity
states transfers charge between them at the rate I", hybridiz-
ing the two f' configurations with f and f'. At zero tem-
perature, the impurity spectral density is

Pf (& ) = D x I (F I cfI/) I
'g (EF Et e)——

th«actor D making the right-hand side dimensionless; l/)
and lF) are the ground state and an excited eigenstate of
0&, with energies Eq and E~, respectively.

Table I lists the parameters defining four illustrative com-
puter runs for pf(e). The fixed orbital energy ef= —0.1D
and transition rate I -0.01D (( lefl virtually exclude from
the ground state the configuration f, unproductive to pho-
toernission. Four interconfigurational gaps 6+ = ~~+ U,
then probe initial occupations ranging from ng ~ 2

(4+ = —0.05D) to nP =1(d,+=0.—05D), generally produc-
ing two spectral resonances, one for the ground-state irnpur-
ity configurations f', another for the configuration f2.

In order to interpret the spectra displayed in Fig. 1 we
first discuss a trivially soluble limit. For 1 0, with
5+ & 0 (5+ ( 0), the ground state combines the doubly
occupied (singly occupied) impurity with the half-filled, un-

perturbed conduction band. A single photoemission line of
spectral weight two (one), position at ei= —6+ (e,- —ef),
corresponding to the transition f2 f' (f' f ), then
constitutes the inset spectrum in Fig. 1(a) [Fig. 1(c)]. With
5+=0, the configurations f' and f' hybridize and the
ground-state impurity occupation nf equals ~, Two photo-

emission lines, spectral weights 1 and T, centers at
—d+ and ~~ = —~f, corresponding to the transitions

f' f' and f' f, respectively, make up the spectrum
inserted in Fig. 1(b). For finite I', one expects the fi f'
(f' f ) resonance to broaden to a half-width at half max-
imum I' (2I"), proportional to the number of final-state
holes'5' in the impurity orbital, and shift' to the energy

—4~ (&i = —ef —2t) ~+&+), where

a', -~, —(I/~) in(.,/a', ) . (2)

TABLE I. Model parameters (ratio 5+/I ), ground-state occupa-
tion in)), and other data extracted from four illustrative computer
runs. In all cases, I 0.01D and ef- —0.1D. The fitting of the
resulting spectra with the smooth curves in Fig. 1 (see text) yields
the central energies ~~ and ~2, and the spectral weights S~ and S2,
of the higher- and lower-energy resonances, f' f and fi f',
respectively. The small deviations of nP, computed with less than
1% uncertainty, necessarily equal to the total integrated spectral
density, from Si+S2 are due to minor features (also reported in

Ref. 11) near e —D (not shown in the figure). The remarkably
strong f2 f' resonance produces the discrepancies between ng
and ng(phen), Eq. (3), discussed in the text.

Run t) +/I Si+Si nt/ nglphen) ei /D e&/D

B1
B2
C

—5.0
—0.5

0.5
5.0

1.88
1.63
1.43
1.00

1.88
1.62
1.45
1.05

2.00
1.82
1.73
1.23

0.123
0.118
0.108

0.053
0.012
0.005

This overview accounts for the main features of Fig. 1.
For lb+ i =0.05D [Fig. 1(a)], a Lorentzian of area 2, width
I', central energy e2~ —4+ [cf. Eq. (2) and Table I], fits
well the calculated fi f' resonance; since lb+ l » I', the
f' f resonance has insignificant spectral weight, making
the expected hump at ~I ~~~ imperceptible and making the
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FIG. 1. f-orbital spectral densities (calculated for A-3) for the
four parametrical choices in Table I. For each of the runs A, 81,
and C (for run 82), a solid (dashed) line fits the calculated densi-
ties, shown as filled (open) circles, and a solid (dashed) horizontal
arrow points to the static limit, Eq. (5). The vertical arrows indicate
the perturbatively calculated (see text) central energies ei, for the
f' f, and a2 for the f2 f' resonances; these resonances are
broadened, shifted versions of the photoemission lines constituting
the inset (1 0) spectra. The additional, sharp Kondo resonance
at ~ 0 in spectrum C is further discussed in Fig. 2.

For spin degeneracy, that expression reads

ng(phen) = 1+ (1+2$i /Si) (3)

For 5+ —~ (4+ ~), since ng 2 (nP 1) while
Si 0 (S2—0), Eq. (3) becomes exact, but for
~LL+ ~

-0.005D, Table I proves it inaccurate. Responsible
for the discrepancy are the relatively small binding energies
of the f2 f' resonance. At such energies, since e(I,
the final state couples the conduction band strongly to the
impurity, hence invalidating Eq. (3).

Albeit based on a crude model, this discussion pertains to
the interpretation of photoemission spectra for mixed
valence compounds. Since a fluctuating valence requires a
transition rate I (between configurations Q and f"+')
larger than the interconfigurational gap 5+, the lowest-
lying-multiplet resonances must derive their spectral ~eights
from borh initial configurations, f" and f"+'. Contrary to
the assumption underlying Eq. (3), this conclusion limits
(error of 10'k, comparable to the discrepancies in Table I)
the accuracy' of valences extracted from the ratio between
spectral weights, S„/S„+i.

To the run with 5+ 0.005D similar considerations apply,
yet curve 82 in Fig. 1(b) sets off two differences relative to
curve Bl: (i) Around the energy c~, the enhanced f' f
resonance proves the initial configuration f' more prom-
inent, and (ii) close to the Fermi level, the inferior fit of
the dashed peak (half-width I') to the open circles marks a
sharper resonance. This incipient narrowing, more intense
for larger 5+, announces the approaching Kondo"
(nP- 1) limit.

Representing the Kondo regime, in Fig. 1(c) a spectrum
for nearly unitary ground-state occupation shows a spike at
zero binding energy, dominating a Lorentzian resonance.
The latter is due to the f' f transition. The former
manifests the Kondo effect: Practically excluded from the
ground state, the f2 and f impurity configurations couple
virtually to the two f' configurations and generate an anti-
ferromagnetic interaction between impurity moment and
conduction spins. This produces ultimately a singlet ground
state's and, center at the Fermi level, half-width (propor-
tional' to the low-temperature susceptibility, hence easily
evaluated') I'» = l.l & 10 4D, a resonance in the conduction
band.

To corroborate this interpretation, by showing that the
Kondo spike in Fig. 1(c) has half-width I'x, Fig. 2 expands
the narrow peak and superimposes it on the universal curve

spectrum resemble" the Nj-I (or U-0) spectral densi-
ty. '0 In contrast, for I&+I ( I', the configurations f' and f'
hybridize strongly in the ground state, and the f' f reso-
nance grows while the f' f' peak diminishes. For
~h+ ~

-0.005D in particular, which fits accurately the calcu-
lated f2 f' and f' f resonances, Fig. 1(b) displays the
continuous line BI, a linear combination of two Lorentzians
of areas 2 and 1, widths I and 2I, central energies ~2=—&2

and ei~~i (see Table I), respectively. The linear coeffi-
cients, visually adjusted along with the energies ~~ and ~2,
yield the spectral ~eights S~ and S2 under the two peaks,
respectively. As Table I indicates, these comply well with
the sum rule Si+S2= ng.

Less satisfactory is the agreement between ng and the
phenomenological expression' derived by assuming the im-
purity and conduction band decoupled in the final state.

p~(~) = (Tm I') Re[(e+ iTx)/irx] (4)

Here the factors I/iTir (within the square brackets) and
T~I on the right-hand side align the Doniach-Sunjic
law, '

p~ —F. , a = 1 —2(5/n )2, for the Fermi-level
phase shift' 5=m/2 and the broadened binding energy
E-~+ I'I

l(, , with the exact static limit 9"

py(0) = (Tn I') sin'(w nP /2) (5)

The open circles in Fig. 2, calculated for l"-0.005D, mak-
ing I j; nearly three orders of magnitude smaller, show that,
devoid of adjustable parameters, Eq. (4) describes universal-
ly' the Kondo limit.

Our numerical approach generalizes the renormalization-
group transformation that calculates' thermodynamical aver-
ages. In Ref. 1, the sequence of conduction energies
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FIG. 2. The Kondo resonance, in reduced spectral density tnor-
malized by pf(0), Eq. (5}] and logarithmic energy (normalized by
the Kondo resonance width I ~, defined in Ref. 18) scales. The
filled circles (absolute scales on the top-horizontal and right-hand
vertical axes), obtained by subtracting the Lorentzian f' fo reso-
nance from spectrum 1C, correspond to I"~ 1.1&10 D; the open
circles, calculated for the same ef and 5+, but for I 5 x 10 D, to
I ~-3.5&10 D. Both spectra conform to the universal Eq. (4), a
generalized Doniach-Sunjic law represented by the solid line.

e&- ADA & (j-0,1, 2, . . . , A) 1 arbitrary) defines a
discrete set of conduction statgs. Projected onto the basis
formed by this set and the impurity states, the Anderson
Hamiltonian is made codiagonal and then diagonalized itera-
tively. The thermodynamical averages over the resulting,
discrete eigenvalues are smooth functions of the tempera-
ture. In contrast, since the golden-rule energy-conservation
relation produces only discrete transition lines —offsprings
of the discretized conduction band bearing no resemblance
to continuous spectra —this method is inadequate to calcu-

late excitation properties. For quadratic unperturbed Hamil-
tonians, a straightforward procedure ' circumvents the diffi-
culty, but for many-body Hamiltonians an alternative for-
mulation is necessary.

We therefore consider the sequence of conduction ener-
gies eo= +D, e&= ADA ~ ' [j=1,2, . . . , z C ( —0.5, 0.5)
fixed arbitrarily]. The prescriptions in Ref. 1 then turn this
sequence into a discrete set of conduction states, project the
Anderson Hamiltonian onto the basis comprising this set
and the impurity states, make it codiagonal, and diagonal-
ize it iteratively. For fixed z, Eq. (1) yields discrete photoe-
mission lines; to produce the continuous spectra in Fig. 1, at
each photoemission energy we average (numerically) pf(e)
over z, in the range —0.5 & z & O.S. Equivalent, for
single-particle Hamiltonians, to the procedure in Ref. 2I,
this approach generates, for U-O, at any given frequency,
spectral densities differing from the analytical solution' by
less than 4%. For finite U, the excellent agreement
between the horizontal arrows pointing to the exact limit (5)
in Fig. 1 and the spectral densities extrapolated to ~ =0 evi-
dences good accuracy even at the lowest energies, evaluated
in the last iterations' of each run, and hence most vulner-
able to the accumulated numerical error.

We have described a reliable numerical procedure that
calculates excitation properties for the spin-degenerate An-
derson model. The computed photoemission spectra cover,
for the first time, the parametrical half-space e~( —U/2,
confirm the general conclusions drawn from large-
degeneracy calculations, " ' and satisfy the relevant exact
relations. Equally applicable, at zero or finite temperatures,
to such spectroscopies as Mossbauer, x-ray absorption, and
bremsstrahlung isochromat, uniformly accurate over the
parametrical space, the method presented here provides an
important alternative to the large-Wf approach,
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