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We show that the velocity and shape of two-dimensional dendritic crystals can be determined by solving
the steady-state evolution equation at finite surface tension. We find that in the zero undercooling limit,
crystal anisotropy is necessary to obtain finite velocities. Furthermore, the ‘‘solvability’’ condition at zero
anisotropy and small undercooling is essentially singular in the velocity. Finally, we comment on the exten-
sion of our results to finite Peclet number and to three dimensions.

The problem of velocity selection for dendritic crystals has
been studied for many decades, without adequate resolu-
tion.! Specifically, under careful experimental conditions,?
the tip of the growing crystal assumes a parabolic profile and
moves at constant velocity, both of which are experimental-
ly reproducible functions of the undercooling. Ivantsov?
solved the steady-state heat-transport equation at zero sur-
face tension and showed that there exist parabolic profiles
which uniformly translate; however, the velocity and tip ra-
dius were left undetermined.

A new conjecture regarding the mechanism of velocity
selection in dendritic growth has been recently advanced.**
This conjecture was motivated by the growing evidence that
surface tension acts in a similar way in controlling pattern
formation in various diffusive systems. The essential idea,
which has been dubbed ‘‘microscopic solvability,’*® is that a
unique velocity and shape emerges from solving the steady-
state equation of motion for the interface at finite surface
tension.” Specifically, finite surface tension introduces a
solvability condition via essentially singular terms, and it is
this condition, invisible in perturbation theory, which deter-
mines the velocity. The original continuum of solutions
seen in the absence of surface tension thus breaks down to
a discrete set of solutions, each with a unique velocity. The
final selection from this discrete set is then a dynamical
question, with typically only the fastest-moving solution be-
ing stable.®

The first demonstration of this mechanism was in the
case of the Saffman-Taylor finger.-!! Independently, mi-
croscopic solvability was seen to apply to simple models of
interfacial evolution!? designed to mimic the physics of den-
dritic growth. Surface tension also plays the same role in
determining the velocity of a gas bubble rising in a tube of
liquid.!3

In this paper, we present the first demonstration that mi-
croscopic solvability also controls velocity selection for the
equations governing diffusion-limited dendritic crystal
growth. The key to this demonstration is the realization
that the method developed by Vanden-Broeck!? for his
analysis of microscopic solvability in the case of Saffman-
Taylor fingers can be applied to our problem. To simplify
the analysis, we will focus in this paper on the limit of small
undercooling, which is the relevant one for most experi-
ments to date. Also, we work exclusively in two dimen-
sions. At the end, we will briefly describe the extension of
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our methodology to both larger undercoolings and to three
dimensions, the details of which will be discussed else-
where. 14

The equations of motion for two-dimensional dendritic
growth can be written as

DV T=T ,
T(Xim(S))=TM—'%K(S) , (1)

GDI(@A-VT)—(2-VT)]=—Lv(s)-d ,

where y is the surface tension, L is the latent heat of
fusion, and ¢, and D are, respectively, the specific heat and
thermal diffusivity, assumed for simplicity to be equal in the
solid and liquid. The interface is given by x;,.(s), has cur-
vature «(s), and moves with normal velocity - v(s), s be-
ing the arclength. The last equation relates the discontinuity
in the temperature gradient going from liquid (/) to crystal
(¢) to the heat production. Finally, the temperature ap-
proaches T)—A (T, the melting temperature, A the un-
dercooling) at large distances from the interface.

It is more convenient for our purposes to use a Green’s-
function representation of these equations.!> Assuming a
steady-state solution, translating in the y direction with
velocity v, one can derive the integral equation

B-in) =L [T Kol x=x)+ [y (x) =y () )12)
" - oo

x @@=y gy 2)

=y'(x)
[1+y'(x)22

and the dimensionless parameters are given by

~ v ¥Tu
Do M

"1,

A

; A=
L/c,

In this form, the entire problem has been reduced to finding
the function y(x) and the number ¥, both as a function of
undercooling A.

Before proceeding, we would like to make one modifica-
tion of the above equation. In previous work on simplified
models,'? a major role was played by the crystal anisotropy.
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This underlying microscopic anisotropy enters into the con-
tinuum equations in two places. First, the surface tension
acquires an orientation dependence. Assuming an underly-
ing cubic symmetry, we can model this by replacing x by
k[1—e€cosd46(x)], where 6 is the angle between the inter-
face normal and the crystal axes.!® Also, the correction for
the effect of attachment kinetics, which we neglect here, ac-
quires a dependence on 6.

At large distances from the tip, the curvature decreases,
and it can be shown that the interface must approach the
Ivantsov solution y;= —x?/2p appropriate to zero surface
|
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tension.!” Here p is the Peclet number, related to the un-

dercooling by the two-dimensional form of the Ivantsov re-
lation,

A=+mpererfc(\Np) . 3)

Specifically, the first correction to the Ivantsov parabola is
given by a(p)/x, where a can be explicitly computed.!* It
is therefore useful to adopt an idea of Pelce and Pomeau!®
and use the Ivantsov solution to eliminate A in Eq. (2).
The equation now becomes

— ok (x)[1—-€ecos4g(x)] = ;lr—f:’ Ko({(x=x)+[y(x) =y (x )PV =r® gy’ — (y— y;) . @

This form has the feature that the contribution to the in-
tegral from large values of x’ now vanishes, which is impor-
tant for the numerics.

We expect that solutions will exist for only a discrete set
of values for the velocity ¥. This happens because the re-
quired approach to the Ivantsov parabola at large x is, in
general, inconsistent with imposing a smooth behavior at
the tip. To study this, we make use of an approach
pioneered by Vanden-Broeck!® in his work on the selection
of the Saffman-Taylor finger width. Specifically, we relax
the above equation at the tip (x =0) and allow for the pres-
ence of a finite cusp. Then, there will exist solutions at all
v. Finally, the selected discrete set emerges as the special
values of the velocity at which the cusp magnitude vanishes.
This is the condition of ‘‘microscopic solvability.”” At the
same time, the dependence of the cusp magnitude on velo-
city can be extremely informative as to the nature of the
solvability condition near the small velocity limit.

We change variables to z(q), y=y;+2z x=tang,
0=g=m/2. At infinity, g==/2, z(g)=0, and z'(q)
= —a(p). We then assume that the curve is symmetric
around the tip, and discretize the interval for ¢ via
¢ =mi/2N. This converts Eq. (3) into a set of coupled non-
linear equations for z, i=0,N—1. These equations are
solved using the IMSL Newton'’s iteration solver zsPOw to
converge to a solution. A typical computation uses 100
points and takes several minutes on the VAX 8600. Oc-
casionally, we use more points to check on the accuracy of
our results.

In the remainder of this work, we will focus on the limit
of small undercooling, developed in Ref. 18. This is not
essential, but it serves to simplify the analysis somewhat.
As shown there, the limit can be taken by rescaling lengths
by a factor of 2p, transforming the Ivantsov parabola to
yi1=—x% Then, defining ¢ via ¥=2cp%, and using the
small distance expansion of the Bessel function, one finds
the equation

{1—ecosl4tan=1(y") 1}

= —f:; In

Furthermore, « is zero in this limit; the first correction is
O(Inx/x?)1° and therefore z'(w/2)=0. In addition, the
suﬂl_)sidiary condition derived by Pelce and Pomeau that
z dx must vanish provides an independent check on the

c ”n
(1+y2)n2

(x—x')2+(y—y’)2 ’ (5)
(x—x)2+ (y—y)? '

0

M
accuracy of our numerical solutions. We find that this con-
dition is satisfied to better than a part in 10°.

Let us call the value of y’ at the tip (approached from the
right) f. Then, f(c)=0 is the solvability condition. We
find that, at zero anisotropy, f is always negative, with a
magnitude that is a rapidly decreasing function of the veloci-
ty c¢. In Fig. 1, we plot —Inl — f(¢c)] vs 1/V/c at zero aniso-
tropy. Note that the data demonstrate that f does not go
through zero at any finite value of the velocity ¢. Based on
the behavior seen in the local models of interface evolu-
tion'2 at zero anisotropy and in the A =4 Saffman-Taylor
finger,!! we expect the behavior of f to be controlled by the
function e~%/¥¢ for small ¢. Caroli, Caroli, Roulet, and
Langer!® have also advanced arguments that this behavior is
to be expected, with power-law corrections, in this model at
infinite undercooling. The graph is consistent with this ex-
ponential form, there not being yet sufficient data to test for
the nature of power-law corrections, if any. Thus, the lack
of solvability is due to terms exponentially small in the res-
caled velocity ¢. This immediately explains why we cannot
use any simple asymptotic expansion technique, even

15
e =0,N =100
12F
o
a
—_ ]
S °r -
o— a
|
_— o
£
| el
-]
L]
aQ
3_ o
a
0 1 i 1 1
0 3 6 9 12 15

1/7/C

FIG. 1. Cusp magnitude vs velocity at zero anisotropy.
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though the physical velocity (even after rescaling by p?) is
small, as we shall now show, for finite crystal anisotropy.

If there is no solution in the small undercooling limit, we
must ask why the scaling derived in this limit agrees with
experiments. The answer is that the most important correc-
tion to the above computation is not finite Peclet number
effects, but rather finite crystal anisotropy. In Fig. 2, we
plot f(c) vs c at three different values of €: 0.05, 0.1, and
0.15. Now, there is a zero crossing of f(c) at a selected
velocity ¢ =c*(e), corresponding to an exact steady-state
solution. As the anisotropy is increased, the root moves to
larger velocity, a qualitatively reasonable result. We can
show numerically that the value c* is the largest possible
velocity. We did not find additional solutions but cannot
rule out the possibility that these exist for velocities less
than 0.002. In any event, we expect that in analogy to
Saffman-Taylor fingers, the largest velocity solution will be
the only stable solution and hence the physically meaningful
one.

To repeat, we have found that at small undercooling, the
velocity of the dendrite tip is given by o= (2p¥w)c*(e).
We have shown how to calculate c¢*, and demonstrated that
c* approaches zero for zero anisotropy. Because c¢* is small
for physically meaningful values of the anisotropy, the
curve shape is, in fact, barely distinguishable from the
Ivantsov parabola. Our results are in agreement with
heuristic arguments that the general Ivantsov solution
breaks down at finite surface tension,!®2° and show that this
breakdown is indeed due to a mismatch between conditions
imposed on the curve near the tip and infinitely far from
the tip.

We expect that in three dimensions, we will again find
that the scaling of Pelce and Pomeau,!® & = c¢*p?, will prove
to be correct with c* again a function of the crystal anisotro-
py which vanishes in the isotropic limit. At finite Peclet
number, we expect that solutions will again require finite
anisotropy. We will present numerical results on these cases
in a forthcoming publication.!*

Finally, we would like to comment on the idea of ‘‘micro-
scopic solvability,”” which has proven crucial to providing a
resolution to the problem of dendrite velocity selection.
Without surface tension, there is no length scale with which
to derive a velocity and it is therefore immediately apparent
that surface tension must be included. The possibility of
the breakdown of the continuum of Ivantsov solutions in
the presence of surface tension should perhaps not have
been unexpected, foreshadowed as it was by the earlier
work on singular perturbations in flame propagation.’
Armed with this notion it is then natural to derive a dimen-
sionless ‘‘similarity equation’’ (in the sense of Barenblatt?!),
in the manner of Eq. (4), in which only the dimensionless
‘‘eigenvalue’’ ¢ appears.

We wish to emphasize, however, the fact that surface ten-
sion acts to drive velocity selection in a very distinctive
manner. The fact that dendritic growth, Saffman-Taylor
fingers, the local interface models, and the rising bubble of
gas problem all admit a formulation in terms of a mismatch
function, whose vanishing is the subsidiary ‘‘solvability’’
condition which must be imposed on a larger continuum of
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FIG. 2. Cusp magnitude vs velocity at € =0.05, 0.10, and 0.15.

solutions is by no means an obvious corollary of the singu-
lar nature of the surface tension as a perturbation. Even
more noteworthy is the existence in all these models of a
‘“‘critical’’ end point, at which the mismatch function only
vanishes for zero surface tension. This is true for zero an-
isotropy in the dendrite and local interface models, at A = %—
in Saffman-Taylor and, presumably, at Froude number
=0.23 in the gas-bubble problem. Furthermore, at these
critical values, the mismatch shares a common exponential
dependence on the inverse square root of the surface ten-
sion.

The existence of these ‘‘critical’’ points has a striking
consequence. One would naively expect the selected value
of ¢ to be of order unity. If this were the case, the correc-
tions to the Ivantsov shape would also be of order unity. In
physical terms, this would imply that the dendrite would ex-
hibit large deviations from a pure parabola. However, as
mentioned above, the fact that ¢ vanishes at zero anisotropy
means that c¢ is small for realistically small anisotropies.
The deviations from the Ivantsov shape are then corre-
spondingly small. Also, the shape correction is smooth, ex-
hibiting no structure on the microscopic scale. These two
(as yet not fully understood) facts were responsible for the
difficulty in understanding the essential role of surface ten-
sion in this system in the first place.

After completion of this manuscript, we learned of the in-
dependent work of D. Meiron [Phys. Rev. A 33, 2704
(1986)] which reaches many of the same conclusions re-
garding velocity selection in dendritic growth.
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Foundation under Grant No. NSF-PHY82-14448 (DAK).
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