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Nonperturbative renormalization-group calculations for continuum spin systems
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Wilson's exact smooth-cutoff renormalization-group (RG) equation for continuum spin Landau-Ginsburg

models is sho~n to be equivalent to an easily constructed, infinite set of partial differential equations that

provide a natural system of successive approximation for numerical calculation. It differs from other RG
approaches in that an infinite number of couplings are included at each level of approximation. By way of
illustration, preliminary results are presented for Ising-model critical exponents in three dimensions.

A continuing challenge for the improvement of renor-
malization-group (RG) calculations in both critical phe-
nomena and quantum field theory is the proliferation of in-
teractions that occur as the RG transformation is carried
out. ' So far, the successful application of the RG approach
has generally depended on one being able to construct a
transformation in which only a small number of couplings
are needed to produce good results. This approach has been
sufficient for isolating and describing the essential universal
features of many systems. Yet, the need for greater accura-

cy and wider applicability requires an approach that will han-
dle a far greater number of interactions without creating an
impractical increase in computational complexity. '

This Rapid Communication presents a new method of RG
calculation that makes some progress in this direction.
Indeed, an infinite number of couplings are included from
the very beginning. The method is based on a new ap-
proach to solving functional differential equations, present-
ed here and applied to Wilson's exact RG equation for con-
tinuum spin Ising systems in d dimensions. '~ It is quite
simple and easily generalized to more complex sysems. It
essentially involves constructing an infinite set of partial dif-
ferential equations (PDE's) equivalent to the original func-
tional differential equation. These PDE's then provide a
natural system of successive approximation for numerical
calculation. Though nonperturbative in character, it has a
certain similarity to the effective-action expansion in quan-
tum field theory in that it involves an expansion of the ef-
fective RG Hamiltonian in an infinite series of local effec-
tive Hamiltonians arranged according to the powers of mo-
rnenta which couple the Fourier-transformed spin variables.
Thus, it may have application to the problem of spontane-
ous symmetry breaking in quantum field theory ~here per-
turbative approaches have run into difficulties. 6

%e start from Wilson's exact smooth-cutoff RG equation
for the effective Hamiltonian 4 [o,t].
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and the prime on the gradient indicates that it is not to be
applied to the momentum conserving 8 functions in H.

Next, we expand H[s, tl in powers of moments:

3

H[s, t] =Ho[s, tl+H3[s, t]+ X H4t[s, t]+

where

H„[s,t] = X apt„(t)Fptn[s]

Fpt„[s] = fat(. , q» (qt+ +q. )

x s4, , . . . , s4, Foo[s] =&(0) (3b)

and the fpt(qt, . . . , q„) are homogenous monomials in

{qt } of degree p, with the index i present when needed to
keep track of degeneracies. Because of the momentum con-
serving 5 function we have, for spatially isotropic systems,
only one linearly independent functional of degree 2:
f3-qt q3, and three of degree 4: f4~ = (qt q2)', f43

(qt ' q3) (qt ' q3) f43 - (qt q3) (q3 q4), since all powers
of qt3 can be re-expressed in terms of powers of q, qt, i &j

Next we substitute the above expansion into Eq. (2) and,

= (2sr) ef deq, oc is the rescaled Fourier-transformed spin
variable (a function of momentum q), 5(0) represents the
infinite volume of the system, and 3 is a free parameter
which must be properly chosen (5- I3,') in order that the
equation have a critical fixed point. This fixed-point value
then determines the critical exponent q according to
q= —2d'. To proceed, we integrate the gradient term by
parts and substitute W=~'+~, s~-p(q)oc, and

H[sq, t] ~'[$ '(q)s&, t], where P —lj2 I a&a & isq

the T- ~ fixed point of Eq. (1), and Q(q), with tt (0) =1,
is a momentum-dependent spin-rescaling function required
in order to make the integrals K„, defined below, finite.
Our resulting equation for H [s, t ] is then

H = dH s~[B(q—) +q ~ V4]
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by expanding 8(q ) and C(q) where appropriate, express the resulting series in terms of the functionals F~;„[s], which we
then regroup according to their contribution to 8H~; [s,t]/ot Limiting ourselves here to the cases p =0, 2 we get

8 H—o[s, t] =d Xao„FO„—Bog nap„FO, +Ep Xn(n —1)ap„FO„2—2E2$ a2„Fp„2+Cog nmap„ap Fo„+ 2+
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where the terms indicated by are contributions from
H&„[s,t] with p «4, 8(q) Bp+ 82q2+ C(q)- Cp+ C2q2+, and E„-f C(q )q".

If we swished, we could now determine a set of ordinary
differential equations (ODE's) for the a~(t) by equating
the coefficients of F~[s 1 on both sides of Eq. (4). Howev-
er, given the introductory remarks, one does not expect this
approach to give any advantage over already existing tech-
niques. Instead we define new functions W& (x, t )

—X„a~(t)x" and construct PDE's for the W~, ( xt) that
yield precisely the same ODE's for the a&„(t) as Eq. (4).
These PDE's then provide an alternate representation of
ilson's exact RG equation which is not only a good start-
ing point for numerical computation, but also has a number
of other very attractive features which will be shown below.

Given the coefficient structure of Eq. (4) it is a simple
matter to construct the desired PDE's, namely,
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A still simpler form results if we substitute W2 (x, t )- W2(x, t)/x, but we will not reproduce it here.
One can easily extend this construction to include higher

p values. The p -0 equation has already been derived and
studied (in somewhat different contexts) in an early paper
by Nicoll, Chang, and Stanley, ' and more recently by
Tokar. They demonstrated its equivalence to order ~ with
exact ~-expansion results, and also its suitability for ap-
proximate (2i=0) numerical cakulations in three dimen-
sions. However, neither investigation recognized the p = 0
equation as the leading member of an exact hierarchy of
equations which could be derived and studied to higher or-
ders.

The hope is, of course, that such a hierarchy may provide
a method of successive approximation to the exact solution,
the higher p values contributing only small corrections to
the (presumed) dominant behavior of the small-p terms.
Because there is no small parameter available with which we
can generate (as with the e expansion) exact analytic solu-
tions to higher and higher orders, we are instead forced into
the rather ad hoc scheme of simple truncation of the hierar-
chy with the question of convergence to be answered empir-
ically. In this respect the approach is similar to other non-
perturbative approaches such as finite lattice' and scaling
field methods. ~'0 Such approaches appear to share an ad-
vantage over exact analytic expansions in that one can try to
optimize their results through an appropriate choice of what
should be redundant parameters in an exact approach. In
fact, some such optimization appears to be necessary for
such nonperturbative approaches to be useful in low orders

of approximation. "0" In my own results, to be discussed
below, I indeed find that the effect of the omitted higher
powers of momenta can, to some extent, be controlled by
the appropriate choice of the redundant rescaling function
P(q).

Before proceeding to numerical study of the equations it
is f~rst useful to study the physica1 significance of the func-
tloll Wp(x, t ). This can be done by using Wilson's exact
generating functional for spin correlation functions3

Z(j) exp i j(q)o. p+~o, 0]

where f denotes functional integration. Following Wilson

and Kogut3 this can be written in terms of the Hamiltonian
H[s, t] as

Z(j) = lim expH[s, ', t]

where

s,'(q) =p(q) j(qe ') exp[pp(t) —dt/2]

P~(t)-(I+5)t+q2(1 —e ")
~e may then calculate the free energy for the system in a
spatially uniform (reduced) magnetic field A=H/AT by
expanding H[s', t] in «rm«f Eqs. Oa) aild (3b) and sub-
stituting

J(q) = e" *I (x)A = (2~)'t S(q) .
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Then all contributions from H&[s,', t] with pWO integrate to
zero, resulting in the exact expression for the reduced free
energy per unit volume:

f(K,h) = —I/5(0) lnZ(h)

0.6

0.3

= —lim e ~Wii(he" +a++2" t) (6)

where for completeness I have included K = J/ka T, the re-
duced coupling, which is contained implicitly in H [s, 0].

Thus Wa(x, t) is a useful function indeed! It is interest-
ing that here it plays the role of the (magnetic) Gibbs free
energy, while the analogous function for sharp-cutoff RG's
is its Legendre transform, the Helmholtz free energy, or ef-
fective potential. " Thus, knowing the zero field Wa(x, t),
one can calculate directly equations of state, crossover func-
tions, etc., for the entire phase diagram.

At the h -0 critical point we have (for 6 =5')
lim Wa „;,(x,t) Wii'(x)

g~ oo

the critical fixed point. The corresponding free energy at
E-E, for arbitrary h is

f(K„h) = —lim e ~Wo „;,(he" +a + t "t)
g~ oo

%hen there are no dangerous irrelevant variables" we can
write, to leading order,

f(K„h) = —lim e-~W;(he '+' +~' )

For the limit to exist we must have Wii (x)cc x t"+a + t

as x cc, and thus f(K„h ) —const x h'+s, where
S- (d —2+g)/(d+2 —q), the standard hyperscaling form
for the free energy at E,.'3

If we now turn to the approximation Eqs. (Sa) and (Sb) it
is easy to determine the asymptotic fixed-point solutions for
large x, namely, Wo'(x)~x", and W2 (x)~(A —2)x"
+constxx'" 4, where u-d/(I+6+d/2), and A is a
redundant parameter contained in the rescaling function

$(q) =e a /(Aq2+e 'a ) chosen to allow comparison of
our numerical results with those of the scaling-field method
where the same function naturally appears. ' %e note the
surprising result that the approximate equations yield the
exact asymptotic behavior for Wii (x), '~ i.e., that its
behavior dominates that of the other W~'(x) at large x.
This is a natural result of the feedback structure of the
hierarchy, and thus it gives us some encouragement that
corrections from the higher-p contributions might be small.
These asymptotic results are also a useful guide in locating
the numerical solutions to the fixed point equations, which
we now discuss for the case d = 3.

Rather than integrate the PDE's (Sa) and (Sb) from ini-
tial values Wii(x, 0) and Wz(x, 0) to locate the critical fixed
point, it is simpler and more useful to solve the fixed point
equations 8W~(x, t)/Bt=0 directly. The problem then be-
comes one of ODE's. For Axed parameters 3 and 4 we can
determine the fixed point solution by locating initial values
Wii'(0) and Wz(0) such that the integrated equations have
the correct asymptotic behavior. For improper choices of
the initial values, the integration instead results in singular
behavior which is easily distinguished from the desired
result. Once the fixed point is found, the equations linear-
ized about this fixed point are then solved to determine the
critical exponents.
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FIG. 1. The fixed point initial values W2(0) vs —6 for several
values of A. The dashed lines indicate a region where the numerical
routines have difficulty converging, though there is good evidence
that the solutions continue to exist.

%e find that as functions of A and 5 the solutions of our
equation have a structure similar to that of other nonpertur-
bative linear RG approaches. ' " For fixed A, fixed-point
solutions exist for a continuous range of 5 as shown in Fig.
1, where we have plotted the fixed-point initial value
Wz(0) vs —b, for several A values. In contrast, the solu-
tion of the exact RG equations would exhibit a single verti-
cal line (i.e., independent of A) at the physical value of5'- —ri/2. The exact structure is due to the presence of a
marginal redundant operator in the RG transformation
which generates the line of physically equivalent fixed
points parametrized by W2(0) s's's .Because the truncated
form of the operator is no longer necessarily marginal or
redundant, we get instead the results of Fig. 1. Typical of
these results, however, is the existence of a marginal opera-
tor at that value of 6 where the slope of the curve becomes
infinite, and we follow the standard practice' ' of choosing
that value as the best approximation for the physical b '.

From Fig. 1 we see a strong nonuniversal dependence of
5' (and hence g) on A. This is also true for the thermal
eigenvalue yi(h'(A)) which determines the exponent
v- I/yi. In fact, over the range of A studied so far, 2~ A

~4, the dependence is nearly linear and well approximat-
ed by g =0.01+0.07(A —2), and v =0.63 —0.08(A —2).
Thus we must choose a "best value" of A for our approxi-
mation. In Fig. 2 we show Wz(KiIt'x) when 5 = 5"(A ) for
several A values. %e see that A indeed controls the
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FIG. 2. The fixed point solution 8'z(Ei]t2x) at 5-5 (A) for
several values of A.
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strength of the higher p contributions to H[s, t]. If, without

any more rigorous criterion, we choose A to roughly mini-
mize the "size" of @'2(EPx), say 2.1«A «2.3, we get
q -0.024 %0.007 and ~ -0.617 %0.008. These values are a
little lower than currently accepted estimates'7 from field
theoretic, high-temperature, and scaling-field expansions,
but given the simplicity of our calculation and the low order
of approximation, they are quite acceptable.

To move toward greater accuracy the next step is obvious-
ly to extend the calculation to higher p values and study the
convergence properties of our simple truncation scheme.
The ideal situation ~ould be that for some appropriately
chosen rescaling function f(q) the higher p terms become
successively and rapidly less important. Then $(q) could
be used to optimize the solution, hopefully in a precise and

unbiased fashion, to any order of truncation.
The essential point at this stage is the simplicity of ex-

tending this approach in many directions, e.g. , higher p
values, n-component systems, equations of state and cross-
over scaling functions, and perhaps even gauge theories.
Even in their present form Eqs. (5) and (7) should allow a
fairly thorough numerical study of the wetting problem. 2

The ability to perform simple, nonperturbative RG calcula-
tions in an infinite-dimensional space of interactions gives
this approach great flexibility and encourages its application
to problems in many areas.

I wish to thank Dr. John Hagelin for suggesting several
improvements in the manuscript.
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