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We introduce a class of models for microstructural damage and cohesive macromechanical failure in
heterogeneous systems. Our models are based on random networks of Hooke-type springs with load limit,
such that a spring breaks irreversibly if stretched beyond a critical length u,. We consider several special
cases in which both the spring constant k and u, are distributed quantities, and we show that the macro-
scopic response of the system depends crucially on the form of the probability distribution functions
(PDF’s) for k and u,. If the first inverse moment of the PDF is finite, it appears that macromechanical
failure occurs by means of a sharp transition, in which a single crack spans the entire system (‘‘brittle
failure”). By contrast, if the first inverse moment is infinite, many cracks appear in the system. Then, at a
certain microdamage level, as defined by the fraction of broken springs, all moduli of the system vanish
(““pseudobrittle failure’’) and the system undergoes a percolationlike transition.

The technological and economic importance of mechanical
failure in disordered systems is sufficient to explain the
widespread interest in this classical field of research. The
integrity of aircraft structures and pressurized nuclear reac-
tors, the tearing of woven textiles, the propagation of cracks
in solids such as underground petroleum reservoirs, and the
fracture of brittle solids provide but a few examples where
microscopic failure plays a fundamental role. Although
there exists extensive literature on the general problem of
mechanical failure and fracture phenomena,'~’ most of the
models employed previously incorporate artificial features
such as noncentral forces, preassigned fracture loci, and
very complex force laws. Before introducing complexities
such as these, whose contributions to the phenomena may
not be essential, it may be useful to study simpler models,
which contain some of the essential physics of the
phenomena, in order to gain insights into the processes.

In this paper we introduce a class of models for cohesive
failure in disordered solids, based on networks of Hooke-
type springs with load limit. Thus, if a given spring is
stretched beyond some critical displacement u., it breaks ir-
reversibly. We consider networks of such springs in which
both u. and the spring constant k are randomly distributed
quantities. The irreversibility and nonlocalized nature of
the failure processes occurring in our models give rise to a
much richer variety of behavior than exhibited by the trans-
port®!® and mechanical properties!!-!? of linear percolation
networks which have been studied extensively in the past.
Although certain models have been proposed recently'®!s
for macroscopic failure in disordered solids, they are more
appropriate for scalar-transport problems, such as electrical
breakdown, than for phenomena such as fracture propaga-
tion, which are inherently vector-transport processes.

For simplicity, we consider here the case of a two-di-
mensional triangular network, a system which bears a close
resemblance to various finite-element models employed in
macroscopic stress analysis. It can be constructed by a
finite-element discretization of the Navier equations!'® in
which one employs bilinear basis functions defined on an
equilateral triangle and a Poisson’s ratio equal to 3’- Hence,
our model may be considered an analog of a three-
dimensional solid in planar strain, pierced by cylindrical
holes normal to the plane of strain, or else a hypothetical
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two-dimensional solid, with Poisson’s ratio defined in terms
of the contractile strain and tensile strain in pure tension.
Finally, we assume that only bond- or spring-stretching
forces are present in the network and neglect all bending
forces. Although networks with both stretching and bend-
ing might appear more realistic,!" !> we are not aware of any
set of elastic-continuum equations whose finite-element or
finite-difference discretization corresponds to elastic net-
works with both central and bending forces. While the
latter have been introduced in other contexts as plausible
and properly invariant elastic systems, their relation to real
systems is not clear to us.

Our approach is quite different from previous studies' > of
macroscopic fracture mechanics which use triangular net-
works of Hooke-type springs. With a view towards the dy-
namics of fractures, Ashurst and Hoover! and Paskin and
co-workers® have performed molecular-dynamics (MD) simu-
lations based on Newtonian dynamics and a Lennard-Jones
potential. Their network is initially uniform everywhere ex-
cept in the vicinity of a single microcrack. Hence, one
would expect their simulations to describe fracture dynamics
in a hypothetical uniform material. However, the micro-
scopic disorder, present in most real materials, in the form
of atomic vacancies and interstitials, provides flaws of dif-
ferent shapes, sizes, and orientations, which will give rise to
a large scatter of fracture strengths in nominally identical
small-scale specimens. What interests us here is precisely
the effect of such disorder on the system properties. Ray
and Chakrabarti* have performed MD simulations in a
disordered system, but their simulations have been carried
out near the percolation threshold where the system is al-
ready highly flawed, which obscures important phenomena
(see below).

Most of our calculations were performed with networks of
linear dimension L =40, subject to periodic boundary condi-
tions in one direction and specified macroscopic strain in the
other direction, and we typically made 20 realizations of
each network. In what follows we describe our models and
report our preliminary results. A more detailed account of
our work will be reported in a future paper.

Model I. Here we assign the same spring constant k =1
to a randomly chosen fraction p of the springs, the rest hav-
ing k =0. If a spring is stretched beyond a critical value u,,
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it breaks irreversibly, thereby initiating a microcrack in the
solid. As such, the model is somewhat similar to that of de
Arcangelis, Redner, and Herrmann!® and Takayasu'* for
scalar-transport problems. However, our model is more
general and has a much richer range of behavior as dis-
cussed below. A macroscopic strain S is then imposed on
the system and the displacements of the nodes are calculat-
ed. These displacements are then examined to see if any
has exceeded u, (assumed the same for all); S is adjusted
such that at least one spring will break. We then adjust S
and repeat the computations such that further springs break,
and so forth. Given such a history of progressive, irrevers-
ible failure we can then identify a damage level G as the frac-
tion of originally intact springs which have broken. Alterna-
tively, we can speak of the probability p =1— ¢ of finding
an originally intact spring still unbroken, which is of course to
be distinguished from p. If p =1, the system is almost
homogeneous and one expects that if a spring is broken, the
subsequent breaks will occur in the neighbors of the first
such that a single crack will propagate throughout the sys-
tem. Typical of “brittle failure” in solids,"*>7 this is
indeed what we find in our simulations, although the loca-
tion of the initial microcrack and the length of the subse-
quent crack in the network vary among the realizations.
However, if p = p., the elastic threshold of the network
(pee = 0.65 for the triangular network'®), one already has a
highly flawed system, for which we expect the behavior and
the propagation of the cracks to be very different from that
of a network with p == 1; again, this is what we actually find,
and in the flawed system cracks are generated at several lo-
cations and propagate throughout. This contrasting be-
havior serves, in effect, to distinguish intrinsically flawed
systems from damaged systems.

Of particular interest here is the scaling behavior of
moduli of the system. We determined two moduli: One of
these, G, say, is the effective shear modulus of the system
for p = pc, but before any failure has occurred. One may
expect that G, ~ (p—pce)fl, where f) is the elastic expo-
nent first introduced by Feng and Sen'! and later estimated
carefully by Lemieux, Breton, and Tremblay'’ by means of
the transfer-matrix method. We have found f,=1.5%0.2,
in agreement with their estimate, f,=14+0.2. The
second modulus, G, say, is that prevailing at a damage level
4 just above the point of incipient global failure (normalized
by the length of the network), where the moduli of the net-
work vanish as a result of crack propagation. In Fig. 1 we
present the behavior of G, with p —p. (the error bars
represent one standard deviation). A fit of the data gives
G,~ (p -pc,)f2, with f,=0.8 +0.15. Therefore, f, does
not appear to be related to f;, and if we identify f; with
“flawed”’ systems and f, with ‘‘damaged’ systems, the
difference f;— f, is a measure of the difference between
the two systems. While our estimate of f, might be signifi-
cantly affected by the network size, the relatively small
number of realizations, and the point at which G, is com-
puted, we believe that f,# f;.

Model II. In this model u, is still uniform, but the spring
constants k are randomly distributed quantities. One mo-
tivation for investigating this model is the recent analysis of
Halperin, Feng, and Sen!® of the random-void model of
continuum percolation systems. In this model, spherical
holes are randomly placed in a medium having otherwise
uniform transport properties. A distribution of effective
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FIG. 1. Double logarithmic plot of the modulus G, of the net-
work in model I as a function of p —p.. The error bars indicate
the statistical uncertainties.

spring constants is then derived from geometrical analysis of
the channels between nonoverlapping holes. In this way, a
network with distributed spring constants may provide a
realization of certain continua. We have used several dif-
ferent distributions, in the first case distributing the spring
constants uniformly in the interval [0,1], and repeating the
computations as in model I. We find that, unless a large
fraction of springs have k =0, only a single crack is formed
which propagates throughout the system, eventually splitting
it into two pieces. However, the location of the initial mi-
crocrack and the length of the crack vary among the dif-
ferent realizations of the network. That only a single crack
should propagate throughout the system is not altogether
surprising. Since the spring constants have been uniformly
distributed, the tip of the crack once formed will seek the
easiest path. Although side branches do sometimes form,
they appear to be so short as to have no statistical signifi-
cance. Similar results were obtained with a log-normal dis-
tribution of spring constants.

In his modeling of electrical breakdown, Takayasu!* em-
ployed a resistor network somewhat analogous to model II
discussed above. In particular, if the voltage drop along a
given resistor exceeds a preassigned value, its resistance R
is reduced by a factor €, where € is a small number. Such
damaged resistors are not subsequently altered in the calcu-
lation, so that the network remains connected at all times.
Initially, the resistances R are uniformly distributed, as with
our distribution of the spring constants in model II dis-
cussed above. However, Takayasu!* finds that the cluster of
damaged resistors at the percolation threshold is highly ram-
ified and possesses an apparently well-defined fractal dimen-
sionality, larger than unity; this differs from the present
findings. It is possible that the difference between model II
discussed above and the system of Takayasu!* arises from
the incomplete burnout of damaged resistors in his model,
which maintain a reduced resistance during the remainder
of the overall failure process and thus make it easier for the
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crack to sidebranch.
As a third type of k distribution, we have employed the
power-law form:

fk)=(-a)k™",

which is of the same type as that derived by Halperin et a
from their random-void model. Most of the calculations
were carried out with a=-§- and ¥, and they resulted in
drastically different results. If « =0, then the fracture pro-
cess is almost of the brittle type, in which one long crack
and several very short side branches appear. As « in-
creases, the side branches become longer and many cracks
are formed and propagate throughout the system, so that a
fractal-like cluster of broken springs is formed as we ap-
proach the point of global disintegration of the system. We
call this more gradual type of fracture process ‘‘pseudobrit-
tle.”” Although our numerical results exhibit large statistical
fluctuations, we estimated an approximate fractal dimension
D of the cluster to be D =1.55+£0.25. We have also calcu-
lated the shear modulus G of the system, the behavior with
P — P of which is presented in Fig. 2. This figure indicates
that G ~ (p —ﬁce)f3, with f3=2.0+0.6, quite different
from f, or f, defined above. Again, however, our estimate
of f3 may not be very accurate. Moreover, the value of p..
and the shape of the cracks appear to be dependent on «a.
For a << 1, we always found p. to be larger than p,. As
a— 1, the value of p. also appeared to approach p.. It
remains to be seen whether the exponent f3 (if it is indeed
well defined) also depends on a. We also observed fairly
large variations among different realizations of the network.

Model 111. In this model we assign the same spring con-
stant k =1 to all of the springs, but the strain u. is assumed
to be a distributed quantity. This is motivated by the idea
that a solid system made up intrinsically of the same materi-
al (same k), may contain regions having different resis-
tances to breakage under an imposed external stress, as re-
flected in different u., e.g., because of defects in a manufac-
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FIG. 2. Double logarithmic plot of the modulus G of the network
in model III as a function of p —j.. The error bars indicate the

statistical uncertainties. The results are for a = %.

turing process. As for model II, we have used both a uni-
form and a power-law distribution for u.. With the uniform
distribution we found that failure of the system occurred by
means of a single crack spanning the entire system, i.e.,
brittle failure occurred. The crack was sometimes accom-
panied by tiny side branches whose locations varied widely
among different realizations. However, with the power-law
distribution the systems showed a pseudobrittle failure, i.e.,
many cracks appeared in the system, although the value of
Pee at which the system failed appeared to be somewhat un-
certain and dependent upon «. The emergence of pseudo-
brittle failure can be understood by realizing that, according
to Eq. (1), many springs will break if stretched beyond a
small length .. Therefore, the system readily initiates
cracks at numerous widespread locations. Our simulations
also showed that sometimes the growth of a crack halted, as
the crack encountered a relatively strong region. This
phenomenon was also observed for model II.

A quantity of fundamental interest in the models dis-
cussed so far is the macroscopic strain S imposed on the
system. For pseudobrittle behavior our simulations show
that as the fraction of broken springs increases, S should
also be increased in order to continue the breaking process.
As the percolation threshold is approached, S appears to in-
crease without bound. Thus, if we postulate a scaling law
such as S~ (p —pe) % we find that z=1.05+0.20, and
the exponent -z appears to be distinct from other exponents
such as fy, f3, f3, or v, the exponent of the correlation
length. This scaling law for S would imply that G ~ S8,
where 8= f3/z. Thus, a plot of logG vs logS may be used
to characterize the cohesive mechanical failure. For ductile
failure, the corresponding slope & is zero ( since an increase
in S causes no change in G), whereas §=o0 for brittle
behavior, which occurs at a finite and nearly constant S. On
the other hand, for pseudobrittle failure the value of & ap-
pears to be finite. These qualitative considerations are
represented in Fig. 3. If the exponent 8 proved to be well
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FIG. 3. The expected behavior of logarithm of the modulus G of
the network as a function of logarithm of the macroscopic strain S.
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defined and universal, it would serve to characterize a broad
range of failure modes in disordered solids. The question of
universality of & is therefore quite important and should be
addressed by more accurate numerical simulations and by
theoretical methods, such as renormalization-group tech-
niques.

In summary, we have introduced a class of models for
microstructural damage and macromechanical cohesive
failure in heterogeneous systems based on random networks
of Hooke-type springs with load limit, in which both the
spring constant and critical strain are stochastic quantities.
We have considered various probability density functions
(PDF’s) for these quantities, and we have shown that the
macroscopic response of the system depends crucially on the
form of these PDF’s. From our investigations on models II
and III we propose that if

f-,=f0°° L(yL)dy )

is finite, where f is the PDF of either k or u., then the sys-
tem should exhibit brittle behavior. If, on the other hand,
f-1 is divergent, one will observe pseudobrittle failure
characterized by a percolationlike transition with apparently
well-defined exponents. The latter, however, seem not to
be related to those of linear systems. Thus, in agreement
with the previous molecular-dynamics simulations"3 and in
analogy with conduction'®?° and diffusion?! in random per-
colating systems, brittle failure corresponds to universal

behavior (i.e., f-; is finite) of weakly disordered systems.
On the other hand, pseudobrittle failure is nonuniversal
(i.e., f-1 is infinite and the critical exponents may depend
on the parameters of the distribution) and will be observed
only with certain special types of systems. Clearly, many
other models may be developed and studied. For example,
a more realistic model might be one in which k and u. are
correlated, according to a joint statistical distribution. It
would also be interesting to investigate whether the in-
clusion of more microscopic detail about the behavior of the
system (e.g., bond-bending forces), would significantly alter
our results. The question of the existence of well-defined
scaling laws for pseudobrittle behavior and the universality
of the associated critical exponents are of particular impor-
tance. These matters will be taken up in a future work.?

After this paper was submitted we became aware of a pa-
per® in which a phenomenological continuum theory of
mechanical failure in disordered solids is proposed. The
theory is based on a rate-independent model of distributed
damage and the application of a mixture theory to account
for the composite nature of the system. The predictions of
the theory are in qualitative agreement with the results of
our simulations.
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