
PHYSICAL REVIE%' B VOLUME 33, NUMBER 11

Fractal dimensionality of percolation clusters in (FepNil p)80P20
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Strong, non-Lorentzian small-angle neutron scattering is observed below the Curie temperature (Tc) of
(FesNii s)aAo for p & p, -0.161. The large-Q part of this spectrum is demonstrated to be a power of a

Lorentzian, the power of which gives the fractal dimensionality of the finite clusters, D 2.66 %0.05. The
small-Q region is dominated by static scattering from the infinite cluster and is shown to vanish at T& and

to increase as Q
27 boas below Tc i as predicted for a random-exchange modeL

The magnetic properties of a dilute system, when they
arise from short-range interactions among localized spins,
are dominated by the geometrical arrangement of the spins. '

Because energy-integrated neutron scattering2 measures the
instantaneous spatial Fourier transform of the spin-spin
correlation function, it is an ideal means of studying such
systems. Detailed studies3 4 caned out at concentrations p
below the percolation point p, -that concentration at which
long-range order first appears-have substantiated the per-
colation picture of the onset of magnetic order. Comparable
data reported for p & p, do not appear to fit the same sim-
ple picture. Critical scattering is not observed along the
ferromagnetic (or antiferromagnetics ) critical line Tc(p),
at least for modest values of momentum transfer Q
( ~ 10 2 A '). Below Tc(p) the low-Q scattered intensity
diverges as Q

s while, at larger Q, it can be fitted' to a
power of a Lorentzian (POL). Frequentlya the sum of a
Lorentzian and a Lorentzian squared, as appropriate for an
Ising system in a random field, has been used and argu-
ments given that invoke random fields caused by the in-
teractions between frozen and free-spin clusters.

In this Rapid Communication, we report sma11-angle neu-
tron scattering (SANS) data over a wide range of Q for per-
colating amorphous (FesNii s)aaP2p alloys. The magnetic
properties of these alloys were previously shown~ to accord
well with a percolation picture. '0 %e argue here that for

Qgs » 1, where gs = (p —p, ) s, the tail of the scattered
intensity reflects the decay of spin correlations on the distri-
bution of finite clusters. The POL shape of the intensity is
sho~n to result from the fractal geometry of these clusters
on length scales between the atomic scale and gr. The
width tti of the POL is approximately given by tet

+pi, where gi is the one-dimensional correlation length.
%e find the fractal dimension to be D-2.66+0.05 for
these alloys. The small-Q behavior, on the other hand, is
dominated by fluctuations in the thermal-average magnetic
moment from site to site on the percolating network (the

infinite cluster). This contribution is a power law in Q and
vanishes at Tc(p), as predicted theoretically. "

In this note, we focus on a single concentration p 0.181,
which is above p, 0.161 for this system. ~ At this concen-
tration, the infinite cluster encompasses a fraction P (p)
=0.4 of the Fe-occupied sites (7')to of the transition metal
sites). The complex interplay of length scales in this
problem"-one-dimensional correlation length gi, percola-
tion length ps, and thermal correlation length
=

I Tc(p) —TI r-renders a complete description of the
scattering cross section impossible. For P„(p) small, the
infinite cluster will contribute little in the large-Q limit, but
will dominate at small Q, thus simplifying the analysis.
Critical scattering is ignored here, although it was demon-
strated in an earlier note" that it can be detected in the
small-Q limit for T & Tc(p).

The energy-integrated cross section for magnetic scatter-
ing is directly related to the spin-spin correlation function,

—Xe ' 1 (St Sl) —Sr(g)+S (Q) . (1)
IJ

In (1), we have separated the contributions SF(Q) of finite
clusters from S (Q) due to the infinite cluster (IC), where

SF(g) -Npfl —P (p)axe l(So Sl)r, (2)

and

S„(g)-NPP„(p)xe l(S, S,)„. (3)
J

Here (So Si)~ is an average over initial sites chosen to be
on a finite cluster and (So Si), over initial sites on the IC.

The behavior of (So S,) for spins a distance r &&ge
apart on the same cluster has been discussed recently by
Aharony, Gefen, and Kantor. ' The decay of correlations is
determined by the one-dimensional path length Li(r) —rt
between the spins; Coniglio" has suggested that g-I/vs
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= I/vr. The unaveraged correlation function is (So S,)—exp( —rt/pi), and for Heisenberg systems,

gi —(J/ksT) r F.or r )gi, the decay is predicted'4 to be
more rapid; there is no contribution from the finite clusters
at small Q. Averaging over starting sites gives

(So S,)~- [r"D +exp( —r/g )]exp( —rt//(, ), (4)

a modified result,

s (Q) =grQ d 2+q+»v) QrQ 2'4 (8)

where t =1—T/Tc(p). Equation (8) is valid for Qt "
)) 1. At low temperatures, C"(Q) vanishes as T .

Restricting attention to the dominant terms, we analyze
the scattered intensity using

and I(Q) -~/(Q'+K/)». +at/Q +Dr'ss(Q) . (9)
(S, S,)„-r 'exp( —r'/4i) + (So) (S,*) (5)

The factor rD ~ comes from the decrease in density with
distance for an object of fractal dimension D embedded in
ddimensional space. The additional factors in (4) result
from averaging over the distribution of cluster sizes. Close
to p„where P (p) &(1, the contribution of the IC to the
small-r regime is much less than that of finite clusters.
Note that spin correlations do not decay to zero on the IC
but to a static, but nonuniform, average at temperatures
below Tg(p).

The Fourier transform of (4) required in (2) is not simple
in general. If, however, (-1, it can be performed directly
to give

Si (Q) - [I'(p )/Q(Q'+K])"~']sin[@. arctan(Q/Ki)], (6)

where p, -2D —d —1 and Ki - I/pi+ I/g~. For p, - I and 2,
Eq. (6) reduces to a Lorentzian and a Lorentzian squared,
respectively. For intermediate values, it is indistinguishable
from a power of a Lorentzian. The large-Q limit of (6)
should not be taken as simply'6 Q2D ~, since the trig-
onometric factor is a strong function of Q as p, 2.

At distances much greater than f~, where the IC dom-
inates, its density is constant, but the average spin at each
site differs from the spatial average. It has been pointed
out" that, at these length scales, the percolating system
resembles a homogeneous one with a spread Pb, in ex-
change energy around the mean value. %e rewrite this in
the form introduced by Grinstein, Ma, and Mazenko'

Iim (So S ) - C&'(r)+ m2
p/f ~ oo

P

where

C ' (r) = (($0) —m)((S,') —m)

and m=N 'X (S;). The quantity C"(r) ~anishes for a

uniform system. Here, ho~ever, spins on the IC have
neighboring sites that lack magnetic atoms. The exchange
interaction, therefore, varies from J to ZJ, where Z is the
coordination number. The number of missing neighbors of
the IC is called' the perimeter t, and the number of such
sites per occupied site on a cluster of s spins has the limit-
ing value'9 lim, ( t/s )- (1 —p )/p. ~e suggest that
5 —J (I/p —1)' which vanishes in the pure hmit. Estimat-
ing the percolation threshold as p, —1/Z gives 5 —I (Z
—1)2 at the percolation threshold —a strong effect. As T
decreases, all spins on the IC should align regardless of the
exchange coupling, causing this term to vanish at low tem-
peratures. "

The behavior of C"(r) was treated by Grinstein, Ma,
and Mazenko'8 in the mean-field limit. They predicted the
presence of a term proportional to M Q

4 in the low-Q
scattering cross section. Recently, Pelkovits and Aharony"
generalized the calculation, using scaling arguments, to give

The first contribution is from the short-range decay of
correlations on the finite clusters, Eq. (4); the second arises
from static fluctuations on the IC, Eq. (8); and the last is
the true Bragg scattering which cannot be observed in a
SANS experiment. Equation (9) is tractible, but ignores
several important contributions: critical scattering from the
IC in the vicinity of Tc(p), the decay of short-range corre-
lations on the IC, and the short-distance fluctuations of the
average moment on the IC. The latter two contributions
would reflect the density of IC as in Eq. (5) and would
resemble the first term in (9), but with a smaller value of a.
%e will argue below that these terms are not important in
the immediate vicinity of the percolation concentration.

Neutron scattering data were obtained on the D11 diffrac-
tometer at the Institut Laue-Langevin. For each concentra-
tion, 5 g of the amorphous ribbon was wound on a thin-
walled, 2.5-cm-diameter aluminum cylinder approximately
5-cm long. Only the central 1 cm of the sample, defined by
the collimation of the beam and a Cd aperture, was in the
neutron flux. Data were taken with the area detector at the
5 and 20-m positions with an incident wave vector of 1.0
A ' (hA. /A. = 0,09); this permits measurements in the
range 0.0)29 A & Q &0.053 A, with overlap near
Q-0.01 A . The resolution is determined by the solid
ogle subtended by each area-detector cell, and is 5X10 '
A . A beam stop limited the small-Q end of the spectrum
to the range noted above. A radial average was performed
over cells at a constant Q, after calibration of the detector
efficiency by the incoherent scattering of a Plexiglas sheet
placed in the sample position. The magnetic scattering was
separated from nuclear and background scattering by sub-
tracting data taken at high temperatures ( +2Tc) from the
low-temperature runs. Because the magnetic scattering per-
sists well above T~(p) for large Q, this process causes us to
underestimate the magnetic scattering at high temperatures.
%e have not included data here unless the magnetic contri-
bution is at least t~ice the background.

Low-field magnetization data for our p = 0.161 sample are
shown20 in the inset to Fig. 1. The decrease in magnetiza-
tion at low temperatures reflects a tendency toward spin-
glass-like behavior in the low-field-low-temperature region.
The main part of Fig. I shows the low-Q SANS data. There
is no evidence for critical scattering near Tc = 92 K but very
strong scattering is evident down to 2 K, the non-Lorent-
zian nature of which is evident in the inset of Fig. 2. The
upward curvature of such plots is commonly found for di-
luted magnetic systems. The behavior is much improved by
taking an inverse po~er of the intensity, as sho~n in Fig. 2
for several temperatures. The choice n =0.8+0.03 straight-
ens the large-Q portion of all the runs and gives positive in-
tercepts; that is, these are POL's. The straight lines in Fig.
2 are fits to the large-Q data which we assert represents the
first term in Eq. (9). The effective one-dimensional inverse
correlation length ~i extracted from the fit is shown as a
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FIG. 1. Small-angle neutron scattering intensity at various values
of the momentum transfer Q (in A ') vs temperature. The inset
shows low-field magnetization data (field cooling). Note the ab-
sence of critical scattering near the ferromagnetic transition
(Tc-92 K) and the presence of a shoulder that moves toward Tc
as Q decreases.

function of temperature in Fig. 3 (open circles), along with
results of a similar analysis for two concentrations below
and one above p, . The straight line has unity slope, sug-

gesting that pi= T i' with v~=1.0. This justifies our
choice (-1. The data for p (p, are especially important,
demonstrating that the large-Q scattering is entirely dom-
inated by finite clusters. The constant value of ~~ at low
temperatures measures'4 the inverse of the percolation
length g~.

The inset to Fig. 3 shows the results of fitting Eq. (6) to a
POL, which permits us to perform the analysis in Fig. 2.
The value I/a=1. 25 t0.05 corresponds to p, -l.33 20.05
and leads to D-1/2(d+p +1)- 2. 66%0.05. This is con-
sistent with the result D - d —2P/v~ when we use our value
l9-0.4 from the magnetization datas and v~ =vr = 1 from
Fig. 3. Our value is significantly different from the d 3
series value D-2.5 which leads to p, j., and a purely
Lorentzian large- Q tail.

The small-Q behavior is, according to (9), dominated by
the IC contribution. %e have analyzed this contribution by
subtracting the POL's determined in Fig. 2 from the data.
The remaining intensity has been divided by T~ —T, with
Tc-92 K and plotted versus Q in Fig. 4. The solid line
corresponds to y -2.4 as predicted in Eq. (8), and a fit to
the data gives y-2.7+0.3. Equation (8) holds only for
Qt ")&I; in the opposite limit, C'*'(Q) is predicted to
decrease as t " . In Fig. 1 a shoulder can be discerned
near 70 K which moves to higher temperatures with de-
creasing Q, but not the predicted maximum. The maximum
which is observed at low temperatures is relatively Q in-
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FIG. 2. The scattered intensity raised to the negative power
a -0.8 vs Q2 at various temperatures. The inset shows the strongly
non-Lorentzian shape at 30.7 K. The straight lines are fits to the
data for Q&0.025 A '. They are Lorentzians to the power 1.25,
and have temperature dependent widths Ki.

FIG. 3. Inverse correlation length ~~, obtained from power-of-
Lorentzian fits as in Fig. 2, as a function of temperature. The open
circles are for the present sample; other symbols, for comparable
analysis on samples above and belo~ the percolation concentration

p, 0.161. The straight line corresponds to ~i —T.
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dependent and seems to reflect the disappearance of this
contribution at low temperatures.

%e have argued that the non-Lorentzian shape of the
scattered intensity reflects the fractal nature of the finite
clusters both above and below the percolation concentration
Jt, . Quite recently, a similar interpretation2' of the SANS
from silica aggregates (a single fractal object) led to D -2.6
f0.1 for dry aggregates, fortuitously close to our value.

FIG. 4. Low-Q scattering, after subtraction of the power of a
Lorentzian, divided by the temperature difference T~ —T. The
straight line is the predicted slope (2.4) for a dilute Heisenberg
model. A fit gives a slope of 2.7 %0.3.

While consistent with values of P and vr, D is smaller than
calculated for site percolation, meaning that the structure is
less open than predicted. Further-neighbor interactions or
dipolar contributions may induce correlations between
neighboring clusters, thereby increasing the effective
density. It is interesting to note that a wide
variety of dilute magnetic materials, " (Eu~Sr& r )S,
(Fe~Mnt r)75P~6B6AI3, and the present amorphous alloys all

show low-temperature Q
" tails in the scattered intensity,

suggesting that the value D = 2.66 is universa1.
The effective correlation length at low temperatures levels

off at approximately 200 A, although the error bars are
large. We take this to be a measure of (r. The number of
spina in the largest cluster will be —Jt(tt~/a)D-1. 3x 104.
In our previous analysis, we were unable to determine the
cutoff of the cluster size distribution, which introduced an
error in our determination of I' (p). With this estimate,
we can state that the error in the analysis presented there is
on the order of 10%, well within the error limits stated.

The present analysis demonstrates that the percolation
picture, which has been shown to work well for p & p„ is
adequate in the percolating regime as well. The competition
between finite-cluster effects, which dominate at small dis-
tances, and infinite-cluster ordering, which sets in on large
length scales, has made adequate analysis difficult. It is
satisfying that ad hoc random-field arguments are neither
necessary, nor appropriate, to understand the behavior of
dilute magnets near the percolation limit.
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