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Surface term in the superconductive Ginzburg-Landau free energy: Application to thin films
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A new term is added to the Ginzburg-Landau free energy which modifies the boundary condition for the
order parameter. The new boundary condition is applied to the case of thin films, ~here it successfully ex-

plains the decrease in the critical temperature observed in samples of Nb, Pb, and ai. The theory allo~s for
a simple calculation of the response to applied magnetic fields. A microscopic analysis of the new term is

given.

%hen written in normalized units the superconductive
Ginzburg-Landau (GL) free energy, in absence of external
magnetic fields, ' reads2

FoL (fz&i%/2m) [(—f2+ f'/2)/$2(T)+(Vf) ]du, (1)

gz(T)Vzf = —f+ f3

plus the boundary condition (BC)

(3a)

where f is the normalized order parameter f- Ii|II/fc, Qp

the bulk value of the order parameter at zero field, and
((T) is the temperature-dependent coherence length. The
new term which we add is of the form I Cf ds, where the

S
integral runs over the surface of the superconductor and C
is a constant to be discussed later on.

To find the variational equations corresponding to the
free energy Eq. (1) plus the added new term, we calculate
the first variation with respect to f and find

SF- [( f+f )/( (T)——V f]8f du

+„(Vf i+ Cf)gf ds, (2)

where s is the unit vector outgoing the surface and 5f the
variation of f. From the condition SF-0 we obtain

For d/g( Tq) (& 1 we can write this as

d/2C=(2(Td),

which, using

('( T) = g'(0) T,/( T, T), —

where T, is the bulk critical temperature, reduces to

Td = T, [1—2C('(0)/d] .

Using Eq. (7), the validity condition for Eq. (8) can be
written as, Cd &&1, and since, as we shall see later,
C= (104 A) ', Eq. (8) is valid in the whole region of in-
terest for thin films.

We can define a critical thickness d [ = 2Cg'(0) ] as the
value of d for which Eq. (8) gives T~=O. Thus we can
write Tq= T, (1—d /d). This shows that the new term in
the free energy gives a simple explanation for the ob-
served~~'a linear dependence of Td on 1/d.

In Fig. 1 we plot the data of Wolf, Kennedy, and Nisen-
off' for Tz of thin films of niobium and the fit of our
results (full line). From this we obtain d =36 A. The de-
viation of the last four points9 corresponding to ultrathin
films is discussed below in connection with the microscopic

Vf sl, = —Cfl, . (3b)

It is seen that the GL equation itself is not modified, but
that the boundary condition is altered as shown in Eq. (3b).
The ordinary BC corresponds to C =O.

To analyze the consequences of the new term we discuss
briefly the case of a thin film of thickness d. Choosing the
coordinate system such that the film is parallel to the xy
plane and extends from z = —d/2 to z = d/2, Eqs. (3) read

('( T)f"= —f+ f'
f'( + d/2) = T Cf ( k d/2) .

(4a)

(4b)

%' ~

~ ~ ~

These equations can be solved exactly. ' But since we are
only interested in the critical temperature Tq of the film, it
is enough to solve Eqs. (4) to first order in f. This gives

f= fa cos [z/g ( T) ] . (5)

The boundary condition fixes the critical temperature T~
of the film through

tan[d/2$(T~)] = C((T~) .

2

loo/0 (A -')

FIG. 1. Tz as function of 1/d. CI, ~: experimental data for Nb
after Wolf et al. (Ref. 4}. Full line: Eq. (6) with dm =36 A; dashed
line: fit of Eq. (8) to the last four points (Ref. 9) of adolf et a1.

(Ref. 4) (d~-22 A); dotted 1ine: Cooper's law (Ref. 4) (d =36
A}.
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analysis of C. A fit to the data of Mayadas et al. gives
d~=30 A.

In Fig. 2 we show the fit to the data of Strongin et af.' for
Bi (d =12 $) and Pb. In this last case we obtain d =20
A or d = 8 A, according to whether we use the data corre-
sponding to the dark triangles or dark points in Fig. 6 of
Ref. 5. In fact, Eq. (8) gives a good ftt to the ten series of
data for Pb presented by Strongin et al. ,' each characterized
by a different substratum or deposition method, changing
d from series to series.

At this point we want to mention that Eq. (8) can also be
obtained directly from the free energy to second order in f,
assuming f- fa=const,

F—f$ [ —d/(2 ( T) + 2 C ],

tan[ad/2$( T) ] = Cg(T)/a .

The perpendicular critical field is given by

h t = (1 —a2)/$2( T) .

(13)

(14)

In the same limit in which Eq. (8) was obtained, Eq. (13)
can be reduced to a2/(2( T) = 2C/d, and accordingly

to the film. We have Q= phd, /2 where p is the radial coor-
dinate and e~ the unit vector perpendicular to the directions
of p and z. In this case, Eq. (lla) has the solution

f= fo cos[az/g ( T) ]exp[ —p2(1 —o2)/4/2( T) ], (12)

with

and looking for the point at which F-0.
%'hen a magnetic field is applied to the sample the free

energy, up to the second order in f, changes to

hg ——I/[r (T) —2C/d= I/$2(T) —I/g ( yg)

= ( Tg T)/$2—(0) T, . (15)

ir2y(F- [ —f'/g'(T)+ (Vf)'
2m

+Qzf ]du+ Cf'ds . (10)

The case of an applied field parallel to the film is more
complicated, but for d &( $(T) the result can be obtained
by the same procedure as used in Eq. (9).

In this case, Q- hze~ (e„ is the unit vector along the y
axis), and with f= fo-const, we have from Eq. (10)

The linearized GL equation is now

(2( T)P 2f f+ $2( T)fQ2
F—f$ [ —d/$ (T) + h d /12+ 2C],

(1 la) and thus,

(16)

with the boundary conditions

Q sl. -0,
Vf s~, --Cf(, .

(1lb)

(1lc)

0.4

0.2—

Here Q is the velocity field of the superconducting elec-
trons, given by Q- (V(p —2n A/tto), where p is the phase
of the order parameter, A the vector potential, and $o the
flux quantum.

The boundary condition Eq. (lib) assures as usual that
no currents leave the superconductor and Eq. (I lc) must be
used to find the exact mean-field solution of the problem by
means of Eq. (1la).

Let us discuss briefly the case of a magnetic field normal g(0, d) =g(0)QT,/T~, (18)

we can rewrite Eq. (15) as hi =(1—r)/$2(0, d) and Eq.
(17) as

h2 = 12(1—r)/d2[r2(0 d)

where r- T/Tz, which leads to the usual form used to plot
experimental data.

The microscopic origin of C could be traced to de
Gennes's2 analysis of the derivation of the GL equations
made by Gorkov, where he states that the appropriate boun-
dary condition for the superconducting gap [h(r), propor-
tional to f] is

Vh si, = —Ci), .

hII = (12/d2) [I/$2( T) —2C/d]

= [12/ d2$ (0) ] ( Td T)/ T, . —

Coinparing this with Eq. (15) we see that the well-known
relation (ht/hit ) = (d'/l2) is conserved.

From Eq. (15) we see that )ht/ 2lTr= —I/$2(0) T„ in-
dependent of d. Although there are no consistent data over
the critical fields of thin films, recent measurements of the
total thickness effect in metallic multilayer compounds' fol-
low this law.

Defining a renormalized zero temperature coherence
length as

l

0.4
I

0.6 0.6
For a superconducting-insulator (or vacuum) interface (at

z=0) he obtains

FIG. 2. Universal plot: T&/1, vs d~/d. The full line is Eq. (8)
and the dotted line is Cooper's law, Eq. (23). The experimental
points are as follows Nb {Ref. 4) &{d~ 36 A) and O{d~-22
A); Pb (Ref. 5) - ~ (d~-8 A) and k(d~-20 A); and Bi (Ref. 5)
-+{d -12A).

C= (2/I )„dz[h(z)/LL ][1—N(z)/N ], (20)

where ha [h(z) ] and Ns [N(z)] are the bulk values (at z)
of the gap and of the density of states at the Fermi energy.
L is the range of the kernel Ko of the self-consistent equa-
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tion for h(z):

/p(r)f dr =2NpV$ (()) (21)

Te T, exp( —d~/d), (23)

where the coefficient d is the same as in our Eqs. (8) and
(22). Although Eq. (23) has the same origin as our new
term in the free energy, i.e., the decrease of the density of
states near the surfaces, it is obtained through a proximity
effect model (introducing a "nonsuperconductive" surface
layer of thickness a). Cooper's law fails to explain the
linear dependence of Te with 1/d for small d, and gives the
unphysical result that T&&0 for any d, i.e., even for
d & 2a. Magnetic field effects are hard to obtain from that
model.

where No Vis the bulk interaction potential.
In our case (dirty metal) $(0) 0.85Jgpl, with gp

(-0.18)ref/kttT, ) the size of the Cooper pairs and l the
electronic mean free path. The integral Eq. (20) can be es-
timated to be of the order of the Thomas Fermi screening
length a, which in turn is of the order of a lattice parameter,
and thus we have

C a/Np V/2(0); d~ 2a/Np V . (22)

For Nb Eqs. (22) give [using a - 5 A, Np V- 0.32,
$(0) -161 A] C- (1700 A) ' and d -31 A, in agree-
ment with the value found above, de Gennes2 estimated C
in thy clean Umit [((0)= (10' A)] to be of the order of
(10s A) ', and thus underestimated its role. In the dirty
limit C becomes more important, modifying among other
things the ratio (h,3/h, z) for surface superconductivity. In
the case of thin films the relevant quantity is d, which
does not depend on the mean free path [within our simpli-
fied calculation, Eq. (22)], and thus even for films of clean
material the effect discussed in this paper is present.

The Cooper law, ~ commonly used to fit the experimental
results for T~ in thin films, can be written

Going back to the microscopic expression for d [Eq.
(22)] and the data of Wolf et al. ,

~ we can see that Eq. (8)
can be tItade to fit9 the last four points but with a lower
d 22 A (dashed line in Fig. 1). Also in the fit to the data
of Strongin et al. ,

s d changes for the different groups of Pb
films. This suggests that the expression for C, and the con-
sequent expression for d, are oversimplified. Further
theoretical and experimental work will be needed in order to
clarify the role of the substratum and the electronic mean
free path on C.

The relevant parameter is probably the mean free path, '0

with decreasing d for decreasing I. An alternative possibili-
ty to explain the changes in d could be a change of the
bulk interaction potential (Np V), but this seems not to be
the case since all different groups of a given material ex-
trapolate to the same T, [please recall ktt T, = 1 14Awq.

'

exp(- 1/N, V) ].
In conclusion, we have shown that the new term added to

the GL free energy adequately describes the behavior of
thin films, including the zero-field transition point and field
effects, using either the free energy equation (10) or the en-
suing minimization equations (11).

This term (or new boundary condition) has important
consequences on the surface critical field of dirty supercon-
ductors modifying the 1.7 ratio and should also be of impor-
tance in the case of Auctuations in small-size superconduc-
tors, where the surface-to-volume ratio is dominant. %e
are currently working over these points.

Since the GL free energy is widely used in the study of
second-order transitions (as superfluid He', ferromagne-
tism, etc.) this new term might be also explored in connec-
tion with these systems.
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'The added term does not modify the role of the vector potential in
the GL equations, and thus ~e use the free energy without field
in order to keep the analysis simple.

2P. G. de Gennes, Superconductivity of Metals and Alloys (Benjamin,
New York, 1966), Chap. 7.

sJ. Simonin and A. Lopez, J. Low Temp. Phys. 41, 105 (1980).
4S. A. Wolf, J. J. Kennedy, and M. Nisenoff, J. Vac. Sci. Technol.

3, 145 (1976).
5M. S. Strongin et al. , Phys. Rev. B 1, 1078 (1970).
6A. F. Mayadas et a/. , J. Appl. Phys. 43, 1287 (1972}.

7F. de la Cruz (private communication).
sL. N. Cooper, Phys. Rev. Lett. 6, 689 (1961).
&It must be pointed out that the data of Wolf (Ref. 4) correspond to

the onset of superconductivity (ljyo of the resistivity transition)
and that the transition width is of the order of 1 K for these
thinner four fBms; so the actual T& must be something lower than
the plotted one. Fluctuation effects could raise Tz over the pre-
dictions of the GL equation.

'OD. G. Naugle and R. E. Glover, Phys. Lett. 2$A, 611 (1969).


