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We have found that a positive muon (u, +) implanted into LiF, NaF, CaFz, or BaFz pulls two F ions to-

gether in a strong "hydrogen bond" until the ' F nuclei are separated by roughly twice the nominal F
ionic radius, arith the p+ mid~ay between. The resultant "Fp,F" center is easily observed via the distinc-

tive behavior of the collinear ' F:it, + 9F spin system (coupled by dipole-dipole interactions between the
muon and the Iluorine nuclei) in both transverse-field muon-spin rotation and zero-field muon-spin relaxa-

tion experiments. We speculate that implanted H+ ions may initially form similar hydrogen bonds between

adjacent F ions in many metal fluoride crystals.

The behavior of the positive muon (it, +) implanted in
alkali halide crystals has been studied for more than a de-
cade, both theoretically' ' and experimentally ' by means
of muon-spin rotation relaxation resonance (p.SR) tech-
niques. ~ However, most previous work has focused on the
paramagnetic muonium (p. +e or Mu) center, which is
formed by a fraction fM„of the muons. For example, re-
cent high-field experiments' have revealed that Mu forms
the equivalent of a hydrogenic Uz center (a neutral atom in
the tetrahedral interstitial location) in virtually all alkali
halides, awhile muon-resonance experiments6 have shown
that Mu undergoes a thermal transition to a diamagnetic
state (which could be p, +, a Mu ion, or a covalently bond-
ed Mu atom) in NaCl, KCl, and Kl. In all those experi-
ments it was recognized that a separate fraction fe of the
muons thermalize initially in a diamagnetic state, ' whose
time evolution has not been subjected to much scrutiny un-
til now.

%e report here the first detailed p,SR investigation of this
"prompt" diamagnetic fraction in fluoride crystals. The
results reported here are of interest for two reasons: First,
the solid-state chemistry of the p, mimics that of an im-

planted proton or deuteron, s so that the evidence to be
presented for the ubiquitous formation of a "hydrogen
bond" between two F ions can be taken to apply to all hy-

drogen isotopes in metal fluoride crystals. Second, the
dynamics of the simple spin system ' F:p,+..' F formed by
the spin-T muon and two spin-T '9F nuclei (henceforth

denoted Fp, F) beautifully illustrates the limitations of classi-
cal Kubo-Toyabe (KT) treatments9'0 of the relaxation of
the muon-spin-polarization by nuclear dipoles; KT model
functions have been widely used in a large program of con-
densed matter p.SR research on the location, diffusion, and
trapping of p, + and Mu (as light counterparts of the proton
and the hydrogen atom, respectively) that depend upon the
correct iriterpretation of muon-relaxation phenomena.

In this typical time-differential p, SR experiment the
separated beam of 4.1-MeV surface muons' from the M15
channel at TRIUMF was stopped in single crystals of Lip or
NaF (rocksalt structure) or CaF2 or BaFz (fluorite structure)
situated in a He-gas-flow cryostat with thin windows. The
(100) axes of the crystals were aligned parallel to the in-
cident beam direction. As the orientation of the other axes
was known only for the NaF sample, additional orientations
were studied in that case, as described belo~.

The p, + spin ensemble is initially 100'k polarized in the
direction opposite to the muon beam. Subsequently, the
p, + polarization 8' precesses in and/or is relaxed by interac-
tion with magnetic fields, either applied externally or due to,
e.g. , the dipole moments of the host nuclei. This time
dependence is manifest in the anisotropy of the positrons
emitted from p, + e+vv decay, ' which are detected as a
function of time in backward (8) and forward (F) scintilla-
tion counters, where the directions described are relative to
the muon-beam momentum. The time distributions F(t)
and 8(t) of such events (relative to the muon's entry into
the target at t-0) were collected in a computer and later
combined to form an "asymmetry" spectrum A (i) by con-
ventional algorithms. s" The initial asymmetry A(0) re-
flects the fraction fq-A(0)/As of muons thermalizing at
t 0 in a diamagnetic state; the "full-asymmetry" value
A0-0.322(2) was determined from a control experiment on
a high-purity Al foil target, in which there is negligible po-
larization loss.

It is conventional to have i represent the direction of the
external applied field, Ho= Hoz. In zero applied field (ZF)
or in a longitudinal field (LF), z is also the direction of
In'(0), and one is mainly concerned with G (t), the longi-
tudinal relaxation function, obtained by simply monitoring
the time dependence of P» via A(i): G (t)-A(i)/A(0).
In transverse field (TF), P'(0) defines the x direction, and
the resulting precession of the muon polarization in the xy
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plane decays with a transverse relaxation function G (t):
A (r ) = W (0)G (r ) cos(ru„r +g)

where cv„=y„H0 and y„=8.5137x10 s 'Qe '. When
several precession frequencies co& are present, this TF "sig-
nal" is modified to

In this work a TF magnitude H0=220 Oe was chosen so
that H0 ~ould be high compared to typical dipolar fields and
yet not high enough to deflect appreciably the p,

+ beam in
the apparatus.

The Fp.F configuration for the diamagnetic muon fraction
fq was deduced mainly from the orientation dependence of
the TF-p, SR spectra, as shown in Figs. 1 and 2 for the case
of NaF at 100 K. Two features are readily apparent in the
data of Fig. 1: First, the asymmetry (amplitude) of the pre-
cession signal is reduced by a factor fq- I fM„[relat—ive to
the value 0.322(2) measured in All due to the fraction fM„
of the muons that initially thermalize as Mu atoms, whose
low-field magnetogyric ratio yM„= 103y„causes them to
precess at a much higher frequency and to be depolarized by
their interactions with nuclear spins in & 10 s.' Second,
and of primary interest here, the precession signal displays a
clear beat pattern. Similar splittings of the p,

+ precession
frequency have been reported before'4 for TF-p, SR mea-
surements in gypsum (CaSO4 2H20), where the p+ re-
places a proton in one of the waters of hydration; ho~ever,
in that case the beat pattern was just barely observable. In
the Fp, F system the splitting is well resolved, as revealed
clearly in the Fourier-transform (FT) frequency spectra of
Fig. 2. When the p,

+ spin S interacts with the spins I' of
lattice nuclei in the presence of a comparatively high exter-
nal field Hs (neglecting quadrupolar effects), only secular
terms (proportional to S,I,') need to be considered in the
spin Hamiltonian. ' Theoretical FT spectra were calculated
in this limit for the p,

+ located in a tetrahedral interstitial
position and for the p, + bonded to anion nuclei along the
(110), (111),and (100) directions. The Fp, F assumption
(i.e., bonding along the (110) directions to two anions) was
the only case in qualitative agreement with the observed fre-
quency spectra; the line spectra predicted for a dipolar in-
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teraction frequency v&=0.220 MHz (defined below) are
shown with the data in Fig. 2. For the case of Hell (ill),
where the splitting is both predicted and observed to be the
largest, a three-frequency X2 minimization fit was made to
the A (r) spectrum. This fit yielded a central frequency of
2.9980(7) MHz with lower and upper sideband splittings of
0.1983(15) MHz and 0.2204(15) MHz, respectively. The
simple Fp, F model predicts both sidebands split equally by
the dipolar interaction frequency ~q= o~q/2m, where

ircog = y~'yF /r

and r is the p, +-'9F distapce, which is thus determined to
have a value r -1.17(6) A if we use the average of the two
splittings. The 10% asymmetry in the splitting can be ac-
counted for by imperfect alignment between H0 and the
(111) axis. . Inasmuch as the nominal F ionic radius is
about 1.16 A, the above value of r implies that the two F
ions can be visualized as hard spheres just touching, with
the p, + located at the point of contact. This is the image of
hydrogen bonding of two F ions by an H+ ion, or in this
case by its light analogue, p, +. For comparison, r is nearly

O. IO
No F lOOK H~ II & III &

O.OOI =
I

O. I =

I I

H II & l00&

005 t

00-----
0.0l—

-0 05—
0.00 I =

2.2
I

2.6 5.0 $4
Frequency (@Hi)

l

3.8

O. I 0
0

I I

4 5
TivE (+s)

FIG. 1. TF-p, SR precession signals A(t) in NaF at 100 K with
He= 220 Oe along the crystalline (111) axis. The solid line is the
minimum-X fit discussed in the text.

FIG. 2. Fourier-transform frequency spectra of the TF-p, SR sig-
nals in NaF at 100 K with the indicated crystal axes aligned parallel
to an applied magnetic field Ho=220 Oe. The bar diagrams are
predicted line spectra for the collinear Fp,F configuration along the
(110) direction, through use of a dipolar interaction frequency

v~ 0.220 MHz.
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FIG. 3. ZF-IiSR asymmety spectra A (I) for several metal fluoride crystals at the indicated temperatures, with the crystalline (100) axis
parallel to the initial muon polarization. The solid line in each case is a fit to Eqs. (2) and (3); the parameters extracted from the fits are list-
ed in Table I.

TABLE I. Summary of parameters extracted from p,SR time
spectra by X2-minimization fits. The symbols v& and r are defined
in Eq. (1) and F—F is the minimum separation of two F nuclei in
the unperturbed lattice. Note that the nominal diameter of the F
ion is roughly 2.32 A.

Crystal (ps ) 2r {A) F—F (A)

NaF
Naj
LiF
CaF2
BaF2

15.0(2)
210(a)
89(2)
80(1)
211(2)

0.214{3)
0.217(23
0.222(2)
0.226(2)
0.214(2)

2.38(1)
2.38(1)
2.36(2)
2.34(2)
2.37(2)

3.27
3.27
2.85
2.73
3.10

equal to the length (=1.14 A) of the H+ —F bond in

NaHF2, widely regarded as a classic example of hydrogen
bonding. '

This "hydrogen-bonded Fp,F" model is further supported
by the ZF-p, SR data, representative samples of which are
displayed in Fig. 3 along with best fits to a model relaxation
function,

A(r) Ac((1 —fp) fgexp( A(r)]G—F„F(t)+fI Gg(t) },

(2)

the results of which are listed in Table I. The Fp,F relaxa-
tion function GF„F(t) is defined below; the extra term
represents a background signal from a fraction fs of the
muons that are evidently not associated with the Fp.F com-
plex and may not have stopped in the sample at all (f& is
largest for samples that were sealed in thin plastic bags).
The uncertain origin of fb makes quantitative interpretation
of fq ambiguous; we note only that the diamagnetic fraction

is small ( ( 5PYO) in every case. As a first approximation,
GF„F(t) was calculated from first principles in a three-spin
model assuming a static collinear geometry with p, + at the
center of the line joining two ' F nuclei (quantization axis
for the ZF problem) and considering only the p, +-t9F
dipole-dipole interactions. Averaging over equivalent direc-
tions in the cubic lattice, one obtains

i 'I

Gp„p(t) T 3+cos(J3(opt)+ 1 —~ cos
I

3+J3+ 1+ ~ cos aint (3)

The Fp, F relaxation envelope and the nondescript relaxation
function Gi, (t) of the background signal were both treat-
ed empirically by use of a generalized exponential,
exp[ —A(t) ], with A(r) - (A t)&. Values p-1 and p-2 of
the phenomenological shape parameter p correspond,
respectively, to the usual exponential and Gaussian cases.
For LiF and NaF a value of p = 1.5 gave the best fits, in
qualitative agreement with the expectation that the relaxa-
tion in these cases is due to other nearby nuclear mo-
ments. " For CaF2 and BaF2, p = 0.5; values of p ( 1 indi-
cate the presence of fast-relaxing components in the p, SR
signal. One may speculate that such components are due to
the products of a heretofore undetected reaction path~ay in-
volving muonium.

The muon-fluorine bond lengths deduced from Eq. (1) by
use of the ZF data are listed in Table I. For NaF the ZF
result is consistent with the value of r obtained from the
averaged TF data. Kith striking consistency, the ' F nuclei
have been "pulled in" by the p, + to a separation roughly
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equal to twice the nominal F ionic radius of 1.16 A, which
in every case is considerably less than the rigid-lattice F-F
separation.

The Fit,F model of Eq. (3) describes the main features of
the data well, but subtle effects such as the overall relaxa-
tion envelope are not correctly described by our empirical
treatment. A more rigorous theory including the effects of
cation nuclear moments, direct fluorine-fluorine dipolar
coupling, cation displacements, quadrupolar interactions of
cation spins with electric field gradients, and muon zero-
point motion will be presented in a later publication. "
Comparisons of experimental data with a more exact theory
should allow determination of many structural details of the
Fp F center.

In summary, this work has revealed the existence of a
stable diamagnetic state of the positive muon in a variety of
metal fluoride crystals, in which the p. + forms a hydrogen
bond between two F ions at an average distance of roughly
the F ionic radius, thus producing a massive local distor-
tion of the lattice. Such hydrogen-bonded complexes are
likely to be a ubiquitous feature of p,

+ (or H+) behavior in

all metal fluoride crystals, regardless of crystal structure,
and possibly in many other ionic solids as well. The Fp.F
complex is vividly evident for the case of F anions because
of the large '9F moment, the low dimensionality of the Fp, F
spin system, and the lack of complications due to anion
quadrupole moments. Because of this simplicity, the Fp.F
spin system and its characteristic ZF-p, SR relaxation func-
tion may also serve as a prototype example for the fully
quantum mechanical calculations' of ZF muon relaxation
that have recently begun to supplant the classical approxi-
mations of Kubo and Toyabe and Hayano et al. '
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