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Nearest-neighbor exchange in solid 3He

M. C. Cross
California 1nstitute of Technology, Pasadena, California W'225

R. N. Bhatt
A

TEART

Bell Laboratories, Murray Hill, We~ Jersey 07974
(Received 24 June 1985)

The effect of including nearest-neighbor exchange into the spin Hamiltonian proposed for solid 3He is

studied using the full diagonalization of a 16-quantum-spin cluster.

Stipdonk and Hetheringion' have recently attempted to fit
the experimental data on the nuclear magnetic properties of
solid 3He at low temperatures by adding nearest-neighbor
two-spin exchange to a phenomenological Hamiltonian in-

volving three-spin ring exchange and planar four-spin ex-
change. They determine parameters by analyzing the high-
temperature data in terms of a high-temperature series, and
calculate properties of the low-temperature ordered phases
using classical mean field theory. The main purpose of ad-

ding two-spin exchange is to bring down the theoretical esti-
mate for the magnetic field at which a transition occurs
between the low-field antiferromagnetic phase (thought to
be the u2d2 phase) and a high-field ferromagnetic phase
(canted normal antiferromagnet)2 at zero temperature, to
give better agreement with experiment. This is achieved at
the expense of introducing a second antiferromagnetic phase
between the u2d2 phase and the paramagnetic phase in the
predicted phase diagram. The experimental evidence seems
to be against such a phase diagram, but sufficient uncertain-
ty exists that the hypothesis may not be entirely ruled out
on these grounds.

It is known that quantum corrections to the classical
description of the three-spin-four-spin exchange Hamiltoni-
an are typically very large. Evidence for this comes from
spin wave calculations' and the diagonalization of the quan-
tum Hamiltonian for a small system. Here we present the
results extending our diagonalization of the 16-spin
(2x 2x 2 cube plus body centers, with periodic boundary
conditions) quantum system to include two-spin exchange.
(For a discussion of the method and the limitations of this

approach, see Ref. 4.) The Hamiltonian we use is
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~here P&k is the cyclic permutation operator acting on the
spin coordinates at sites i,j,k. . . . The pair exchange term
with weight J runs over all nearest-neighbor pairs; the triple
exchange term with weight —J, runs over all triangles in the
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TABLE I, Values of J,J,,EP consistent with 8 - —1.8 mK and
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FIG. 1. Plot of the transition field Hl(S) -bE(S}/S at T-0 K
to a state with given spin S, from the ground state in zero field (al-
ways S 0 for these parameters), as a function of the two-spin cou-
pling J. For each value of J, values of the three-spin coupling J,
and the four-spin coupling EP are chosen to fit high-temperature
data as discussed in the text. Solid line: 16-spin-quantum calcula-
tion with values of S as marked. Dashed line: classical estimate.
(In the latter we have neglected perturbations in either phase due to
the magnetic field: The inclusion of a finite susceptibility ~ould
give only small corrections. ) For solid He the predicted transition
field is Hl = (6.44E/S) kG with ~E in mK. The arrow on the or-
dinate shows the experimental transition field Hi -4 kG.
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C - 7N(e2/T' e3/T'—+ )

and the susceptibility x:

'-4N '(T —e +B/T+ ) (3)

At melting pressure e2=6.80 (mK)', the value of 9 is
rather uncertain: For comparison purposes we follow Stip-
donk and Hetherington in using 8 - —1.8 mK. The
values of Jt and Ep for a sequence of J are shown in Table

lattice consisting of two nearest neighbors and one next-
nearest neighbor; the four-spin exchange term is restricted
to run over only planar rings of four nearest neighbors.
Our parameters J,J„Ep are the same as those of Stipdonk
and Hetherington, ' except for an overall sign change.

To present our results we plot the transition field Hi(S)
at zero temperature between the singlet ground state and
the lowest-energy state with a specified nonzero spin (mag-
netization) S, against the value of the nearest-neighbor ex-
change J. Hi(S) is given by EE(S)/S, where AE(S)
-E(S)—Eo is the difference in the energy E(S) of the
lowest-energy state of spin S and the singlet ground state
energy, Eo. For each J, the values of J, and Ep were
chosen to fit the high-temperature series coefficients e2 and
O„defined from the specific heat for N particles:

1. Our results for Hi(S) vs J are shown in Fig. 1. Two
conclusions are suggested. The first is that a significantly
larger nearest-neighbor exchange rate is needed to bring the
transition field down to the experimentally observed value
of about 4 kG: For this value we would predict a value of
J-0.72 mK (with J, =0.15 mK, Ep =0.24 mK) compared
with the classical prediction of J = 0.3S mK (with J, = 0.155
mK and Kp=0.33 mK). This is to be compared with the
relatively small correction ( —20'/o) for the prediction of
the transition field at J-0. Our large value of J alone,
neglecting the small Ep and J„ leads to a prediction (includ-
ing quantum fluctuations) for the transition between the
paramagnetic and normal antiferromagnetic phases at 2.0
mK, well above the observed transition to the u2d2 phase.
The second conclusion, which is also evident from the clas-
sical results, is that the small Hi is achieved by a rather del-
icate tuning of the value of J to approach the transition
value at which the "normal antiferromagnetic phase" takes
over as the low-field phase from the u2d2 phase. If this is
indeed the case, the field Hi might be expected to be partic-
ularly sensitive to the application of pressure.
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