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The possibility of Anderson localization of electrons in a disordered solid in d dimensions in the
presence of a finite, uniform electric field is discussed. The self-consistent diagrammatic theory of
localization developed for zero fields is generalized to treat the case of a finite electric field. In one-

dimensional systems this theory is shown to reproduce the exact results of Prigodin except for some

minor differences. For weak fields, or strong disorder, there is power-law localization and for
stronger fields there is a mobility edge past which the states are extended. In higher dimensions the
self-consistent theory leads to the conclusion that Anderson localization is not possible in finite elec-

tric fields. Simple arguments indicate that this conclusion is independent of the self-consistent

theory.

I. INTRODUCTION

In this paper, I examine the possibihty of Anderson lo-
calization of electrons in a disordered solid in d dimen-
sions in the presence of a finite, uniform electric field. In
zero electric fields it is believed that for a( & 2 all
quantum-mechanical states are localized, while for d ~2
the states are extended for weak disorder, but it is also
known that for stronger disorder there is a mobility edge
past which the states are localized. '

For the case of a one-dimensional disordered solid in a
finite electric field there are rigorous results available both
for smooth and for discontinuous electron-impurity
scattering potentials. The rigorous results for these two
types of scattering centers are quite different for reasons
that will be discussed below. Here, I consider only disor-
dered solids where the electron-impurity scattering is
"hard" or discontinuous. For this case Delyon et al.
showed, rigorously, that for a small but finite field the
states are still localized but that the localization is power-
law localization rather than exponential localization typi-
cal for electron systems in zero field. For large electric
fields, Delyon et al. showed that the states are extended.
This implies that there is a mobility edge at some critical
value of the electric field and impurity density. These re-
sults supported earlier' computer simulations, which indi-
cated that in a finite electric field the states were power-
law localized.

In addition to these rigorous results in d =1, there are
exact results for the one-dimensional case. Prigodin gen-
eralized the Berezinskii diagrammatic technique for zero
field to finite fields. He explicitly calculated the density-
density correlation function (DDCF) and showed that for
small fields there was power-law localization; he calculat-
ed the exponents of the power-law decay. He also ob-
tained the value of the critical field (or impurity density),
above which the states (or DDCF) are extended. His re-
sults are consistent with the rigorous results of Delyon
e~ aI.4

In this paper I use an approximate theory to discuss

Anderson localization in finite electric fields in d dimen-
sions. The basic idea is to generalize the self-consistent
diagrammatic theory of Vollhardt and Wolfle'~ s to treat
the case of finite electric fields. I show that this approxi-
mate theory leads to qualitatively correct results in d =1
by comparing the results with those of Prigodin. It
should be remarked that this is interesting by itself since
the calculations presented here are quite simple while the
Berezinskii technique used by Prigodin is quite compli-
cated. Furthermore, the one-dimensional calculation
given here suggests that the self-consistent diagrammatic
approach can be reliably used in finite electric fields in
higher dimensions. The Berezinskii technique cannot be
generalized to higher dimensions.

Two-dimensional electron systems are then considered.
By examining the structure of the theory and by explicit
calculation I show that within the approximate theory
used here that the states are always extended in d =2 for
finite electric fields. I then interpret this result physically,
and argue that it is independent of the approximate theory
used here. The general conclusion is that Anderson local-
ized states are not possible in 1=2 in a finite ele:tric
field. The same arguments lead to the conclusion that lo-
calized states are also not possible in d =3.

It should be remarked, that it is not clear a priori
whether or not Anderson localization is possible in d di-
mensions in a finite electric field. It is clear that an elec-
tric field will cutoff the singularity in the maximally
crossed diagrams that cause dectron localization in d &2
in zero field for any impurity density. However, this cut-
off is proportional to the electric field times the diffusion
coefficient. Therefore, it is possible that the self-
consistent theory of localization could lead to an Ander-
son transition at finite fields and impurity densities where
the diffusion coefficient, and hence the cutoff mentioned
above, vanishes. I show here how the possibility of an
Anderson transition in d =2 (and d =3) is removed by a
quite different mechanism. This mechanism is not opera-
tive in d = 1 for reasons discussed below.

It is also interesting to compare the effects of an elec-
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tric field to those of a magnetic field' on Anderson locali-
zation. In d =2 a magnetic field removes the singularity
associated with the maximally crossed diagrams but does
not effect possible singularities arising from the ordinary
ladder diagrams. This distinction is due to the breaking
of the time-reversal symmetry by the magnetic field. The
net result appears to be that for small magnetic fields the
states are still localized. An electric field does not break
time-reversal symmetry and removes the possible singu-
larities from both the maximally crossed diagrams and
ladder diagrams in the same way. As mentioned above,
this leaves open the possibility of an Anderson transition
at finite-impurity density.

The paper is organized as follows. In Sec. II the gen-
eral formalism of the self-consistent diagrammatic theory
of localization for finite electric fields is developed. The
basic idea is to obtain a closed equation for the effective
diffusion coefficient, or generalized relaxation time, in
terms of the DDCF. In Sec. III the resulting nonlinear
equations are solved for d =1 and in Sec. IV they are
solved for d =2. In Sec. V this paper is concluded with a
dlscusslon.

over the randomness. By standard manipulations'
+E(xi,x2,co) can be written as

q'E(xl~x2~to) =
2m E —Ace —H —i 0

@2(1
i
4)—:{ xi

E —flu —H —i 0

(2.1d)

and for co~0, neglecting the second term in Eq. (2.1c),

(
1

X x2 — xi
E H—+i 0 E H—i 0—

(2.1c)

It is known that only the average of the product of an ad-
vanced and retarded Green's function exhibits localized
behavior in the long-time or small-frequency limit. We
define

II. GENERALIZED KINETIC EQUATION
FOR AN ELECTRON IN A DISORDERED SOLID

IN AN ELECTRIC FIELD

%x(xi,xi, co) = 4i(1
~

1) .
2m

In Eqs. (2.1), H is the Hamiltonian operator,

(2.1e}

In this section we first define the basic quantities of in-
terest in the theory of Anderson localization used here. A
Bethe-Salpeter equation is then given for the DDCF. For
the inhomogeneous system considered here it is more
natural to work in configuration space than in momentum
space as is the case for homogeneous disordered solids.
The Bethe-Salpeter equation is then transformed to a gen-
eralized kinetic equation in real space by introducing
Wigner variables. An approximate formal solution to this
equation is then obtained in the approximation where only
the lowest order in the impurity density diagrams and the
maximally crossed diagrams are retained. The idea here is
that we take into account the leading diagrams as well as
the most important hydrodynamic pole diagrams, i.e., the
maximally crossed diagrams.

A. Basic definitions and the general kinetic equation

We consider an electron with energy E in a d-
dimensional disordered solid in a uniform electric field
directed along the negative x axis so that the force, F, on
the electron is directed along the positive x axis. The
basic quantity of interest in electron localization theory is
the DDCF:

A. 2

H= Fq, + V(q), —
21'

(2.2a)

where p is the momentum operator and V(q} is the ran-
dom potential operator. For convenience we consider here
the model of a disordered solid where in the coordinate
representation V(x) is a Gaussian random potential that
is 5 function correlated in space with a strength Uo,

& V(x) V(x') &
= U05(x —x') . (2.2b)

G+(1 2) I dt ei(E~io)tlag (x t) (2.3a)

It must be stressed, however, that we expect our results to
be model dependent at least as far as details are con-
cerned. Physically, this follows since for large values of x
the momentum or kinetic energy of the particles can be
arbitrarily large for fixed E and F/0. As a cons~uence
of this, the detailed nature of the potential is important.
This point and the sensitivity of our results to the particu-
lar electron-impurity potential considered will be dis-
cussed further below.

In the absence of impurities the free-particle advanced
(and retarded) Green's function for a particle with energy
E is given by

@x(xi»2 t )=«E 15[xi—q(t) 35(xz—q) I
E»

or its one-sided Fourier transform

(2.1a) where
' d/2—l

Go(x i,x2, t) =
2mi fit00

QE(xi, x2, co) = dt e'~"+' "QE(x„xi,t) . (2.1b)
2

i ~~ &2 I' t
Xexp — + (xi+xi)

2t

+2t 3

24m

Here
~
E & denotes an energy eigenstate, Q(t} is the

quantum-mechanical position operator at time t, q(0) =q,
circumflexes denote quantum-mechanical operators, and
the bold angular brackets in Eq. (2.1a) denote an average

(2.3b)
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r)z =(x) —x&)'+(y) —yi)'+ .2

in d dimensions. More explicit representations of
6(~)(1,2) will be given later. Here we note that the gen-
eralized coordinate

equations. If X-(1,3) are the irreducible two-point vertex
functions or self-energies then the Dyson equation for
6+(1,2) can be written as

E+i 0 H—()( 1 ) —f13X+(1,3)P)3 6+(1,2) =5(1—2),

(2.4b)

g; =E+Fx; (2.3c)

X U(5, 6
i 7,8)C»(6

i
7) . (2.4a)

Here, U(5, 6
~
7, 8) is a four-paint irreducible vertex func-

tion in configuration space. 6-+ are retarded and ad-
vanced averaged Green's functions that satisfy Dyson

will play an important role in our discussion. For g; &0,
Go is strongly exponentially damped since this corre-
sponds to a classically inaccessible region. Consequently,
our discussion of delocalization caused by the finite elec-
tron field will be restricted to g; & 0 and large since if the
electron escapes at long times it is to this region.

A Bethe-Salpeter equation can be constructed for
@i(1

~
4) in the usual way' '

~,(1
~
4) =6-(1,2)6+(2,4)

+ S 6 7 86 1S6+ 84

with Ho(1) the free-particle Hamiltonian,

H()(1)= —I'x )
282 ()x (+()x i

(2.4c)

and P)3 a permutation operator that interchanges the la-
bels one and three. 6 (1,2) satisfies an identical equa-
tion with X+ replaced by X, E +E R—co, an—d +i 0 re-
placed by —i 0

Next a generalized Boltzmann equation is obtained for
(pz. We first multiply Eq. (2.4a) by f14[6+(3,4)]
where [G+] ' is the formal inverse of 6+ defined by

f11[6'-(3,1)]-'6'-(1,2) =5(3—2), (2.5a)

We then replace 1 by 4 and interchange 3 and 4. From
this equation we subtract Eq. (2.4a) multiplied by

1 6 3, 1
' to obtain

(rto)+Ho(3) —Ho(4) —f15X+(4 5)~45+ fd 5X (3,5-)&35 a ~(3
~

4)

=5(2—4)6 (3,4)—5(2—3)G+(3,4)+ fd617d8[G (3,8)U(8, 6
1
7,4) —6+(8,4)U(3, 6

~
7, 8)]@i(6~7) . (2 5b)

To obtain a generalized Boltzmann equation we next transform to Wigner variables

x x
x3 ——X+—,xq ——X——,2' 2'

(2.5c)
4t(3

~

4)~(3»(X,x),
and derive an equation for

C,(x,p) = fdxe'*""e,(x,x) . (2.5d)

We note that the quality of interest in this representation is [cf. Eq. (2.1e) for xi ——X] the zeroth-momentum moment of
Eq. (2.5d),

C»(X)=4&(X
~
X)=f ~C»(X,p) .

(2m%)

The kinetic equation for @z(X,p) is

(2.5e)

ice+ ~ —+F +EX(p,X)' —U(p, X)' (pi(X, p)
m ()X Bp

dxe P ~ 5 xi —X+—6 X+—,X——1 x x x
i' 2 2' 2

—5 xz —X——6 X+—,X——X + X X

2 2' 2
(2.6a)

where

(pX)la@(Xp)PdxdxdXe ix(Pjii) ix(/iPi)
(2~)'

I

xC,(X',p') 5 X+——X' ——X+ X——,X' ——
2 2 2' 2

—5 X———X'+ —X- X+—,X'+—X, X X, X

2 2 2' 2
(2.6b)



33 ANDERSON LOCALIZATION AND DELOCALIZATION IN AN . . . 783

and

U(p, X)'@q(X,p) =— dxdx'dX'dxse'*'t'i" '* 1' "

I

X4p(X', p'} G+ xs,X——U X+—,X'+ —X' ——,xs
2 2' 2 2'

—6 X+—,xs U xs,X'+—X'——,X——X X, X X
2' '

2 2' 2
(2.6c)

b, G(X)=G (X,X)—G+(X,X) (2.7b)

4~(x)= f ~p, 4g(x, p) .(2~)' (2.7c)

B. Approximate solution of Eq. (2.6a}

Our goal here is to obtain an approximate expression
for 42 (X) in terms of (p2(X) so that with Eq. (2.7a) a
closed equation is obtained for the quantity of interest,
(p2(X). First multiply Eq. (2.6a) by p and integrate over
momentum

—ico@t (X)+J ep~(2+4)e '
X [EX(p,X}—U(p, X)]'@q(X,p)

=F~@2(X}——1 () dp „pupc'2(» p»
Xp (2M)"

(2.8)

where we have neglected the right-hand side of Eq. (2.6a)
in the equation for 42 (X}. This can be justified by not-
ing that if this term is retained in the equation for 4z (X)
then it leads to higher order in the gradient corrections to
the right-hand side of Eq. (2.7a). As for the case where
F=0,s Eq. (2.6a) can be approximately solved by expand-
ing @2(X,p) in spherical tensors of

Equation (2.6a} has the form of a kinetic equation for a
particle in an external field, F, with hX and U determin-

ing the collision operator. Finally, we note that if we in-

tegrate Eq. (2.6a) over momentum and use a Ward identi-

ty expressing particle conservation then we obtain, with

Eq. (2.5d),

5(x2 —X)LEG(X)—ico@g(X)+— 42 (X)=
m X~ (A'

(2.7a)
where

where

bG(p, X)=J dxe'r *~" G X+—,X——2' 2

X X—G+ X+—,X——2' 2

and

X+-(1,2)= Uc5(1 —2}GO (1,2)

U(1,2
i 3,4) =U05(1 —2)5(3—4)5(1—3)

+5(1—3)5(2—4)C(1,2),

(2.10a)

(2.10b)

where C(1,2) is the sum of the maximally crossed dia-
grams important in the theory of localization for F=O.
Using time-reversal symmetry, C(1,2) can be related to

{a)

(2.9b)

The ellipsis in Eq. (2.9a) denotes terms of higher order in
the gradients than 42 and 42 . As for the F=O case we
assume here that such an expansion is justified in the
description of the large distance (or long-wavelength}
behavior of the DDCF. To justify Eq. (2.9a} one needs
the reciprocal relation G+-(x(,x2) =G-(xq, x&) to be valid
even for finite F.

To proceed we need to approximate the vertex functions
in Eqs. (2.6) and (2.8). Here, the same approximations
used in the self-consistent diagrammatic theory of locali-
zation when F=0 are used for finite fields. The approxi-
mations are given diagrammatically in Fig. 1; analytically
one has'0

(P2(X,p) =bG(p, X}
42(X)

f P aG(p, X)
(2m')

p~(Pp (X)
+ + '''

J ep b,G(p, X)
(2M)

(2.9a}

FIG. 1. (a) Los&est-order contribution to X(1,2). (b) Lo~est-
order and maximally crossed-diagram contribution to
U(1,2

~
3,4).
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DDCF in the low-density approximation. ' The
theory of localization used here replaces this DDCF by
one self-consistently given by Eqs. (2.7), (2.8), (2.10a), and

(2.10b):

H«e, y~(X, pl) is a frequency-dependent relaxation time
that is determined self-consistently from Eq. (2.11) and yp
is the bare or Boltzmann relaxation time.

C(1,2)= Up@2(xi) . (2.10c)
III. ONE-DIMENSIONAL CASE

Inserting Eqs. (2.10) and (2.9) in Eq. (2.8), and using ap-
proximations identical to those used for F=O yields a
nonlinear equation for 42 (X) in terms of 42(X). These
approximations are consistent with either the expansion
given by Eq. (2.9a) or with the idea of taking only the
most important part of the maximally crossed diagrams
into account. The resulting equation and Eq. (2.7a) can be
written, for pl~0, as

1 j.ipl+—— F — 4(X) @x(X)

EGp(X)
5(X' —X} (2.11a)

E

In this section the self-consistent theory of localization
in a finite electric field is applied to the one-dimensional
case. We first give the needed properties of the free and
averaged Green's function. The Boltzmann or lowest-
order result for the DDCF is then given. Following this,
the self-consistent equations of localization are solved and
d?SCUSSed.

A. Green's-function properties
and the Soltzmann approximation

From Eqs. (2.3), (2.7b), and (2.91) we obtain, for
E+FXy0, and large,

1/2

with

(X,ol )—}/p(X) —2i AUpclx(X)

b, Go(X)=-
E+FX (3.1a)

x f dp'bGp(p, X)
(2W)' f p'&Gp(p, X)= —(2m)' '(E+FX)' ' . (3.1b)

xG+ X+—,X——2' 2
(2.11b)

2

X Re x X+—,
2 x~ x~

These results and Eqs. (2.11c) and (2.lid) yield

Uo 2m'"X'= y E+FX
I

(3.1c)

where b(X}=2(E+FX). (3.1d)
E'UO

yo(X)= I:Go+(X X)—Gp «X)l

h(X) =—f P AGo(p, X)
1 dp

m (2lriil)'

(2.11c)

(2.11d)

Equation (3.1c) is the Boltzmann approximation for the
relaxation time y~(X, co) and with Eq. (3.1d) in Eq. (2.11a)
yields the DDCF in the Boltzmann approximation. We
note that these results effectively define a diffusion coeffi-
cient that diverges as E+FX~ao.

In order to discuss the localization caused by the second
term in Eq. (2.11b) we need the average Green's functions
to evaluate the integral in Eq. (2.11b). From Eqs. (2.3)
and saddle-point techniques one obtains, for g; ~ ao,

~'

Gp (x„xz)=+—(m /2)+ i i/2 1 2l 2m
exp +—

' 1/2

Ik —4 I
+iexp +—3/2 3/2

fi I' I
ki"+4"

I

(3.2a)

(3.2c)

The second term in Eq. (3.2a) is a contribution due to refiections from the boundary of the classically accessible region.
In Eq. (2.111) we are interested in the large-X region and it is easily shown that in this region the second term can be
neglected. The lowest-order average Green's function is obtained from the self-energy given in Eqs. (2.10a) and (2.41).
For x1 and x2~ 00, we obtain

' i/4a ' I/4a

6 -+(xi,x2)=Go (xi,x2) — 6(x i
—x2 }+ — e(x2 —x i ) (3.21)

with Gp (xl, xz) given by the first term in Eq. (3.2a) and

IF IfP
2m Uo
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i.e., the average Green s functions decay as a power law rather than exponentially as when F=0. This is the first indica-
tion that for F&0, localization, if it exists, is a power law for F&0. Note that as F~O, Eqs. (3.2) reduce to the usual

exponentially damped Green"s functions.
With Eq. (3.2b) the integral in Eq. (2.11b) can be evaluated for ~~0 and X~ ao as

Refdx G X+—,X—— G+ X+—,X——X X 8 X X

Bx 2' 2

27Fl {E+FX) 1 1

F 2 2a 2~& 1,—+,—+,—1 + 1+1 1 3 1 1

2Q

1 1
2F) 1, ,2+,—1

2Q 2Q

(3.3}

where 2Fi is the hypergeometric function" of the indicated arguments.

8. Self-consistent theory of localization in d = 1

From Eqs. (3.3), (3.1), and (2.11) the self-consistent equations for the relaxation time y(X, co) are

y(X,~)=y,(X)+ ' 'E+FX' U', e,(X)
p 2

and

F& 1,—+,—+,—1 + 1+1 1 3 1 1

2a 2F) 1, ,2+,—1
1 1

2Q 2a
(3.4a)

8 F 8 2(E +EX) 8 @ X 1 2m

BX my(X, r0) BX my(X, ai) BX iri E+FX

' 1/2

5(X —X') . (3.4b)

The plan here is to first show that, for sufficiently
small fields or large impurity densities, these equations
have a localized solution of the form Ffi

r

H(X,X')
—l CO

(3.5)
1 1

X 2+2
1 1 3 1

2E) 1,—+,—+,+1
2 2Q 2 2Q

That is, a solution where the DDCF does not decay on
time. We then show that as E increases, or Uo decreases,
this solution ceases to exist. Next the quantities that
characterize this mobility edge are calculated.

Motivated by the fact the G+-decays only as a power
law we expect 4x (X) to also decay as a power law in the
localized region. This implies a relaxation time of the
orm

+ 1+ 1

2a
1 1

2E) 1, ,2+,—1
2a 2a

(3.6c)

These equations yield a localized solution if pyO and
H(g, g) —ling'".

Equation (3.6b) can be easily solved, and one obtains

p2
y(X,co) =

iso(E+FX)—mp
' (3.6a) (3.7a)

where p is the unknown and the constants in Eq. (3.6a)
have been chosen for convenience. Using this and Eq.
(3.5} in Eq. (3.4b) and changing variables to g'=E+FX
and g'=E+FX' yields (3.7b)

with

H(g g')
v'2m F 1

fi'(g')'" 2P(p+ p—
1

~
pg

~
2pgi

~
H(g g, }

+2m F5(g' —g')
Bf Bg Bf

(3.6b)

' 1/2
3 1 1 2p+= + +4 2 4 P

(3.7c)

For co~0, Eq. (3.4a) yields
Equations (3.7) and (3.6c) yield an equation for the un-
known quantity P,
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' 1/2
1 2—+—

1

4a
1 1

2 2a
1 1 3 1

pF) 1,—+,—+,—1
2 2a 2 ia

A. Green's-function properties
and the Soltzmann approximation

From Eqs. (2.3), (2.71), and (2.9b) we obtain, for
E +EX& 0, and large,

1 1
2F) 1, ,2+,—1

2a 2a

b, GO(X) = (4.1a)

(3.8)

This equation has a physically allowable P (P &0) as long
as the right-hand side is greater than —,'. For small a one
obtains

I p~pb Gc(p, X)= (E+FX)5~p . (4.1b)
(2mb)i

These results and Eqs. (2.11c) and (2.11d) yield

mUO

(2P)'" 4 2'' (3.9a)
Uom

yp(X) = (4.1c}

mUO, Firi2p+=+ + 4 +0
mUO

(3.91)

Except for logarithmic correction terms, Eq. (3.9) agrees
with Prigodin's results except mUO/2' is replaced by
m Uo/4' . The precise reason for this discrepancy is not
clear but is should be noted that with Eqs. (3.9) and (3.7a)
one correctly obtains Berezinskii's result in the limit
F~O. Prigodin's result does not reduce to Berezinskii's
in this limit.

At the mobility edge P~ 00 and

18+=1 ~ p-= 2 (3.10a)

in precise agreement with the results of Prigodin. The
equation for the critical value of a (—:a'} is, from Eq.
(3.8),

2(a )= 1 1

2 2a
1 1 3 1

2F) 1,—+,—+,—1

+ 1+ 1

2a
1 1

2Fi 1, ,2+,—1'2a' 2a'

(3.10b)

We note that the condition P~ ao at the mobility is simi-
lar to the condition that the localization length~ 0o at the
mobility edge when F=0 (for d &2). '2's Furthermore,
we note that all moments of H(g, g') diverge as the mobil-
ity edge is approached. I have solved Eq. (3.101) approxi-
mately and obtained a'=0.73. This should be compared
to the value a' =1 by Prigodin. These results will be dis-
cussed in more detail in Sec. V.

b,(X)=E+FX . (4.1d)

2

Re x 6 X+—,X——
2 x~ x~

X G+ X+—,X——=— (E+FX) .x x m

Up%

(4.2)

The result for larger F will not be needed since I will
show that even for small, but finite F, the DDCF does not
exhibit localized behavior.

Equation (4.1c) is the Boltzmann approximation for the
relaxation time y (X,~), and with Eq. (4.1d) in Eq. (2.11a)
yields the DDCF in the Boltzmann approximation. As in
d =1, these results effectively define a diffusion coeffi-
cient that diverges as E+IX~ ao.

In order to discuss whether or not the second term in
Eq. (2.111) can cause localization for F&0 (it does for
F =0},we need the average Green's function to evaluate
the integral in Eq. (2.11b). I have not succeeded in obtain-
ing the average Green's function in d =2 for all x and y,
but I have been able to evaluate the integral in Eq. (2.111)
for large X and for F not too large. The basic idea is to
first Fourier transform the Dyson equation for G+-(x, ,x2)
in the y direction with momentum variable p„. The clas-
sically accessible region is then F. +Fx; —

p» /2m & 0
which gives a maximum value for p». The X dependence
of the average Green's function, with the self-energy given
by Eq. (2.10a), can then be worked out as in d =1. For
large X the integral in Eq. (2.111) can be evaluated for
small Fwith the result

IV. T%'0-DIMENSIONAI. CASE

In this section, I first give some relevant properties of
the free-particle Green's functions in d =2 and obtain the
Boltzmann approximation for the DDCF. Following this
I show that the self-consistent equations for y~(X,co), Eq.
(2.11), do not possess a localized solution for finite F in
8=2.

2AUO
y~(X, co}=y(X, co }=yo(X) + 4~(X) (4.3a)

B. Self-consistent theory for d =2

From Eqs. (4.1), (4.2), and (2.11) the self-consistent
equations for the relaxation time y (X,co) for small F and
E+FX~ oo are
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and

4x (X)= 5(X—X') .
c)X mr(X, co) c)X fi3

tion, with wave number k, Eq. (4.3b) yields

, +8 8 k g icom

(4.3b)

The plan here is to first show that these equations con-
sistently have a solution of the form for co~0; with

2

5(g—g'), (4.5a)
Ffi

r(X,co)=ro(X) 1+0 lnX
(4.4) e„.(x)= e'"'~-"e e (g g )2~' (4.5b)

for X~oo. That is, I consistently show that the second
term in Eq. (4.3a) vanishes for large X. Furthermore, it
can be shown that this is the only self-consistent solution
for large X. The conclusion is that, for large X, one is al-
ways driven to the Boltzmann result for r(X,co) and that
localization is not possible in d =2 for F+0. This im-
plies that the electron escapes to X—mao. The simple
physics of delocalization at finite F will be discussed
below.

To proceed, we look for a solution to Eqs. (4.3), where
r(X,co)~r(co). Transforming to the variables g=E+FX
and g'=E+FX' and Fourier transforming in the y direc-

I

Equations (4.3a) and (4.5b) yield

&Uo, dkr(»~) =ra(»+2 I'
7?2 2K

(4.5c)

The primes on the wave number integrals denote

~

k
~

& ko, where ko is a hydrodynamic cutoff wave num-
ber.

Equation (4.5a) can be solved by the substitution
4k(g, g') =H(g, g')/g' . The resulting equation for
H(g, g') is Whittaker's differential equation which has
solutions in terms of confluent hypergeometric func-
tions. " The final solution to Eq. (4.5a) can be written as

m' r( ) '
~

k ((g+f)/FI- 1 i mr( }

FA 2 2F[k[

1 icokmr(co)
[
k

/

g' 1 icomr(co)
/
k

/ g
2 2F/k[ ' ' F 2 2F/k/

' ' F (4.6)

where I is the r function and M and U are the usual con-
fiuent hypergeometric functions of the indicated argu-
ments. 4k(g&g') is obtained from Eq. (4.6} by inter-
changing g and g'. From the asymptotic properties of M
and U and assuming cor(co)~0 as co~0 and using Eq.
(4.5c}, one then obtains Eq. (4.4). This implies that the
self-consistent solution to Eqs. (2.11) for d =2 and
X~ 00 is just the Boltzmann approximation and that An-
derson localization is not possible in d =2 for finite F.

V. DISCUSSION

First, the main results of this paper will be reviewed.
In Sec. III I demonstrated that the maximally crossed dia-
grams important in the theory of electron localization in
zero field lead to power-law localization of the DDCF in
one dimension in a finite, but small, electric field. For
larger fields, or lower impurity density, we obtained an
Anderson transition to extended state behavior and a mo-
bility edge. The location of the mobility edge and the
properties of the DDCF as one approached it were calcu-
lated in detail. The results were in reasonable agreement
with the exact calculations of Prigodin. In Sec. IV I
demonstrated that the solution of the self-consistent equa-
tions for d =2 was that as X~ ao, the effective relaxation
time is given by its Boltzmann approximation and that
there was no localization. Physically this can be interpret-
ed as the electron escaping to infinity in d =2.

These results can be interpreted in the following way.
First note that, in general, for all d, the contribution of
the maximally crossed diagrams to the diffusion coeffi-
cient is finite for finite electric field and for finite dif-
fusion coefficient. They are, however, singular for zero
diffusion coefficient. This implies the possibility of an
Anderson transition, where the diffusion coefficient is
zero in any dimension. Secondly, I note that in the ab-
sence of a field the contribution of the maximally crossed
diagrams to the diffusion coefficient is of order (A, /l~)
where A, is the de Broglie wavelength, A, =A'/v'2mE, and
l~ is the mean free path in d dimensions. The mean free
path is given in terms of the Boltzmann diffusion coeffi-
cient Da, by Da -l&(E/m)' . In finite electric fields the
results of Secs. III and IV imply l~-(E+FX) "~ (for
d &3) and E~E+FX. From this I conclude that in
d =1 the maximally crossed diagrams are of O(1), i.e.,
essentially all diagrams are of the same order in d = 1. In
d =2 these diagrams are of O(1/X) for large X. Equa-
tion (4.4) then follows if we note that the inaxiinally
crossed diagrams are cutoff logarithmically by the electric
field. The general conclusion is that the basic wave in-
terference effects that cause Anderson localization, and
which are of O(A, /l), vanish in a finite electric field for
large X and that the electron can escape to X~ no and
that there is no localization. The power-law localization
in d =1 is an exception to this general argument due to
the fact that all diagrams are at the same order in A, /1 in
d =1.
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Clearly this argument is independent of the approxima-
tions used in the theory so that, in general, one does not
expect localized behavior in d & 1. In d =3 the maximal-

ly crossed diagrams are of 0(1/X) and hence vanish as

X—+ (x).
The power-law localization in d =1 can be heuristically

related to the energy dependence of the zero-field localiza-
tion length. In zero field the long-time limit of the
DDCF is -exp[ —x/go(E)] for x with gp(E) ( E)
the zero-field localization length. For finite fields go(x) is

effectively replaced by the spatial average of g'o(E+Fx)
The DDCF is then given by

X

o go(E+Fx)

which leads to power-law localization.
This paper is concluded with a few remarks.
(1) The presence of an electric field introduces a new

length /~ E/F in——to the discussion of Anderson localiza-

tion. Physically /F is the length scale, where the kinetic

energy of the electron due to the electric field is compar-
able to the total energy of the electron.

If L (-go——zero-field localization length) is a typical
length then for L g lF one expects the electric field to be

of only minor importance. This is the weak-field region.
For lF &L the electric field is effcx:tively very strong and
it determines the transport properties of the system. The
theory given here can be used to describe the crossover
from weak electric field to strong electric field as the
length scale increases.

(2) In real experimental situations the problem of joule
heating' will invalidate the model used here unless the
number of charge carries is very small and the electric
field is not too large. If these conditions are satisfied,

then the consideration of this paper should be valid if IF
is less than the length associated with the inelastic scatter-
ing mechanisms. The two-dimensional case is of particu-
lar interest since go can be made arbitrary large so that
go&lz is possible. In one-dimensional systems go-l,
which is usually quite small.

(3) In Sec. I it was mentioned that the rigorous results
for d =1 are very different for smooth versus discontinu-
ous or hard electron-impurity interaction potentials.
Furthermore, it was implied that the Gaussian white-noise
model used here was in the class of hard or discontinuous
potentials. The crucial physical point is whether or not
the electron-impurity scattering potential remains nonzero
for large momentum since arbitrarily large momenta can
occur for X~ Dc in a finite electric field. Both the usual
5-function Kronig-Penny model and the Gaussian model
used here are hard potentials since the scattering due to
these potentials is independent of momentum. For
smooth potentials, the scattering due to impurities van-
ishes for large momentum and even power-law localiza-
tion is not possible in d = 1 for finite fields.

In generalth, is implies a sensitivity of our results to de-
tails of the elcx:tron-impurity interaction potential. How-
ever, since I,—1/E'/ ~1/X'~ for large X, we expect lo-
calization is not possible in 1& 1 according to the argu-
ments given at the beginning of Sec. V.
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