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We present a Monte Carlo renormalization-group analysis of the dynamics of the eight-state Potts model
with nearest- and next-nearest-neighbor interactions after a quench below its phase-transition point. Our
results suggest the existence of at least two distinct fixed points at zero temperature. One is associated with
a freezing behavior while the second is associated with equilibration. Our conclusion is that the freezing
fixed point is only attractive for quenches to zero temperature, while the equilibration fixed point is attrac-

tive for quenches to finite temperature.

Renormalization-group ideas have been recently applied
to study the far-from-equilibrium dynamics of a system fol-
lowing a quench from a high-temperature, disordered state
to a low-temperature, unstable state below 7..'* (In what
follows T. denotes either a first- or second-order phase-
transition point). Following such a quench, domains form
and grow with time. Often the time dependence of the
average domain size R (#) can be characterized by a power-
law or logarithmic behavior (as in critical phenomena),
R(9)~ " (In many cases studied so far, however, it is
quite possible that the reported values of n represent effec-
tive exponents rather than an asymptotic growth law.) It
has also been observed in experimental® or computer simu-
lation studies®’ that a nonequilibrium, dynamical scaling
holds, with quantities such as the scattering intensity scaling
with respect to a characteristic length, such as R ()8

These renormalization-group studies have suggested that
the nonequilibrium dynamics of the system is governed by
its zero-temperature fixed-point structure. In the two cases
studied so far** (the nearest-neighbor Ising ferromagnet
with Glauber dynamics and Kawasaki dynamics, respective-
ly), only one zero-temperature fixed point has been deter-
mined for each system. In the nonconserved case (the
Glauber model), the system equilibrates at zero temperature
and its behavior near the zero-temperature fixed point leads
to the result predicted by Allen and Cahn and others, name-
ly, n= %— for all T < T,.> The physical origin of this growth
law is curvature-driven interface motion. In the conserved
case (the Kawasaki model), however, the system freezes at
zero temperature, rather than equilibrating. Mazenko and
Valls® have recently applied renormalization-group ideas and
Monte Carlo calculations to argue that the zero-temperature
fixed point associated with this freezing behavior leads to a
logarithmic growth law for sufficiently low quench tempera-
tures. The physical argument given for this growth law is
that diffusion across an interface at low temperature is an
activated process, with an activation energy which is in-
versely proportional to the local curvature. (They also ar-
gue that the Lifshitz-Slyozov theory!? is incorrect for solids,
based on their recent Monte Carlo work.) Thus, an impor-
tant theoretical issue is the nature and influence of zero-
temperature fixed points in nonequilibrium dynamics. This
is particularly true given that no analytical theory of this
subject is available at present.

In this article, we report for the first time evidence for the
existence of at least two zero-temperature fixed points in
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the same system, one associated with freezing and one asso-
ciated with equilibration. We analyze the ferromagnetic Q-
state Potts model (with Q =8) on a square lattice, with both
nearest- and next-nearest-neighbor interactions using a re-
cently developed Monte Carlo renormalization-group (RG)
technique.*

When the system is quenched to zero temperature, our
study shows that the stable fixed point is the one associated
with freezing. Only for the special case in which the initial
nearest- (NN) and next-nearest-neighbor (NNN) interaction
constants are equal do we find that the equilibration fixed
point is attractive at zero temperature. (The unfreezing of
the square lattice at T,=0 for this special case was first
pointed out in an earlier Monte Carlo study of Sahni et al.”)
Our results suggest that in this case the growth-law ex-
ponent is n==0.48, which is the same exponent found at
finite temperature (by standard Monte Carlo simulation) for
this model on both the triangular and square lattices.

When the system is quenched to a finite temperature,
with any value of the original interaction constants,!! it is
also found to reach equilibrium. However, the existence of
these two fixed points at zero temperature raises two impor-
tant points about the dynamics of the Potts model on a
square lattice at finite temperatures. The first point con-
cerns the stability of the fixed points for finite-temperature
quenches. We can envisage two possibilities: If the freez-
ing fixed point were attractive, the asymptotic growth law
would presumably be logarithmic.l? As a consequence, the
Potts model on the square and triangular lattices would be-
long to different universality classes [for the triangular lat-
tice, Monte Carlo results indicate that n(Q =8)=10.48 for
all temperatures 7,=0]. The opposite possibility would
simply imply that the growth law at finite temperature
would be the same on both lattices. The second point is
that, in any event, there should be a crossover behavior in
the domain growth at finite temperatures due to the ex-
istence of two fixed points, as in critical phenomena. We
elaborate further on these points in the conclusion, where
we argue that the equilibration fixed point is attractive for
the square lattice, so that both the triangular and square lat-
tices would belong to the same universality class. We also
note at this point that the analysis of any crossover effect,
using Monte Carlo technique, is restricted to finite lattices.
Consequently, it is not possible to unequivocally determine
the late stage growth of an infinite system (although we be-
lieve the conclusions we present should hold for the infinite
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system). For that reason, we think that our results showing
the existence of two fixed points establish the need for an
analytical theory of this problem.

The details of our calculation are as follows. The Hamil-
tonian of the model is defined as

= - JNNZB,I(U - JNNN 2 S,I‘,k (1)
NN NNN

The system has been quenched from an initially disordered
state (7;=oo) to different final temperatures 7y/Jny from 0
to 0.6. We have also done a variety of quenches for dif-
ferent values of Jynn/Jnn ranging from 0 to 1.1. We use
spin-flip dynamics (Metropolis rule) on several lattices of
N =1282, 642, and 32? spins, respectively. The average size
of the domains is calculated from the nearest-neighbor
correlation function: R (2)=(1/N)(3xn 8‘,1,]) for a period

of 10000 Monte Carlo steps per spin (MCS) after the
quench for the 642 and 32? lattices and 5000 MCS for the
1282 lattice. In order to have reasonable statistics, the
results have been averaged over a large number of
quenches, ranging between 150 and 200 in the smaller lat-
tices and between 80 and 160 in the 1282 lattice. The confi-
gurations obtained are renormalized using a standard block
transformation (with a rescaling factor b=2). The renor-
malized cell spins are obtained by a generalized majority
rule, where ties are broken at random.

The main results of our calculation are shown in Figs. 1
and 2. We show there the average domain size as a func-
tion of time for quenches to zero and finite temperature.
We include also the average domain size calculated after a
few iterations of the RG transformation for the same tem-
peratures and values of the interaction constants. The usual
way to obtain the growth exponent by the Monte Carlo RG
method involves invoking a matching condition between the
average domain size calculated in two different lattices of
the same size but at different levels of renormalization (see
Ref. 4 for a detailed description): R(N, m, ) =R (Nb°,
m+1, t'). When the time rescaling A(Ty,0)=t"/t is con-
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FIG. 1. Average domain size as a function of time (MCS in the
unrenormalized lattice) for quenches to 7T,=0 and (a)
Junn/Inn =0, original lattice; (b) Jynn/Jnn=0, after 3 renormali-
zations; (c¢) Jynn/JInn=1, original lattice; and (d) Jynn/Inn=1,
after 3 renormalizations. Each curve has been multiplied by an ar-
bitrary factor to fit them all in the same figure. The slope of each
curve gives the effective exponent n
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FIG. 2. The same as in Fig. 1, but here the quench temperature

stant, it gives the exponent 7. A= b" When the system is
quenched to zero temperature with Jann/Jan=1, A(2)
monotonically increases in time.!*> This indicates that the
system is freezing at late times. This effect can also be seen
by fitting an effective exponent at different intervals of time
and different levels of renormalization. In all cases, it ap-
proaches zero, i.e., the system freezes (see Fig. 1). The
change in the exponents after renormalization, as well as a
similar freezing behavior observed for values of Jynn close
to but different from Jny, indicate that the freezing point is
stable when the system is quenched to zero temperature. In
the special case where Jynn/Jnn=1, the system equilibrates
with a growth law given by n =0.48.

In Fig. 3 we show typical configurations obtained when
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FIG. 3. From left to right, typical configurations for
INNN/INn=0.9, 1, and 1.1 after 1000, 3000, and 5000 MCS after
the quench to zero temperature (top to bottom).
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the system is quenched to zero temperature for
Jann/Inn=0.9, 1.0, and 1.1 for times 1000, 3000, and 5000
MCS, respectively, after the quench. The freezing that oc-
curs for 0.9 and 1.1 is evident, whereas the system with
Jann/JInn =1 easily equilibrates. The change in the topology
of the domains is also clear: For Jynn/Jnn < 1, horizontal
and vertical walls are the only ones present at late times,
whereas only flat diagonal walls are present for
Jann/JInn > 1. Both cases reflect the underlying square
symmetry of the dominant interaction and both show, at
late times, flat walls which are correspondingly pinned at the
vertices. The case Jynn/J/nn=1 corresponds to a degenerate
situation. The microscopic picture underlying these results
is, schematically, the following. For Jynn/Jnn < 1 kinks are
absorbed at square vertices which are, in turn, pinned.'* At
Jnnn=Jnn Kink generation is possible at vertices even at
T,--O‘7 This generation plus the existence of vertical or
horizontal interfaces at the vertices (‘‘square” vertices) al-
lows them to move and, eventually, annihilate. At higher
JNnN, there is still kink generation at ‘‘square’’ vertices, but
now diagonal flat walls are strongly preferred. Consequent-
ly, the vertices cannot move and the system is again pinned.

However, when the system is quenched to a finite tem-
perature, it reaches equilibrium at long enough times.
There are two distinctive time regimes as can be seen in
Figs. 1 and 2. For early time and after enough iterations,
one can obtain an effective exponent very close to zero indi-
cating that the system has not yet reached the scaling re-
gime. At later times, the growth is characterized by a finite
exponent very close to the zero-temperature value for
Jnnn/Inn=1. The same value is obtained from a power-law
fit to the corresponding average domain size or from the
matching condition discussed above (as long as one stays
within the time regime—different at each level of
renormalization—where the system exhibits a power-law
behavior).

Given these facts, we now return to the issue raised in
the introduction as to which of the two fixed points is at-
tractive for quenches to finite temperature. Our conclusion
is that it is the equilibration fixed point which is attractive.
This is entirely consistent with our observation that the sys-
tem equilibrates at finite temperatures, with a growth law
characterized by an exponent which is (within the precision
of our study) the same as that of the equilibration fixed
point at zero temperature. The alternative scenario (that
the freezing fixed point is the attractive one) would imply
that the system has an asymptotic growth law which is loga-
rithmic. While we cannot completely rule out this possibili-
ty for an infinite system after a sufficiently long time (i.e., a

7797

crossover from n==0.48 to logarithmic growth) we see no
evidence for this crossover in our study. Additionally, on
physical grounds, we have no reason to expect that an infin-
ite system quenched to a finite temperature would have an
asymptotic logarithmic growth law. For example, whereas at
zero temperature one can fill the square lattice with square
domains in local equilibrium, and hence pin the system, at
finite temperatures the local equilibrium shape of domains
is not a square (but circular) and so one cannot ‘‘tile” the
two-dimensional system, pinning it in a metastable state.'®

Thus, our interpretation of our results is that the freezing
fixed point is unstable with respect to temperature and
could play a role in the dynamics only at very low tempera-
ture and ‘‘early” times. Otherwise, the attractive fixed
point is the zero-temperature equilibration fixed point dis-
cussed above. One can understand the crossover behavior
heuristically as follows. If one imagines that the equilibra-
tion fixed point governs the dynamical behavior for times
t > 7(Ty), where 7(Ty) is a temperature-dependent charac-
teristic time, one knows that 7(7) — oo as T— 0. Thus,
for quenches to very low temperature, one might not see
the true domain growth in Monte Carlo studies unless one
runs for very long times since 7(7T) is very large. Thus we
would speculate that the temperature-dependent exponent
n(T) at low temperatures found in the literature’!® is not
the true growth exponent, but only an effective exponent
related to the existence of the freezing fixed point.!” If this
is the case, the freezing fixed point would seem to be an ar-
tifact of the square lattice (or its topological equivalent)
since it is known that the Potts model on a triangular lattice
does not freeze. One would therefore find it difficult to ob-
tain the true growth law for the square lattice at low tem-
perature. In order to test these ideas, we have done addi-
tional preliminary quenches to T;/Jxn=0.1 and 0.2, where
the values quoted in the literature for the exponents
markedly deviate from the value given here.”'® For
T;/Jun=0.2, the system is seen to reach equilibrium after a
very long time. This is consistent with the scenario outlined
above. For Ty/Jyn=0.1, although the system has not yet
equilibrated for the 30000 MCS analyzed, we see no indica-
tion of freezing or logarithmic growth. A more detailed
analysis of the low-temperature behavior will be presented
elsewhere.
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