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Phase-field methods for interfacial boundaries
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A Landau-Ginzburg approach to an interface with finite thickness incorporates surface tension, aniso-

tropy, curvature, and dynamics of the interface along with supercooling. Various aspects are rigorous.

The behavior of an interface between two phases of a ma-
terial is of interest in many different contexts in physics.
Some of the basic questions involve the shape of the inter-
face, the formation of spatial patterns, and instabilities of
phase boundaries. ' The problems involving the shape of
the phase boundary have been studied in both the equilibri-
um and nonequilibrium situations. A central aspect of these
questions is the relationship between the temperature at the
interface and other variables such as the surface tension,
curvature, and normal velocity of the interface, anisotropy,
and concentration of impurities, etc. In the simplest case,
for an isotropic pure material in equilibrium, this is called
the Gibbs-Thompson relation and has the form

hs u (x) = —a K(x),
~here x is a point on the interface, u is the temperature
(scaled so that u -0 is the usual melting temperature), hs is
the change in entropy density, o. is the surface tension, and
~ is the sum of principal curvatures at x. For a phase boun-
dary which is not in equilibrium, the analog of (1) would be
a relation between the shape, (normal) velocity, and tem-
perature of the interface, thereby determining the motion of
the interface.

An important physical problem is the connection between
the atomic or molecular physics and the macroscopic
behavior of the interface. In this paper, we report on pro-
gress toward this goal by means of a pair of differential
equations arising from statistical mechanics using a Lan-
dau-Ginzburg approximation. '0 In the anisotropic case a
derivation has been presented in Ref. 11 from a lattice spin
model.

In particular, one may begin with the (reduced) $~ Hamil-
tonian on a Bravais lattice of N spins in d dimensions,

X J(x—x')4(x)P(x') —X iv[g(x) I, (2)
2k' T

where J(x—x') is the coupling between spins located at
sites x and x'. $(x) is a spin variable having the real
number line as its range, and ~ is an even fourth-order
polynomial which maintains a finite internal energy. As-
sume J(x—x') is a nearest-neighbor coupling of strength
J, &0 in the ith direction. Then the continuum equation
for $ can be derived by (i) rewriting the interaction term in
(2) as a sum of the Fourier transforms $ and J over the
dual space as N '

g~ J(q)$(q)$( —q), (ii) neglecting wave
numbers q" and higher, (iii) integrating by parts in discrete
derivatives, (iv) taking the continuum limit while maintain-

ing finite volume and internal energy. Adding a term
—2ug to the resulting Hamiltonian, one obtains the free
energy

F{Q ) =„dxF[x,$(x), $,, (x), . . . , $„(x)] (3)

8@(x)
2 tlx(

+7[&(x)'—I l'-2ug(x), (4)

where (, are proportional to J,. In equilibrium $ must
minimize F, i.e., SF/8$ = 0. Nonequilibrium is described by
the model A equation in Landau-Ginzburg theory as rP
-5F/Sqh, where r is a relaxation time. One has then the
equation

+ ~($ —$ )3+2 u
8 il i

t)xI

coupled with the heat diffusion equation

su+ l 8$
dt 2 dt

(5)

(6)

which may be studied subject to suitable initial and boun-
dary conditions, '

The phase-field equations (5) and (6) thereby incorporate
the physics of supercooling in a physically realistic manner.
The thermal and geometric properties of the interface are
also depicted accurately. In particular, the nonzero thick-
ness of the interface and the nonzero surface tension are
consequences of a finite correlation length. In fact, each of
these quantities is proportional to g =(, in the isotropic case
(see Theorems 3.4 and 7.3 of Ref. 12). Furthermore, the
finite thickness of the interface means the latent heat is
released throughout the interface. This feature would be
absent in a modified Stefan approach that ~ould stipulate a
Gibbs-Thompson-type condition on a sharp interface.

%e consider briefly the relationship between this phase-
field model (5) and (6) and the Stefan model2' which incor-
porates the physics of heat diffusion and latent heat, but
neglects surface tension and precludes supercooling. For-
mally, the Stefan model is a limiting case of the phase-field
model as the parameters 7 and ( approach zero and the
double well, e.g. , a '(qh —$'), approaches 5($' —1), i.e.,

0. This has not yet been analyzed rigorously but it
seems a scaling such as r =$2 and a=/ would imply this
limit. There is an analogy between this limit case and the
Ising limit of @' theory'2 23 for lattice spin systems.

The phase-field model described above may be used to
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where o. is now dependent on orientation angle, gA is a
measure of the thickness of the interface which is also
dependent on orientation, and ~ is the speed of the inter-
face toward the liquid. The relaxation time, 7, may depend
on orientation without affecting the calculations. The for-
mal asymptotic analysis may be performed for arbitrary
dimension. Anisotropy which depends on two or more an-
gles leads to other second derivatives of the surface tension
and to a modification of g„in (7). The o." term, often
called a surface stiffener, generally appears in anisotropic
systems (e.g. , see Ref. 24 and other references in Ref. 11).

The asymptotics procedure leading to (7) has been proved
rigorously under various conditions. In equilibrium, Eq. (6)
reduces to Laplace's equation Lu-0. Hence, the value of
u in the spatial region, 0, is determined entirely by the
boundary conditions (either Dirichlet or Neumann). The
basic idea involved in the asymptotic analysis is to consider
Eq. (5) with the left-hand side set equal to zero and to ex-
amine orders of g. The O(1) solution (e.g., in the isotropic
case) is $0= tanh~p, where p is the variable in the normal

direction to the interface divided by g. Subtracting the
0 (1) equation

B'40
Bp'

+ ~(A-y() =0

from the full equation results in the remainder problem for

Ai + ~ ~ I —34)]4 i = g —2u —g~ + higher order.—1 Bqho

Bp Bp

Since Bpo jBp satisfies the homogeneous equation for (8), a
solution qadi will exist only if the right-hand side of (8) is
orthogonal to the homogeneous solution, Bgo /Bp, i.e.,

dp+ higher order, (9)B40

Bp

.B~,
4 Bp

which leads to (1). Note that As=4 and o =~2( in this

model. It is clear from (8) that if K is O(1) then u must be
O($) on the interface. If the gradient of u is O(1) then
this forces the interface to be close to the curve on which
u =0. However, if u = 0 (1) everywhere (this can be
guaranteed by the boundary conditions) then it is possible
for the interface to deviate substantially from the curve
u =0.

The asymptotics is similar in the nonequilibrium and an-
isotropic cases. The main differences are that the rqh, term
leads to another term in (9) which is proportional to the
velocity, and the anisotropy modifies both the surface ten-
sion and the interfacial thickness.

A formal, i.e., nonrigorous argument such as the one
presented above is not complete in that a number of
mathematical issues are left unresolved. These are the fol-
lowing:

(a) The "matching" of inner and outer solutions by the

determine a Gibbs-Thompson-type relationship between the
temperature at the phase boundary and other variables. In
particular, formal asyrnptotics have been used to derive"
the relation

b s u - —[o.+ o")x—'", o + O (g'),

—rv$„=gz$ + ~(qb —$3) + 2u

—U il» + ~ i UQ» = EQ»»

(10)

usual asymptotic methods does not always lead to the
correct solution for nonlinear problems. For linear prob-
lems there are general results which indicate that the formal
asymptotics will be correct.

(b) In this problem there is an unusual nonlinearity (be-
sides the @ term) which is implicit in the equations, i.e.,
the relationship between the temperature and curvature at
the interface.

(c) Since the interface itself is not fixed a priori, the varia-
tion of the interface as ( approaches zero creates an addi-
tional difficulty.

(d) With an interface which is not fixed, the question of
whether there exists a curve ~hose curvature is given by a
particular function must be investigated.

(e) In the nonequilibrium problem the formal analysis is
contingent upon the existence of appropriate traveling wave
solutions, i.e., (u, g) in the form u (z —vt), P(z —vt) for a
suitable variable z.

A number of these issues have been resolved in the past
few years and some are currently being studied. In particu-
lar, the problem raised in (a) was resolved in Ref. 12, and a
rigorous proof was presented based on a mathematically
fixed boundary. Physically, this means that given a se-
quence of materials with surface tension (i.e., ~g) ap-

proaching zero and having identical phase boundaries, the
Gibbs-Thompson condition is necessarily satisfied. The is-
sue raised in (b) is thereby also resolved to some extent in
this controlled situation. The problem discussed in (c) has
been explicitly considered in Refs. 13 and 17 under spheri-
cally symmetric conditions. It was shown that there exist
solutions which satisfy the Gibbs-Thompson relation and
that any solution must satisfy it. The question of unique-
ness is open except in the one-dimensional case where an
exact calculation is possible. In two-dimensions the most
satisfying resolution of (a)-(d) has been presented in Refs.
18 and 19 without assumptions on symmetry. (See also
Ref. 25 for related mathematical problems. ) In this case,
(d) becomes a nontrivial problem and must be addressed
prior to the asymptotic analysis. %e prove that there exists
a function u and a curve I such that 5 u -0 and u satisfies
(1) on I'. The analysis involves writing the curvature in
terms of derivatives of I' so that (1) itself is a nonlinear dif-
ferential equation. The conclusion is obtained by consider-
ing differential inequalities related to (1), and using
theorems from nonlinear analysis. Using this result, we
analyze (5) (with $,=—0). Constructing solutions to dif-
ferential inequalities related to (5) we prove there will be
three (or more) solutions, with two of them being one-
phase solutions and the third a two-phase solution with an
interface I . The temperature at the interface is then shown
to satisfy the Gibbs-Thompson relation.

The issues involved in (c) and (d) may be expressed
physically as the extent to which a global problem is approx-
imated by a local analysis. For example, if a particular
analysis is performed for a sphere, is it valid near a point on
a surface with the same local curvature'? For many non-
linear problems this cannot be taken for granted.

In nonequilibrium the role of u is more complicated, and
a plane wave solution with constant velocity is possible only
if there exists a solution to the system of equations:
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subject to appropriate boundary conditions.
These equations are currently being studied with the aim

of resolving (e). Under some conditions on the parameters
and boundary conditions it appears that there is no solution
to (10) and (11). The formal analysis" which leads to (7)
is contingent on the velocity being locally constant at least
to O(1). Formally, there is a decoupling between the
velocity-related terms. A rigorous analysis is necessary to
resolve this problem.

A feature which makes the study of anisotropy difficult is
the necessity of retaining higher wave numbers and conse-
quently higher-order differential equations for more detailed
anisotropy. Nevertheless, we believe this theory provides a
sound basis for understanding the communication between
the microscopic and macroscopic levels. This idea is crucial
to understanding problems such as the tendency for dendri-

tic growth to occur in the crystallographic directions. One
may ask how such regular growth could be the result of in-
stability. The analysis leading to (7) indicates a preference
in direction of growth, with or without instabilities. Qualita-
tively, the interaction between anisotropy and instability
may be understood as follows. The growth of a perturba-
tion depends strongly on the surface tension, interfacial
thickness, and the extent of supercooling. Since the surface
tension and interfacial thickness both depend on orienta-
tion, " the instabilities are suppressed except in selected
directions. Numerical calculations involving anisotropy con-
firm these expectations. 6 A mathematical analysis of these
questions is currently underway.
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