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%e investigate the Fermi gas model for one-dimensional (1D) conductors as a function of chemi-

cal potential and of the applied magnetic field. The bosonization method allows to prove the
equivalence between these parameters, the first acting on charge degrees of freedom, the second on

spin degrees of freedom. A number of results available in the literature can thus be connected. %e
also use the mapping to the 2D classical Coulomb gas and a two-cutoff renormalization-group

method, the two energy scales being the bandwidth and the ~man energy (or the chemical poten-

tial). %'e obtain a coherent description of the Fermi gas phase diagram as a function of these two
"fields. "

I. INTRODUCTION

In the rapid development of research on organic quasi-
one-dimensional systems, experimental results on the
phase diagram of these compounds in a magnetic field has
sparked theoretical activity. ' lt is well recognized that the
spectacular effects observed in the tetramethyltetraselena-
fulvalene family [(TMTSF)zX] namely, the occurrence of
a cascade of field-induced spin-density-wave (SDW)
phases, are due to magnetic orbital effects. However, it
is interesting to study spin effects of the magnetic field in
a strictly one-dimensional (1D) electron gas for various
reasons: under a suitable field geometry, orbital effects
can be made small, and one can think of systems with
small enough transverse coupling ti between 1D chains
such that in a suitable temperature range and large
enough magnetic fields, the quasi-1D crystal behaves elec-
tronically as a collection of independent 1D chains. Such
metals should be considered as quasi-1D conductors in
which large quantum or thermal fluctuations strongly in-
fluence all the physical properties down to some low-
temperature 1D-3D crossover. Given the interest in this
domain and constant efforts to synthesize new compounds
in which more or less pronounced 1D character could be
revealed, it appears necessary to perform a complete in-
vestigation of the 1D electron gas in a magnetic field.
This study only deals with spin effects since there is no
orbital effect in a strictly 1D system. This study relates
very closely to the problem of the behavior of the 1D elec-
tron gas as a function of the band filling or the cheinical
potential. In a number of real compounds, such as, e.g.,
in the (TMTSF)2X family, umklapp processes arise be-
cause of a complete electronic transfer and a dimerization
which leaves a half-filled band. These processes are
thought to be essential to the understanding of these com-
pounds. ' On the other hand, a number of synthetic or-
ganic metals exhibit a continuous variation of charge
transfer as a function of temperature, pressure, etc.,
whence the importance of studying the approach to com-
mensurability. Moreover, one can think of experiments in
which the band filling or chemical potential as well as the

magnetic field can be varied together, whence the purpose
of this paper is to investigate the behavior of the 1D elec-
tron gas as a function of these two "fields." The intent of
such a study is to allow better predictions of actual 3D
(three-dimensional) ordered phases under various external
fields.

We use a model in which electron-electron interactions
are reduced to scattering processes between electrons close
to the Fermi surface. ' Each process is characterized by a
constant g;: this is the so-called "g-alogy" model (hereaf-
ter referred to as the constant-g; model). The electrons
interact through backward scattering with coupling
strength gi (momentum transfer q=2kF) and forward
scattering with coupling gz (q=O). We emphasize the
spin dependence of the backward-scattering processes
since the gii processes between electrons of opposite spins
are inhibited by the magnetic field. We also consider an
umklapp scattering gq which is important in the case of a
half-filled band. The g& processes are inhibited by devia-
tion from the half-filled band. This effect has been stud-
ied by Seidel and Prigodin, ' using a renormalization-
group (RG) technique. We have used a similar procedure
to investigate the magnetic-field effects in 1D and quasi-
1D electron gases. 7 In the case of an attractive interaction

g&~~ &0, Japaridze and Nersesyan' studied the electron
gas in a field, using the bosonization method and the ex-
act Luther-Emery solution. " In those papers, magnetic
field and band-filling effects were never studied together.
One of the goals of this paper is to take advantage of the
analogy between these "fields" to treat them as well as
their combined effects in close analogy.

Emery et al. ' have already shown that umklapp
scattering has the same effect on the charge degrees of
freedom as backward scattering (gij ) has on the spin de-
grees of freedom. However, they set up this equivalence
only in the case of a half-filled band and pointed out that
a difference occurs when 4kF is not a vector of the re-
ciprocal lattice, 6&4k~.

The equivalence also holds in that case, if a magnetic
field is applied to the electron gas: this field has, on the
spin degrees of freedom, exactly the same effect which the
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chemical potential has on the charge part of the Hamil-

tonian. It allows us to describe in a very symmetric way
band-filling and field effects. This is shown in Sec. V.

In Sec. VI, we use the mapping of this 1D electron-gas
model on the two-dimensional (2D) classical models such
as the Coulomb gas, and a RG treatment under magnetic
field (or incommensurability). Then, we derive the ex-

ponents of response functions and deduce a complete
description of the 1D electron gas as a function of these

two "fields." The usefulness of this description for the
understanding of actual quasi-1D systems is briefly dis-

cussed in the conclusion.

i co —161i
ll ~» ~&ll+ 1&ln
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+ 0 ~ ~ (3.1a)
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+ ~ ~ 0

(3.1b)

To lowest order, one obtains for the real contribution to
the vertices

II. THE MODEL

Interactions between electrons are described through
elementary scattering processes connecting electron states
close to the Fermi sea. The appropriate Hamiltonian is
&=&o+H;„,+&,. » the unperturbed part Ho, the ki-
netic energy has been linearized so that
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where creation operators have been introduced for the
right- and left-going branches of the Fermi sea (aJ
and bk). s is a spin index. The interaction term is written
as

&.i =g2 42 6 As %is d&

+(gi((5 +gii&., ')
+g, ~„„~1 . . ,e-'6"+H.c. x,

where

Pi, (x)=I. '/2 g e'~ak, ,
k

1(2,(x)=I. '~ g e'~bI
k

(2.2)

III. PERTURBATION EXPANSION

The sums over s and s' are implicit.
As will be seen below, the backward scattering gij be-

tween electrons of opposite spina is strongly affected by
the magnetic field so that we have chosen to distinguish
the two processes gi~~ and gii. Because of the Pauli ex-
clusion principle, the umklapp term gi couples only elec-
trons with opposite spins. A detailed review on this Ham-
iltonian in zero magnetic field, either in the case G =4kF
for a half-filled band or when gq ——0 is given by Solyom.
H, is the Zeeman coupling to the field:

H, =p&H+s(ak, ak, +bk, bk, ), s=+I (2.3)
k, s

which splits the energy spectruin of Ho into two subbands
of opposite spins. In the following we note Ii =y,&H.

(3.2b)

where g;=g;/muz and 5p=uF(k~ G/4). —Eo is a band-
width cutoff. We have mixed the appropriate vertex func-
tions in order to display the well-known decoupling be-
tween the (gi~~,g» ) and (g,

~~

—2g2, g3) sets of parameters,
corresponding, respectively, to spin and charge degrees of
freedom. Then it is already obvious that the incommen-
surability acts on the charge degrees of freedom, exactly
as the magnetic field acts on the spin degrees of freedom,
the first inhibiting the gij processes, the second affecting
the umklapp processes.

IV. RENORMALIZATION-GROUP TREATMENT

We consider, for example, the space (gi~~, g&i ) involved
in perturbation expansions (3.1a) and (3.1b). From these
expansions we use a renorma1ization procedure which
connects properties of the model with different cutoff en-

ergies. Here, due to the presence of two energy scales Eo
and h, the renormalization is twofold.

In the first regime, the cutoff energy parameter is larger
than the field so that the field effect is neglected and one
first performs a zero-field renormalization. In the second
regime, when the cutoff parameter is smaller than the
field, backward scattering is supposed to be totally frozen.
This amounts to replacing ln(

~

co —16Ii
~

' /Eo) either
by ln(co/Eo) (first regime) or by 0 (second regime). This
leads to the following Lie equations, to lowest order
[1=ln(EO/Eo)]:

f ill ~ 811
dI '

drg iJ gi((gij when Eo )4h, (4.la)

It is expected that the magnetic field and the deviation
from the G =4k+ commensurability inhibit certain
scattering processes. This can be seen in a diagrammatic
expansion of the vertex function which now involves
scattering of electrons away from the Fermi surface.

dgi() dg ii.

dl
'

dI
=0, = 2g~~~g&i when Eo&4h . (4.1b)

The essential effect of the field is to stop the renormali-
zation of gi~~ when Eo -4h. Moreover, since g&i process-
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es are inhibited by the field, it can be shown that g~i does
not appear in the low-frequency response functions under
the field~ ~ so that the only effect of gii (g3) is a renor-
malization af gi~~ (gi~~

—2g2) in the exponents of the
response functions.

Equations (4.1) are the simplest equations which
describe the renormalization trajectories in the field.
They provide essential results, namely, the separation be-
tween a weak-coupling region gi~~ & ( gii (

with a line of
fixed points gii ——0 (Tomonaga-like behavior), and a
strong-couphng region characterized by a gap. ~ The study
of the field effect leads to results identical to those de-
duced from a "parquet" treatment. '3 Indeed, that method
is known to be equivalent to a first-order renormalization.
Here, for the sake of simplicity, we have limited ourselves
to this first arder. But the physics that we describe has
been studied using a second-order scaling method without
the above simplification of logarithmic terms. The cal-
culation must be performed numerically and leads qualita-
tively to the same results, namely that, when the energy
scale is smaller than the Zeeman energy, the inhibition of
the gi~ process stops the renormalizatian of gi~~. Later in
this paper, we will apply that result in particular to the
study of the strong-coupling region by going beyond
first-order scaling. Thus, using the renormalization-graup
treatment, critical exponents will be estimated as a func-
tion of the field. In the following section, we first turn to
the use of the bosonization method.

1 1
p, (x)= (p„,+p„), P(x) = ((()„+(I)„),&2 o'2

(S.5)

cr, (x)= (p„p—„), (t), (x)= (((t„—P,h),

+hV2 J (rrr+rrr)dx, (5.6)

&P =~F P1P1+P2 & —
g1II

—2g2 P1P2 &

+ co$2
(2ma)

v2vvkv I—(pr+pr)dx . (5.7)

This constitutes the so-called boson representation of the
Hamiltonian of Sec. II.' This decoupling clearly displays
the correspondence (gi~~

—2gq, g3) (gi~~,gii ). We discuss
naw field and band-filling effects.

Introducing the canonical variables

dr„(x)= =vv f (v, +vr)dx, v=p oro
4n

the Hamiltonian splits into two parts describing spin and
charge degrees freedom:"

~F 0"11+ ~2+2 + g11 I
12

2
+ 2

cos 2 1
—

2 x
(2m a)2

V. BOSON REPRESENTATION II„(x)=v n(vi —v2), v=p or cr
(S.S)

The interest of this method is manifold. It allaws us to
decouple spin and charge degrees of freedom and thus ta
prove the equivalence between magnetic-field and band-
filling effects. It yields an exact solution in the strong-
coupling region. It maps the electron-gas problem on to
2D classical models such as the Coulomb gas for which
RG equations are better known and provide a better
understanding of the strong-coupling region.

The Hamiltonian of Sec. II can be expressed in terms of
density operators

(5.1)

H~ =UF f
r

1++2 2+' 2 2

' 1/2

+ 2
cos(v Sn(td )+h — V(tI dx,

2g 2

(2@a) m

(5.9)

each part of the Hamiltonian can be reduced to the sine-
Gordon form

with

g (x)= e
27ra

(5.2)

where r =1,2 is the band index and s =+1. The boson
representation of the fermion field operator is

Hr ——v, J' '+2 2+ 2 2
+ 1—

2g+ z cos(v SnPF —Gx)
(2ma)

(5.10)

(x)=2m( —1)'+' Jp (x)dx, (5.3)

[p~(x),dt);, (x')]=i 5(x —x')5 6 ~ . (5.4)

When the charge and spin-density operators are defined'

a is an appropriate cutoff, the inverse of the bandwidth
cutoff (see the discussion in Ref. 5). The density opera-
tors obey bosonlike commutation relations 6

PF——(}))F—~x .
Sm

(5.11)

This phase shift amounts to taking the origin of the densi-
ty at the half-filled band. The forms (S.9) and (5.10)

where gF
——gi~~

—2gz. p, is the chemical potential of the
interacting electron gas. The two Hamiltonians are exact-
ly identical provided a new choice of the phase:
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TABLE I. Equiva1ence obtained by inversion of charge and

spin degrees of freedom.

Charge degrees
of freedom

51M, chemical potential

g&ll

g3
CDW
SD%'

SS
TS

n, electron density

Spin degrees
of freedom

h, magnetic Geld

g1x
CD%'

SS
SD%'

TS
m, magnetization

display the exact correspondence between the effect of the
field on the spin degrees of freedom and that of the chem-
ical potential on the charge degrees of freedom (see Table
I). Then strong analogies can be developed for the 1D
electron gas in a magnetic field or as a function of the
band filling, as was already stressed from the perturbative
expansion. The gradient term in each Hamiltonian is
either the coupling of the magnetization
m =(2/m)'/z J Vp~dx to the magnetic field, or the cou-

pling of the electron density n =(2/ir)'~2 JVP~dx to the
chemical potential.

Harniltonians of the form (5.9) and (5.10) have already
been extensively discussed in the literature. They are well
known to be equivalent to a classical 20 sine-Gordon
functional with incommensurability along one direction,
the magnetization and the electron density being
equivalent to the mean incommensurability or the soliton
density of the sine-Gordon problem. ' ' For this Hamil-
tonian, RG equations have been derived directly' and
give equivalent results to those obtained in the constant-g;
model. ' In the sine-Gordon problem, the behavior of the
renormalization fiow changes when the lattice sealing pa-
rameter reaches the soliton separation. At this stage, the
pinning potential stops contributing to the free energy'6
exactly as the gi& processes are inhibited when the energy
scaling parameter is of order of the field.

Finally, it is known that H~ or Hz can be transformed
into a 1D interacting spinless-fermion (SF) model, using
the boson representation of a spinless-fermion operator.
In the particular case where g, ~~

————,
' (or gi~~

—2g2
= ——,

'
) the SF's are free so that there exists an exact solu-

tion for this coupling which has been found by Luther
and Emery" (LE). Applying a field to H~ or a chemical
potential to Hz amounts to changing the Fermi level of
the SF. Io this picture, it is known that there is no change
in the ground-state properties as long as the SF Fermi lev-
el lies in the gap, namely, when li &h, =b, (or 5p, &bz)
where b, is the renormalized value of the gap of the spin
(or charge) excitations. 5 =gii/2@a (or hz ——gi/2ma) on
the I.E line and 6=0 in the low coupling region

gi(( &
I g» I ««i)( —2g2& I g3 I).

The magnetization and the density are related to the SF
density of states at the Fermi level. ' When there is no
gap, the magnetization varies as m=2h/nv and the
electron density as n =2pliruz where u~ and uz are Fermi
velocity renormalized by parallel interactions:

u~ =uF(1 —g i~~
/2) ' and uz ——uF(1 —gz/2) '. In the

strong-coupling region

m=0 when h gh, ,

2
(h —h, )' sgn(h) when li &h, ,

(5.12)

n =G/2m when 5p & 5p, ,

n=6/2m+ (5p 5p,—)'~ when 5p&5p, ,
2 sgn(5p )

'lT'Up

(5.13)

where 5p, is such that n =G/2m when 5p =0.
The Fermi wave vector kF in presence of interactions is

given by kF (n/——2)n 'so that kF ——G/4 as soon as
5p, &5p, and kF G!4&—x(5p 5p, )'—~i when 5p&5p, .'5
In the presence of a field, there are two subbands of oppo-
site spin with Fermi wave vectors:

kF, kF + ——(li —h, )'~ (5.14)

At T =0, the susceptibility' varies as

1 h
2 in'

(li —h, )
(5.15)

Similarly, there is a divergence of the compressibility in
the case of a non-half-filled band:

1

2 in'(5p —5p, )
(5.16)

Because of the gap in the H spectrum, Emery et al. '

found for the magnetic susceptibility an activated
behavior at finite temperature:

(5.17)

and the compressibility exhibits also such a behavior when
there is a gap in the H~ spectrum.

The behavior of the magnetic susceptibility and of the
specific heat at finite temperature and for different limits
has been discussed in the presence of a field. ' Similar
behaviors are thus expected as functions of the band fil-
ling, namely, an activated dependence of the compressibil-
ity and of the charge part of the specific heat Cz when

5p & 5p„ the activation energy of which increases towards
its half-filled-band value; a divergence of the compressi-
bility when 5p =5p„' a specific-heat crossover from an ac-
tivated behavior when 5p &5p, to a linear temperature
de endence when 5p&5p, . At 5p=5p„C~ varies as

T.

VI. RESPONSE FUNCTIONS

We now explore the behavior of the different instabili-
ties in a field (h or 5p). We know from the preceding sec-
tion that the wave vector of each instability (CDW
denotes a charge-density wave, SD% a spin-density wave,
SS singlet superconductivity, and TS triplet superconduc-
tivity) is connected to the density and the magnetization
of the electron gas
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Q CDw =ir( ti + tii },
QSDW

Qss =+arm,

QTs =0

(6.1)

~+1
Sz (x) ~x

+1
S+(x)~x- (6.3)

with expressions of n and m given above. Now, we recall
the multiplicative structure of the response functions, due
to the separation of spin and charge degrees of freedom 6

N(x, t) ~ S~+ (x, t )S+(x, t ) for CDW,

X(x,t) ~S&+(x,t)S (x, t} for SDW,
(6.2)

b,,(x, t) ~Sz (x,t)S+(x,t) for SS,

&l(x, t) ~Sp (x,t)S (x,t) for TS .

5, (6, ) defines the response functions appropriate to the
sin let (triplet) superconductivity. The functions S~
(S~ ) are the contribution of the charge (spin) degrees of
freedom and have been calculated independently from
each part of the Hamiltonian. '

From this structure and the previous considerations, the
Table I of equivalences can be derived, resulting from a
permutation of charge and spin degrees of freedom. The
behavior of response functions under a magnetic field is
the same as with 5@+0provided charge and spin degrees
of freedom have been inverted. For example, the field h

acts on the SDW instability exactly as 5p acts on the SS
one. Taking advantage of this parallelism, we now ex-
plore the different parts of the phase diagram. The effect
of the chemical potential has been studied by Seidel and
Prigodin. s'9 Japaridze and Nersesyan'0 looked at the elec-
tron gas with an attractive interaction (gl~~ &0) under a
field around the LE line. We have discussed the effect of
the field h in the weak-coupling region (gl~~ &

I gii I ) and
when gi~~&0 (regions A and 8 of Fig. 1).7 Although
much work has been performed on this subject, we give
here for the first time a complete discussion of the phase
diagram under fields, with emphasis on the combined ef-
fect of h and 5)M, . In the following, exponents y~ and y
are defined as

where

1 —g' ii/i2
t pp

(6.5)

g are the fixed-point values of the renormalized process-
es. From a first-order renormalization which is known to
be a good approximation in this region:

FIG. 1. Renormalization trajectories in the (y,g» ) plane for
different values of the magnetic field. A similar result is ob-
tained for the (y~,g3) plane as function of the chemical poten-
tial. Four regions are separated by the thick curve and by the
line y =1. The bare coupling indicated with a cross is the
starting point of the renormalization which stops when the ener-

gy scale is equal to the field. Dashed curves are the trajectories
when the field is zero (region A) or smaller than the gap h, (re-
gions 8, C, and D). %'hen the starting point lies in region 8,
there is a critical field hT above which the renormalized ex-
ponent y becomes larger than 1. Dotted curves are continua-
tions of the trajectories.

We now investigate the different parts of the phase dia-
gram.

gl[) (g l[] g ij )» g ll 0»2 2 1/2

g 1(( 2g2 l(gl~( 2g2 } g3 j g 3 0 ~

(6.6)

A. 8i[( &
I gll I gl(( 2g2& I g3 I

We first discuss the problem when h =0 and 5p, =0.
There is no gap in any part of the Hamiltonian. The
problem scales to the Tomonaga solution so that all
response functions exhibit a power law divergence aF
(Ref. 20)

Since yz and y are greater than unity (y =1 in the
spin-independent coupling case g i

~ ~

——g li ), the CDW
response is not singular. The dominant singularity is the
TS response. SS and SDW responses can be also diver-
gent with a lower degree of divergence. The magnetic
field leaves y~ unchanged while, under field, the fixed
point is moved to the value

yp+ y ~ 2 for CD—W,

z y1+/ —y 2 for SDW,

1/yp+y 2 for SS, —
1/~y+1/ y—2 for ST,

(6.4)

1+ ~ Ill

81ll +f1

1—~ill

8Ill+fI

4g

gll (h)=0
ll

(6.7)
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with gi ——gi))(h =0). In the case of spin-independent

coup»ng g1)( |,'ll Ã1

gi(h)=
4h

1 —g)1n
g0

(6 8)

In any case, the fixed point is moved to a higher value so
that y (h)&y (Ii =0). A higher-order renormalization
does not alter this behavior.

As a result, the magnetic field effect in this region does
not change the main singularity which is always TS but
the SDW is favored as a secondary divergence at the ex-
pense of the SS one. We have shown that the SDW can
thus be stabilized in the quasi-1D Fermi gas.

Quite symmetrically, deviation from the commensura-
bility 6=4k~ leaves the dominant singularity unchanged
but favors the SS fluctuations. When both "fields" (h and
5p.) are "applied, " their effects compensate, one favoring
SDW, the other SS instability.

S O I)))1

„(C OQ)

CON
(S OM)

1/2
CO%

1/2 1

s) 0

)( (5Ii)

8i)) & l8ii I s 8i))

We concentrate now on the spin part of the Hamiltoni-
an, the p part being Tomonaga like as in the previous case
(yz& 1). We enter in the strong-coupling region for H,
which is much less known so that our evaluation of the
field effect is at best qualitative. In zero field, on the LE
line, S+-can be expressed in terms of the SF correlation
functions. ' ' When x~ ao, S+(x) is constant and
S (x) decreases exponentially, leading to an exponential
disappearance of the TS and SDW correlations. This
means that the exponent y is now 0. More generally,
when gi)) &

I gii I, there is a gap in the cr part of the exci-
tation spectrum so that y~=0. The important point is
that, when no magnetic field is applied, either y~& 1 in
the low-coupling Tomonaga-like region described above or
y =0 in the strong-coupling region. The region in phase
space such that 0 & y & 1 is forbidden in zero field (Figs.
1 and 2). The main effect of the field is to make part of it
accessible. From Sec. V, we know that the behavior of the
Fermi gas is unchanged as long as the magnetic field is
smaller than the gap, h & h, =6 . We are now facing two
problems. One is to know or at least estimate the value of
the gap in the whole strong-coupling region, away from
the LE line where it is known exactly. The second is to
find the behavior of the response functions when h & 5 .

It is well known that the first-order RG equations do
not provide a good description of the strong-coupling re-
gion. A better choice is the use of the RG equations for
the Coulomb gas which has been demonstrated to be
equivalent to the bosonized form of the constant-g; prob-
lem. ' Using the following correspondence: '

4 (1—gi))/4)'
' 1/2

+g&Il /2
P

1 —gi)) /2

K =8(/~r
(6.9)

where K is the coupling constant and y the fugacity of the

FIG. 2. Phase diagram of the 10 Fermi gas model. The
curves 1, 2, 3, and 4 are respectively, defined by y~+y =2,
yz '+ y~ '=2, y~ '+y =2, and y~+y '=2. The "fields" h

and 5p move the representative point of the system, respective-

ly, to the top and to the right, A complete understanding of the
Fermi gas model under fields can be deduced from this diagram.

Coulomb gas, one deduces the following RG equations for
the parameter space (y,8ii ):

—Ch- -0exp with c=
(

I gii I -gi)) )'" (28»'" (6.11)

~Ye gli
1

i i ugli Eo
8

(1+7-) =2(y- —1)gli /=ln
0

(6.10)

These equations recover, to lowest order in g&z and to
next order in g~~), the RG equations found by Solyom
directly from the perturbation of the constant-g; problem.
They provide a better estimate of the renormalized cou-
plings in the strong-coupling region and provide directly
the renormalized value of the exponent y of response
functions (Fig. 2).

In the absence of field, the renormalization trajectories
flow to the value y =0. This point is reached by decreas-
ing the energy scale to a finite value which is precisely the
excitation gap, expected from the bosonization method.
The gap can be estimated from RG equations at least
when it is small, i.e., close to the lines g~j

——0 and

gi)) ——Ig, i I. Close to the line gii ——0, from Eq. (6.10),
1/2(1 —y )

one deduces b, /Eoccgii as obtained for the first
time in a different way by Luther. This recovers the ex-
act solution of LE when y = —,

'
(gi~)

————', ) and the clas-
sical solution (infinite mass) of the sine-Gordon equation
when y =0 [8 i))

———2, see Eq. (6.5)]. Close to the line
g, ))

—Igii I, the gap is given by a Kosterlitz-Thouless-
type expression:
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When gi~~
——gii &0 and both are small, an expression has

been also derived' ' which recovers the exact result of
Ovchinnikov for the Hubbard model.

We turn now to the case of an applied field. As shown
in the preceding sections, when the energy scale becomes
smaller than the field, the renormalization stops at the
corresponding value y (h). Thus, as long as the field is
smaller than the gap (more precisely h &b, , where the
gap is 25 ), the trajectories still flow to the same value

y (h)=0 and nothing is changed. When the field is
larger than h, =6~, the renormalization is stopped at the
energy scale h, the gij processes becoming irrelevant.
Their only effect is a renormalization of y so that we ex-
pect at low frequency (co « h ), a Tomonaga-like behavior,
the exponent of which, y~(h), is field dependent, leading
to a continuous spanning of the parameter space: when
the field increases to infinity (or rather to the cutoff Eo),
the coupling constants tend to their bare, nonrenormalized
values so that y~(h) reaches its maximum value

I+&iii ~2
y ( oo ) = =y (nonrenormalized) .

. 1 —&1[[~2

(6.12)

This kind of description, first worked out by Seidel and
Prigodin in the band-filling problems exhibits qualitative
differences with the result of Japaridze and Nersesyan
(JN} obtained from the SF representation. ' The latter
(JN} analyzed the LE line and its vicinity where the corre-
sponding SF Hamiltonian contains four-fermion interac-
tions. When h & h„ the spin-density-excitation dispersion
law ean be linearized around the Fermi level and a new
Tomonaga-Luttinger problem is derived. As a result, the
response function behavior is unchanged as long as h is
lower than h„namely, y remains 0. When h &h„ the
functions S-+(x) decrease algebraically: y jumps discon-
tinuously from 0 to —,

' and reaches its Tomonaga value in
infinite field. The asymptotic laws they find are valid
only when x »u~(h —h, ) '+, i.e., co&&(h —h, )'~,
thus in a vanishingly small domain of frequency when h
is just above h, . We expect that procedure to be well ap-
propriate close to the LE line while the RG treatment
provides a correct understanding if the bare coupling
values lie in the vicinity of the weak-coupling region, i.e.,
just below the gi~~

——
I gij I

line and probably as long as

&i~~ & 0. In fact the RG scaling is not adapted to describe
the region below the LE line where bound states occur in
the gap. A common feature of the two descriptions is
that y reaches its bare value in high field, which means
that the gii processes are totally frozen. Moreover, both
give a monotonous increasing variation of y with the
field above the LE line. But, in the SF description, below
that line, y decreases from —,

' to a smaller value when h

goes from h, to infinity. Thus, there is in this picture a
quite different field effect above and below the LE line.
However, as discussed by Solyom, one should be cautious
on quantitative results obtained from the bosonized Ham-
iltonian, because of the problems linked with the cutoff
procedure inherent to bosonization.

Nevertheless, concerning the occurrence of the possible
instabilities as functions of the field, both methods give at

least qualitatively the same indications, apart from a
small difference in the strong-coupling region below the
LE line as will be shown below. It is known that, in most
cases, there are two diverging response functions. If one
only looks at the relative behavior of the main instabilities
(inost diverging response function), a detailed knowledge
of the strong-coupling region is not useful. The lines
separating regions characterized by different main insta-
bilities are defined by y~=1 and y =1. Thus, an in-
teresting consequence for the field efFect occurs in the re-
gion where y~(h =0)=0 and y ( oo ) & 1. This is the case
when 0&&i~~ &

I gii I
(region B of Fig. 1). Then, there is

a second critical field hz defined by y (br ) = 1: by apply-
ing a field larger than hr, a SS (CDW) ground state be-
comes a TS (SDW) ground state. Note that, just below
the line &i

~~

——
I &i' I

where we expect the RG treatment to
be valid, hr is given by a Kosterlitz-like expression and
that hz ——(h, Eo)' . If one becomes interested in the
secondary singularity, there are several critical fields h;
such that y+-'(h;)+yz' ——2. Still in this case, the two
descriptions provide the same qualitative results except in
a small region. The main features are the following. If
the bare coupling constant gi~~ lies above the LE line, y
increases with the field so that different kinds of instabili-
ties occur successively. If 1&ye&2 (0&gi~~ —2g2&+ —, ),
the succession of six possible sets of instabilities is the fol-
lowing: SS (CDW)~SS~SS (TS)~TS (SS)~TS~TS
(SDW) (see Fig. 2; the phases noted between parentheses
have a lower degree of divergence). In particular, from
JN, if —, & y~&2, the secondary instability (CDW) disap-
pears when the field reaches the gap h=h„since y
jumps to the value —,'. If yz&2, only four possible
behaviors can be found: SS~SS (TS)~TS (SS)~TS.
How many instabilities effectively occur depends on the
infinite field value of y, i.e., on the bare value of the cou-
pling constants (Fig. 2).

%e turn now to the case where the bare coupling g&~~

lies below the LE line. The instability remains SS (CDW)
whatever the field when 1&yz& —,

'
(0&gi~~ —2gi & —„)

and SS when yz& 2 (gi~~
—2gi & + —,

' ). But from the JN
results, a curious feature occurs when —, & yz & 2 provided

y~(h = oo ) & 2—y~ (horizontally-hatched region in Figs. 2
and 3}: as long as h & h„ the instability is SS (CDW). It
becomes SS when h & h, and is again SS (CDW) above a
field such that y~(h) =2—yz.

The effect of the chemical potential on the charge part
is the same as that described in the preceding section. y&
increases with 5p, . In particular, the different behaviors
as a function of the magnetic field described above as a
function of y&, can be found when 5p varies [the accessi-
ble region lying between y&(5p =0}and y&( oo )]. Devia-
tion from the commensurability tends to inhibit SDW and
CD%' as secondary singularities, favoring only the super-
conducting response functions.

C. &ii~ &
I &u I &i~~

—2&2 & I &3 I

This case is straightforwardly deduced from the discus-
sion of Sec. VI B, with the mapping of Table I. In partic-
ular, when 0&&i~~ —2&2 &

I &3 I, there is a critical 5pz
larger than the charge-density-excitation gap, above which
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«6 SO

SO
{{0

CO
{SO

=g,
' -zg,'(5(i)

-6/g -10/0

FIG. 3. Phase diagram of the 10 Fermi gas model, as a
function of the fixed point coupling g )() and g )~)(

—
2g g . This di-

agram is straightfovvardly deduced from Fig. 2. Some special
values have been indicated.

superconductivity instabilities are favored at the expense
of the density wave ones. In the region —, &y &2—yz,
the same kind of reentrant behavior as described in
the preceding section can be found, namely SDW
(CDW) ~SDW~SDW (CDW).

VII. CONCLUSION

The whole parameter space, showing the different insta-
bilities which occur with application of the two "fields" is

given in Figs. 2 and 3. The obliquely-hatched area, the
thick lines, and the thick points exhibit the parameter
space and thus the instabilities accessible in zero "fields"
(Ii =0 and 5' =0). The effect of i'i and 5p, is to translate
the representative point of the system, respectively, to the
top and to the right of the phase diagram (except if the
bare coupling values lie in the horizontally-hatched areas).
In the obliquely-hatched area (weak-coupling region), this
translation is continuous as soon as Ii or 5u are nonzero.
On the other hand, a "field" larger than the gap is needed
to leave the thick lines or the point y =y&——0. The main
instabilities are separated by the lines y =1 and yz

——l.

8i)[ & 18ii I ~ 8ifl 282 & I83 I

In the absence of fields, both the p and o parts of the
Hamiltonian are characterized by a gap, respectively, in
the spectrum of the charge and spin degrees of freedom so
that the representative point of the system is given by

y~=yz ——0. The only divergent response function is the
CDW one. It must be noticed that from this point, pro-
vided the bare coupling have appropriate values (they
must lie in the 8 region of the two parameter spaces, Fig.
1), all possible phases of the 1D Fermi gas can be reached
with joint application of the two "fields, " superconduc-
tivity being favored by a large 5p and SDW as well as TS
instabilities being favored by the magnetic field.

An infinite field moves the representative point to its bare
value. Thus depending on the bare value of the couplings,
different phases can be reached by variation of the fields;
some of them were inaccessible when 5p, =O and in zero
magnetic field: SDW (TS), CDW (SDW), CDW (SS), and
SS (TS) (Figs. 2 and 3). Figure 4 gives schematic phase
diagrams as a function of the bare couplings, for different
values of 5p and h. We have not detailed the strong-
coupling region below the LE lines where the reentrant
behavior described in Sec. VI 8 occurs. These diagrams
generalize the diagram of Prigodin and Firsov27 obtained
when G =4k' and h =0. It must be noticed that the Fer-
mi gas with a non-half-filled band is not identical to the
case g3 ——0. First, when gi~~

—2gz & I 83 I
as soon as 5p

is smaller than a critical value, the gas behavior remains
that of the commensurate case. Then, even above this
value, although g3 is irrelevant, it leads to a renormaliza-
tion of yz.

It must be noticed that the wave vector of the main in-

stabilities is always locked at small "field." In the region
(a), TS instability is dominant at wave vector Q=O. In
the region (b), the SS instability is dominant. The wave
vector Qss only depends on magnetic field and varies
when h & h, . In the region (c), the main instability is the
SDW one; its wave vector depends only on the chemical
potential and is fixed as long as 5', & 5p, . In the strong-
coupling region (d), the wave vector of the CDW depends
on h and 5p but only above threshold values h, and 5p, .

Up to this point we have been interested in the ground-
state properties of the electron gas, i.e., in the response
functions at vanishing frequency ro~O Finite t.empera-
ture properties can be inferred from the above analysis. It
is known, that at finite T', the renormalization trajectories
stop when the energy scale reaches max(k+T, psH ) (in the
spin degrees of freedom parameter space) or
max(k&T, 5p). The reason is that the vertex function in-

cluding, for example, gii processes varies roughly as
in max(}usH, ks T,ro). Then, in any case, effects described
in this paper occur when @AH & ks T or 5p & ks T

By using the equivalence between the magnetic field
and the band-filling effects on the 1D Fermi gas, we pro-
vide, although admittedly in a qualitative fashion, a com-
plete description of the 1D electron gas under these two
"fields." From Figs. 3 and 4 it is possible to predict
which phase can be stabilized. The main features of this
diagram are expected to give still a good description of
the quasi 1D electron g-as. In that case, it has been shown
that spin effects still arise at least if Ii & Too where Tco
is the 10-30 crossover temperature and is related to the
transverse coupling ti between chains. Tco=tile. in
the mean field approximation for a free quasi-1D electron
gas.z ' The observation of spin effects thus requires a
compound in which the transverse integral is sufficiently
small, lower than the Zeeman energy. %%en such is the
case, we have shown that a spin-density wave can be stabi-
lized by spin effects: this happens provided the bare
values of the coupling constants are such that the SDW
phase is sufficiently close in energy to the normal or su-

perconducting state. One may wonder whether such an
effect could be observed in the (TMTSF)~ family. In
this series, ri is of order 100—300 K. But Bourbonnais
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FIG. 4. Phase diagrams as a function of the bare couplings g&~I and g&~~
—2g& for different values of the fields. (a) h =0, 5@=0

(Ref. 27). (b) h =0, 5p&5p, (c) h =0, 5@=ao (fully incommensurate case analogous to the case g3 ——0) (Ref. 5). (d) h &h„5@=0.
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et al. 3 argued that the crossover temperature Tco is re-
duced to 6—8 K by many-body effects. This allows spin
effect to be relevant for fields of order 100 kG. However,
such effects have not been observed up to 100 kG: the
field-induced SDW phases are stabilized only by the field
component along e'. This implies either that T~ is
larger than 10 K or that the coupling constant values are
such that spin effects are weak ones. In the 3D regime,
diamagnetism as well as details of the Fermi surface are
essential. Orbital effects suppress superconducti»ty

above a critical field H... and diamagnetism has been re-

cently shown to induce SD%' phases by improving the
nesting of the Fermi surface (the same mechanism could
also induce a CDW). ' '

The physics seems to be simpler with regards to the
charge degrees of freedom since the band filling plays the
same role as the Zeeman energy on the spin degrees of
freedom but there is no equivalent to orbital effects in
that case. Moreover, even if Too is large, the band-filling
effect on 1D fluctuations could be more accessible experi-
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mentally. If Tco 3——0 K, a magnetic field larger than 300
kG should be necessary to observe spin effects. And a rel-
ative variation 5ky/ky & Tco/4t~{ is needed to modify the
quasi-1D electron-gas stability. Typically ti ——t~~/10 for
most of the existing quasi-1D conductors so that the re-

quired relative variation of the band filling is small and
accessible experimenta11y. As a reminder, a relative varia-
tion of order 10% is observed in tetrathiafulvalene-
tetracyanoquinodimethane (TTF-TCNQ) when pressure is
varied due to the variation of charge transfer. ss In
(TMT$F)+ family the charge transfer remains complete,
probably because of a large value of the Madelung energy
due to a small anion-cation distance.

It seems that, at the present time, the conditions for ob-
servation of spin and band-filling effects on the 1D fiuc-
tuations are not realized in the existing compounds.

Necessary conditions are a small value of the crossover
temperature Tco (lower than 10-20 K to observe field ef-
fects), a variation of the charge transfer with pressure and
temperature as for example in TTF-TCNQ, an appropri-
ate range of coupling constants so that different phases
are sufficiently close in energy (vicinity of the

gi~~
——Igi& I

or gi~~
—2gz ——Igs I

lines, for example).
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