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%'e have studied the kinetics of the NaC1-CsC1 phase transformation in RbI at room temperature

(P, 3.5 kbar) and at temperatures down to 200 K by monitoring the time-dependent changes in

neutron powder diffraction peaks. Within the interval of temperature studied, the rate of growth of
the stable phase increases as ~=

~

P P,
~

is in—creased. The characteristic time of completion of
transformation to(P) at room temperature diverges as the pressure approaches P, consistent with

the form EP ~ exp[B(hP) ], predicted by classical theory. At room temperature the observed

growth curves for various pressures display a nearly universal shape, consistent with the Kolmo-

gorov model of nucleation and growth, when plotted against a scaled time parameter ~= t/to(P). At
240 K the growth curves deviate from the universal shape increasingly with increasing 4P. More-

over, within a single growth curve the deviation becomes more evident in the later stage of growth.
These observations can be explained qualitatively by taking into account the effect of stress pro-
duced by the volume change associated with the transformation.

I. INTRODUCTION

In recent years there has been renewed interest in the
process of nucleation and growth at first-order phase
transformations. ' A key concept in the modern under-
standing of these phenomena is that with proper scaling
of both space and time, the "pattern" of phase transfor-
mation is reduced to a universal form.

The universality appears in time developments of vari-
ous physical quantities such as the fraction of
transformed volume X(t), the average domain size R(t),
and the domain-size distribution function n (R,t). These
quantities are directly related to the Bragg scattering in-
tensity I(t), width W(t), and scattering function S(k, t),
obtained from various scattering experiments. The rela-
tionships between the observables and the quantities, X(t),
R(t), and n(R, t) are summarized in Table I. Therefore,
reflecting the scaling properties of these quantities, the ob-
served scattering should also exhibit similar scaling prop-
erties in terms of time and an inverse length scale. In
fact, the scaling laws of the scattering function in spino-
dal decomposition in binary alloys and in order-disorder
transformations have been subjected to extensive theoreti-

cal2 and experimental ' study and now seem to be well es-
tablished.

The processes of nucleation and growth are also widely
observed in reconstructive structural first-order phase
transformations. However, there have not been extensive
investigations to verify scaling properties in the time
development of this type of transformation since the
pioneering theoretical works by Kolmogorov» and Av-
rami6 appeared more than forty years ago. They derived
an expression for X(t), which was empirically found by
Johnson and Mehl, on the basis of simple phenomenolog-
ical assumptions of nucleation and growth. Where possi-
ble, we use this simplified picture of nucleation and
growth to extract scaling properties from the experimental
results for the time development of structural transforma-
tion in RbI.

Many alkali halides transform from the NaC1 (81)
structure to the CsCI (82) structure at high pressures. In
particular, RbI undergoes this transformation at a critical
pressure P, -=3.5 kbar at room temperature, which is ex-
perimentally accessible with neutron scattering tech-
niques. By observing the tiine variation of neutron
powder diffraction pattern after sudden application of hy-

TABLE I. Relationships between the physical quantities and the observable quantities from a scattering experiment.

Physical quantities

Fraction of transformed volume X(t)
Average domain size X(t)
Domain-size distribution function n {R,t)

Observables

Integrated intensity of Bragg scattering I(t)
%'idth of Bragg scattering 8'(t)
Scattering function S(k, t)'

'S(k, t) is related to n(R, t) by S(k, t) = n(R, t)
t
F(k, R)

~
dR, where F(k, R) is the scattering form factor of a domain with di-

0
mension 8 and R is the maximum domain size.
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drostatic pressure exceeding P„we can, in principle,
directly deduce X(t), R(t), and n (R,t). Of many experi-
mental works devoted to the reconstructive first-order
phase transformation of alkali halides, few are concerned
with the kinetics. ' Daniels and Skoultchi concluded
that for single crystals of RbI the nucleation process de-
pends sensitively on the conditions of the crystal surface.
Hamaya and Akimoto' suggested that for polycrystalline
KC1 the transformation is controlled by homogeneous nu-
cleation at pressures not too close to P, .

The primary purpose of the present study is to test the
scaling hypotheses in this system using neutron scattering
technique. Results of the preliminary experiments have
been reported previously. " We also demonstrate that the
completion time of transformation critically "slows
down" as the pressure approaches P, . This critical
behavior is compared with the existing theoretical predic-
tions. Finally, an attempt to observe broadening of the
Bragg scattering associated with the transformation is
briefly reported.

II. EXPERIMENTAL TECHNIQUES

The sample of high-purity RbI was purchased from
Johnson Matthey Chemicals, Ltd. The largest detected
metallic impurity was 40 ppm K. No analysis of ionic im-
purities was available. The granular sample was dried at
250'C for 2 days to remove water. The sample was then
ground and passed through a 800-mesh sieve.

A 0.6-g sample was mounted in an aluminum alloy cell
of the type previously described, ' with He gas as the
pressure-transmitting medium. The cell was placed in a
cryostat for the low-temperature experiments. The pres-
sure was measured with a Manganin resistor which had
been calibrated with a Heise pressure gauge. The relative
precision of the resistance measurement (~ /R
=3.3X10 ') corresponding to BE~1.4 bars. The accu-
racy of the pressure measurement is estimated to be better
than about 50 bars, set by the accuracy of the Heise gauge
(0.5%}and the drift and hysteresis in the Manganin resis-
tor. The temperature was controlled within +0.5 K in a
cryostat.

The neutron diffraction measurements were performed
at the Brookhaven National Laboratory High Flux Beam
Reactor using a two-axis spectrometer equipped with a
He-gas-filled multiwire area detector with a resolution of
about 1 mm. The detector was located about 1 m from
sample, giving about 10' are of coverage, and its center
was set at 28=41'. An incident neutron wave vector of
2.66 A ' was obtained by reflection from the (002) planes
of a pyrolytic graphite monochromator. Under these con-
ditions it was possible to observe simultaneously Debye-
Scherrer peaks from both the high- and low-pressure
phases. The peaks observed were the (200} reflection of
the NaC1-type (Bl) structure and the (110) reflection of
the CsC1 type (B2). An observed two-dimensional dif-
fraction pattern was reduced to the one-dimensional pat-
tern by integrating the measured counts along the direc-
tion perpendicular to the scattering plane. Sufficient in-
tensity was obtained with counting times of the order of
30 sec. The resolution was measured at the (200}~i reflec-

tion to be 0.031 A ' full width at half maximum. The
time development of the diffraction pattern was observed
after sudden increase (reduction) of hydrostatic pressure
from P & (~) P, to P& (&) P, at a constant tempera-
ture. Since the transformation of RbI accompanies a
fractional volume change of about 0.13 between two
structures, we would expect a change in the free-cell
volume and thus in He-gas pressure with the progress of
transformation, and, indeed, such was observed. In order
to maintain a constant pressure on the sample, we con-
tinuously regulated the gas pressure through a constant
monitoring of the Manganin resistor.

III. RESULTS

A typical example of the time development of the dif-
fraction pattern observed after sudden application of pres-
sure is shown in Fig. 1. The peak corresponding to the
(110) reflection of the stable CsC1-type structure builds up
while that of the (200} reflection of the metastable NaC1-
type diminishes. The lattice constants of the NaC1 and
CsC1 structures were measured to be about 7.27 and 4.37
A, respectively, at a transition point. The fractional
volume of the stable phase X(t) is given by

I (r) —I(0) I'( ~ )—I'(t)
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FIG. 1. Typical example of time sequence of the diffraction
patterns of RbI during the transformation from the NaC1- to
the CsC1-type structure. The horizontal axis is the channel
number of the detector (0.04 per channel). Note the change of
scale of the vertical axis.
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where I(t) [I'(t)t are the integrated intensities of the
stable (metastable) phase. The observed time develop-
ments of X(t) for various pressures at room temperature
and at 240 K are summarized in Figs. 2(a) and 2(b),
respectively. The values of pressure for each run are list-
ed in Table II. Values of X(t) derived independently
from I(t) and I'{t) agree to within 3%, which can be re-

garded as the absolute error of the measurements includ-
ing both random and systematic errors. Simple inspection
of Fig. 2(a) indicates that growth curves exhibit similar
slope, except for the 7 and 9 growth curves which appear
to have smaller slope. Note that those two curves were
measured at pressures closest to P, in the NaC1-to-CsC1
transformation and the reverse one, respectively. We will
show later that at room temperature most of growth
curves are well represented by a scaling behavior derived
from a simple model of nucleation and growth (although
this is not the ease for the 240-K data, as will be discussed
later in more detail).

We may characterize the time scale of the transforma-
tion by defining the time at which the transformation has
gone to half completion, i.e., X(ti~2) = —,'. The values of
ti&2 in Table II were obtained from the analysis of the in-
tegrated intensities using Eq. (1). To obtain ti&2 over a
wide pressure and temperature range, we carried out many
quick searches, by monitoring Debye-Scherrer intensities
of the high- and low-pressure phases on a storage video

TABLE II. Summary of the experimental conditions under
which growth curves were observed and values of time, t~q2, at
which transformation has gone halfway to completion.

Direction of
transformation

Run
No.

Pressure
(kbar)

t&rz

(sec}

B2 to B1

Room temperature
1 3.691
2 3.691
3 3.662
4 3.634
5 3.620
6 3.613
7 3.606

3.197
3.282

205
280
420

1690
2850
5395
8750

B1 to B2

B2 to B1

240 K
10
11

12
13
14

4.255
3.973

2.280
2.562
2.632

666
2730

160
1120
1625

I

- IOI1

display. tiki was measured at the moment when the in-
tensities of two peaks became approximately equal.
Values of t i ~2 measured by this method are presented as a
function of pressure in Fig. 3. Although those values
differ by up to 15% from the values obtained more care-
fully by using Eq. (1), it is clear from Fig. 3 that ti~2(P)
diverges as the pressure approaches P, at all temperatures
of this study, implying a thermal activation process is in-
volved in the process of nucleation and growth. After 76
min at 200 K no transformation from the NaC1- to the
CsC1-type structure had occurred by 5.67 kbar, the max-
imum pressure safely generated by the present apparatus.
In Fig. 3 we find that at room temperature a pair of t «z
curves, one for the NaC1-to-CsC1 transformation and
another for the reverse transformation, are located
symmetriea11y around P=-3.45 kbar. This pressure may
be taken as an approximate P, at room temperature.
Also, P, at 240 K is estimated to be about 3.34 kbar from
the results of ti~z listed in Table II.
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FIG. 2. Time dependence of the fractional volume of
transformed region X(t) observed for various pressures at (a)
room temperature and (1) at 240 K. Values of X(t) are plotted
as solid circles for the NaCl-to-CsCl transformation and as open
circles for the reverse transformation. The solid lines are guides
for the eye.
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FIG. 3. Pressure dependence of t&&2 measured visually (see
text). At any temperature t&&2 diverges as the pressure ap-
proaches P, . The critical pressure is estimated to be about 3.45
kbar at room temperature.
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IV. ANALYSIS OF RESULTS

( I d) —1/(4+ 1 l (2a)

(v/I )1/(d+1) (2b)

respectively. The time development of any quantity is
universal when expressed in terms of the scaling time
r=t/to. Similarly any quantity associated with spatial
development (e.g., domain-size distribution function) is
universal when expressed in a scaled length, g= 1/go.

An explicit expression for the transformed volume frac-
tion X(t) for this model was first jven by Kolmogorov
and later independently by Avrami:

X(t)=1—exp —I J V(t')dt' (3)

where V(t'), the volume occupied by a hypothetical
"free" grain (one that does not impinge on a neighboring
grain) at time t' after nucleation, is

We begin by describing a simple picture of nucleation
and growth at first-order phase transitions in solids origi-
nally due to Kolmogorov. %%en the pressure is instan-
taneously changed beyond P„ infinitesimal grains of
stable phase are produced randomly within the sample at
a constant rate, I, per unit volume. Although DP, T) is
time independent, the rate of effective nucleation de-
creases with time proportional to the fraction of metasta-
ble phase remaining, 1 —X(t). Once formed, a grain
grows isotropically with constant domain-wall velocity
v(P, T}. This is equivalent to the statement that the rate
of volume growth of a grain is proportional to its free sur-
face area. As a grain grows, it begins to impinge upon
neighboring grains and finally ceases growing. Some scal-
ing properties of this model are revealed directly from di-
mensional analysis. Since the model is completely charac-
terized by two parameters I (with dimension t 'L " in
d-dimensional space) and v (dimension t L), it follows
that there exists a single characteristic time scale and
length scale given by

Fig. 2(a) are plotted as a function of the scaling time r in
Fig. 4 along the theoretical scaled curve calculated by Eq.
(6). It is seen in Fig. 4 that the theoretical curve is in
good agreement with most of experimental data at room
temperature. At the pressure closest to P„where t&&2 be-
comes very long, deviations from universal scaling appear.
In particular, the scaling violation is obvious in growth
process 7 with t»2 —-143 min. Among the various possi-
bilities for this behavior, here we present two. The 7
growth curve was found to have a time exponent of 2.2 in
Eq. (5). Cahn' suggested that when the new phase nu-
cleates on grain surfaces, grain edges, or grain corners, the
growth curve shows, respectively, t, t, or t3 dependence
in the later stage. A noninteger value of 2.2 may be ex-
pected when various types of nucleation sites are active.
It is possible that at P closest to P„ the heterogeneous nu-
cleation mechanisms predominate over the homogeneous
nucleation which we have assumed in our model. This
speculation is consistent with the observation by Daniels
and Skoultchi that for single-crystal RbI the surface
layers transform at lower pressure than does the interior.
The decrease in time exponent at P close to P, has been
also reported on polycrystalline KC1.'o Another possibili-
ty is the effect of a finite critical droplet size, r, . Nuclei
redissolve or grow according to whether their radius is
less than or greater than r, We h. ave thus far assumed
r, ~0. The modification of Eq. (6) to include a finite r,
has been discussed by Ishibashi and Takagi, ' who find

X(r ) = 1 —exp — [(r+r—, } —r4] (7)

with r, =r, /vto. Since the formulation now includes two
characteristic times, to and r, /v, X(r) is no longer
universal. The dashed curve in Fig. 4 is obtained by the
choice r, =0.35. If this interpretation is correct the ob-
served value of r, indicates that the critical droplet size is
already comparable to the average domain size at, say,
t = ti/2 for P close to P, .

The scaling formula derived from the simple model of
nucleation and growth has been successfully used to inter-

V(t') =D (vt')

D =2, rr, 4n/3 for d =1,2, 3 .

(4a)

(4b)

On substitution we have an expression similar to that
found by Johnson and Mehl,

X(t)= 1 —exp — I'v~t~+ 'D
0+1 (5)

This can be written in a universal form, which for d=3
becomes

X(r)=1—exp( ——,nr ),
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with r=t/to and to ——(I v') '/ in accordance with Eq.
(2) for d=3. Note that the relation to 1.11ti/2 is ob-——
tained from X(ti/2/to)= —,'. The value of tt/2 observed
can therefore be interpreted as a measure of I v for the
transformation process.

In order to compare the model with our experimental
results, the room-temperature growth curves shown in

~0 l.5
SCALED TIME

2,0 2.5

FIG. 4. The scaled curve of X{t}plotted in terms of the
scaled time v =t ~~ /to. The solid line is the curve of X{t) calcu-
lated by Eq. (6). The dashed line is the ca1culation when

~, =0.35 {see text}.
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FIG, 5. The scaled curve of X(t) for 240 K. The experimen-
tal data deviate from the theoretical curve calculated by Eq. (6)
(solid Hne), the largest deviation occurring at the pressures
farthest from P, (10 and 12).
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FIG. 6. Observed characteristic time to(=1.11tl~z) plotted
versus hP 2=(P —P, )

2 with P, =3.455 kbar. The solid line is
a least-squares fit with Eq. (8) to the observed values.

pret the time development of X(t) observed at room tem-
perature. The results for 240 K, however, are not
described by this scaling formula (Fig. 5). The time ex-
ponent n obtained from the fit of the growth curves in
Fig. 2(b) to Eq. (5) showed rather complicated behavior:
In the early growth stage n =2.3—3.5, while in the late
stage n =0.8—2.3. That is, not only is the time exponent
considerably smaller than the postulated value of n=4,
but the growth curves do not fall onto a universal curve.
Moreover, it should be noted in Fig. 5 that the largest de-
viation, corresponding to the smallest value of time ex-
ponent, occurs at the highest pressure for the NaC1-to-
CsCl transformation and at the lowest pressure for the re-
verse transformation. The behavior at 240 K is clearly
different from that observed at room temperature where
the scaling violation was found at the pressure closest to
P, . Later we will discuss a possible origin of the scaling
violation at low temperature.

We tried to analyze the observed divergent behavior of
the characteristic time trr against the excess pressure trd'

(=
~

P —P,
~

) based on classical nucleation and growth
theory summarized in the Appendix. According to the
theoretical expression given in Eq. (A8), to observed at
room temperature were fitted to

trr(rrd') =A (trd') ~ exp[8 (dd') ], (8)

where parameters A and 8 are defined in the Appendix.
This form gives good description of the room-temperature
results with A =8.7+1.7 seckbar, i 8=0.128+0.005
kbar ', and P, =3.455 kbar as shown in Fig. 6. We no-
tice that since the constant Ei in Eq. (A4) is determined
from the value of 8, we can estimate the thermodynamic
energy barrier for nucleation b,G,(~) and the critical
droplet radius r, (M). The results are presented in Fig. 7.
Note that in the very narrow region of 0.151(P(0.258
kbar where the observations were carried out, EG, de-
creases from 0.58 to 0.20 eV, which corresponds to in-
crease in nucleation rate by 10, while r, changes from 27
to 16 A. We did not analyze the 240-K data because the
growth process at 240 K seems to be more comphcated
than that assumed in our model.

V. DISCUSSION

The present measurements at room temperature agree
completely with the results reported in our previous pa-
per, " and are represented by the simple model of nu-
cleation and growth. This model, however, failed to
describe the new results for low temperature. We are
aware of the modest nature of the model assumptions. It
is, for example, by no means clear that I (P, T) and
u (P, T) both are independent of time.

An important process vrhieh may give rise to time
dependence of the domain-wall velocity u at first-order
phase transformations in solids is the slow relaxation of
the internal stresses produced in the vicinity of domain
walls by a volume difference between the two structures.
The effect of the internal stress on the domain-wall veloci-

r r I r I I I I i I

0 0.5 I.O

h, P (kbar)

FIG. 7. Estimated thermodynamic energy barrier for nu-

cleation h, G, and critical droplet radius r, plotted against M.
The observations were carried out in the range of
0.151 & M &0.258 kbar.



33 NEUTRON SCATTERING STUDY OF THE NUCLEATION AND. . . 7775

ty has been found to exist at the temperature-induced
phase transformation in tin. '5 The effect of elastic strain
can be taken into account within the framework of the
present treatment as follows: Since the elastic strain ener-

gy e created by the formation of the stable phase increases
proportionally to the volume of this stable phase, we
should replace EG in Eqs. (Al} and (A6) by 4G +z. One
immediately notices that the nucleation rate and the
growth velocity are very sensitive to c as well as AG. On
the other hand, the internal stresses relax with time
through the processes involving the movement of disloca-
tions. We therefore expect that the rate of growth of
domain walls may become time dependent when the strain
energy s is comparable to

~

b,G
~

and the rate of stress re-
laxation is slower than the rate of growth.

We roughly estimated the relevant energies. From Eq.
(A3) EG is estimated to be —8.1 meV/molecule for
M= 1 kbar. Assuming that both phases are elastically
isotropic and that the interface between the nucleated
domain and the matrix is coherent, s can be estimated by
the macroscopic theory of elasticity using the sphere-in-
hole model

2Ep,

3E +4'
(b V)2

V

where K is the bulk modulus of the domain of the stable
phase, p, is the shear modulus of the metastable matrix
phase, b, V is the difference in volume per molecule be-
tween the two structures, and Vis the averaged volume of
two structures ~er molecule. Substituting X=16 GPa, '7

@=2.62 GPa, ' b, V=12.9 A'/molecule, and V=89.7
A /molecule, we obtain s to be 16.6 meV/molecule. This
value may be regarded as the maximum estimate because
e will be smaller in the incoherent interface than in the
coherent interface. It is difficult to estimate the rate of
relaxation. Experimentally, however, it is known that in
LiF the dislocation velocity increases by about 105 with
increasing temperature from 200 to 300 K.' If a similar
situation occurs in RbI, it is not unreasonable that the rate
of stress relaxation increases drastically with temperature
and its time scale becomes negligibly small in comparison
with the characteristic time of transformation at room
temperature.

From these considerations we suggest the following pic-
ture of the transformation process. The strain energy s of
RbI is comparable to

~

EG
i
. At room temperature, how-

ever, the stress is relaxed much faster than the rate of
growth, thus resulting in a constant domain-wall velocity
given by v ~ 1 —exp[KG/(ka T)]. At 240 K the stress re-
laxation time becomes much larger and the strain energy
is gradually accumulated as the growth of domains
procoxh. Hence the velocity becomes slower in the later
stage of growth process:

time. (2) At 240 K, within a single growth process the de-
viation of the observed values from the simple scaling
curve becomes more evident in the later stage of the
transformation. (3) Comparing different processes, the
deviation is found to increase as dd' increases (that is, as
the characteristic time of transformation becomes short-
er).

Finally, we comment on our results of measurements
attempting to observe time development of the average
domain size R(t). The time development of R(t} is given
for our model by

1/3

R(t) =go (10)0 j,4

for d=3. Therefore the observation of R(t} permits
evaluation of go, which, together with to, gives the value
of I' and U separately through Eqs. (2a) and (2b). This
was the motivation for attempting to measure R(t). It is
possible to observe R(t) by a diffraction method if the
average size of domains is small enough to yield the
broadening of diffraction peaks beyond the instrumental
resolution. Since no broadening of diffraction peaks was
detected by the use of the area detector having momentum
resolution of 0.031 A ', we carried out another neutron
diffraction experiment with the identical sample using a
triple-axis spectrometer with a higher resolution of 0.007
A '. However, we could not find a clear indication of the
line broadening within the experimental errors. The tem-
poral resolution of this experiment (—=7 min) was lower
than that using the area detector ( -=30 sec) and did not al-
low investigation of the early phase of growth.
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APPENDIX

We examine the pressure and temperature dependence
of the characteristic time to in the framework of the clas-
sical nucleation and growth theory. ~o Since
=(I U )

'~ in our model, we have to investigate the P
and the T dependence of I and U. To begin with, we as-
sume that a spherical nucleus is formed homogeneously in
the matrix phase, and that the transformation strain ener-

gy is negligible. The energy of nucleation consists of two
competitive energy terms, a volume-energy term which
tends to favor nucleation, and a surface-energy term
which tends to prevent it. Then the thermodynamic ener-

gy barrier for nucleation, b,G„ is found to be
u (r) a: 1 —exp I [EG +E(t)]l(ka T) I .

These interpretations are qualitatively consistent with the
following experimental results. (1) At room temperature,
the transformation process satisfies the scaling rule which
is derived based on simple assumption that the nucleation
rate and the domain-wall velocity both are independent of

16m cr

(&G)

at a critical radius r, of nucleus

2v

(Al}

(A2)
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where tr is the interfacial energy and EG is the free-energy
difference between the metastable (initial) phase and the
stable phase. At constant temperature, EG can be approx-
imated near I', by

(A3)

terms of Q and EGby

kgT Q
u =A, exp

EG
1 —exp

8
(A6)

where 6V is the volume change caused by the transforma-
tion and hP is the excess pressure beyond P„
dd'=P P, .—For the NaC1-to-CsCI transformation in
RbI, hV was found to be —12.9 A /molecule and thus
EG = —8.1M (in kbar) meV/molecule. Substituting Eq.
(A3) into Eq. (Al), we obtain EG, (lLP):

EG, =K)(~)
with K1 ——16ncr3/3(EV) . Turnbull and Fisher ' derived
the following expression for the steady-state nucleation I
in condensed systems:

u = —( —EG)exp
Jt

(A7)

In the present case the above approximation holds within
the precision of 1% up to dd'=0. 5 kbar. On substitution
we finally obtain te(bP, T) as

where A, is the thickness of the interface. For small degree
of metastability, EG « ks T, we have

kgT EG, +Q
I =N exp (A5)

=K T ' exp
kgT

where N is the number of nucleation sites per unit
volume, ks is Boltzmann's constant, h is Planck's con-
stant, and Q is the activation energy needed for a mole-
cule to cross the interface between two phases.

On the other hand, the growth velocity u is given in

&(exp
4k' T(M)

(AS)

where K2 ——h (Nk&A, '
~
5 V

~

') '~ . The dominant hP
dependence of to is given by the last factor in Eq. (A8),
thus tn diverges as exp[B(M) ] when P~P, .
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