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Second virial coefficients in soliton free energies
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The low-temperature thermodynamics of a class of one-dimensional nonlinear Klein-Gordon sys-
tems (e.g. , the sine-Gordon and the P models) is studied by means of the transfer-integra1 method.
A general formula for the lowest-order correction to the free energy due to the interaction between
solitons is obtained. Physical interpretation of the result is given based on a simple soliton-gas pic-
ture.

I. INTRODUCTION
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where m is the phonon mass, T is the temperature,
t =T/M (M is the soliton mass), y=1.7810. . . is the

The statistical mechanics of topological solitons (kinks)
in one-dimensional systems has attracted much attention. '

The soliton contribution to the free energies of various
systems have been studied extensively within ideal-gas ap-
proximations: Some systems (e.g., sine-Gordon and P
models) of the nonlinear Klein-Gordon family were stud-
ied by Currie, Krumhansl, Bishop, and Trullinger by
means of the transfer-integral method and the ideal-gas
phenomenology in the classical limit. The same analysis
was extended to a general class of the nonlinear Klein-
Gordon systems by DeLeonardis and Trullinger ' and a
general formula for the soliton free energy was obtained.
The quantum statistical mechanics of nonlinear Klein-
Gordon systems was studied by Maki and Takayama in
the weak-coupling limit based on the path-integral
method. More recently, the Bethe-ansatz method was in-
troduced to investigate thermodynamics of the quantum
sine-Gordon system. '

The effect of soliton-soliton interactions on statistical
mechanics has been considered only recently, and the
study has still been restricted to the sine-Gordon system
in the classical limit. The second virial correction to the
free energy of a soliton gas was first obtained by the
transfer-integral method' and then by soliton-gas
phenomenology. " Recently, the higher-order virial terms
were obtained based on the Bethe-ansatz formulation in
the classical limit. '

The object of this paper is to derive a general formula
for the second virial coefficients in the soliton free energy,
in the classical limit, for a class of the nonlinear Klein-
Gordon family. By using the transfer-integral method,
the following formula for the soliton contribution to the
free-energy density is obtained within the second virial ap-
proximation:

' lj'2

F, = —ETC 2v

Euler constant, and C and v are model-dependent numeri-
cal constants (C=2, v=1 for the sine-Gordon model;
C=1, v=3 for the P model). The leading term of Eq.
(1} agrees with the result of DeLeonardis and Trul-
linger. ' The second term in the square brackets
represents the lowest-order correction due to the interac-
tion between solitons. A physical interpretation of the
transfer-integral result (I} will be given. The factor C is
interpreted as the "color"' of the solitons. The logarith-
mic temperature dependence of the second virial term fol-
lows from the exponential tail of the interaction between
two solitons at large distances.

II. TRANSFER-INTEGRAL METHOD

The general class of nonlinear Klein-Gordon systems in
one dimension is defined by the Hamiltonian

'2

H= x —,m +— + Vgu, 22 1 t)u m2
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where m =Bu/r)t, u is the dimensionless field variable, m
is a parameter with dimension of mass, and g is the di-
mensionless coupling constant. We use a system of units
in which Pi=kit ——co ——1, where co is the limiting velocity
of the soliton. The dimensionless potential V(t(}) is as-
sumed to have at least two degenerate minima to support
topological solitons.

We consider here two types of potentials, (singly)
periodic potentials and double-well potentials; we exclude,
for simplicity, potentials which allow more than one type
of solitons, such as the double sine-Gordon potential. '

We assume that V(t(t) = V( —P) and it has its minimum
value ( V =0) at P =+go, the period of V(P) being 2/0 for
the periodic potential. We further assume that V(P) is
scaled so that d V(P)/dP = 1 at P =go', then the parame-
ter m is the phonon inass. Familiar examples of V(P) are
the sine Gordon ( V=-1+cosP), ' the P [ V= —,(P —1) ],
and the double-quadratic [ V = —,

'
(

~ P ~

—1) ] potentials.
Vfe define the following numerical constants construct-

ed from the potential, which will be used below:

40
g= f ' d4[2V(4)]'",
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/=8, 2/3, 1 and rl =In(4/n ), ln2, 0 for the sine-Gordon,
the ttI~, and the double-quadratic systems, respectively.
We note that the soliton mass M is given by

M =pm/g

The classical free-energy density I' is obtained exactly
by using the transfer-integral method. If the width of
the soliton m ' is large compared with the lattice con-
stant a, ' Fcan be obtained as

F = —Ta
- 'in(a T)+(m /g)'ep,

where ep is the lowest eigenvalue of the Schrodinger-type
equation,

where Ep ——(2m') '/ +0(t ) [note that (m')
=gt, g being the constant defined by Eq. (3)] and rp is an
exponentially small (-e '/') correction due to the "tun-
neling effect." The contribution from Ep to I' together
with the first term in Eq. (6) is identical to the free energy
of the classical phonon gas. The tunneling contribution
to the free energy, F, = —(m /g) rp, may be interpreted as
the soliton free energy ' (see Sec. IV).

A systematic method of evaluating ip as a double-series
expansion in e ' ' and f was given by the present au-
thor. ' Up to the second order in e ' ', the "second virial
coefficient, "

rp is obtained as

v'p
' ——Ao+roA )

with
1 d

, +V(P) ij't(P)=ef(P),2m' dP Ap ——[tIt'(0)] ' f d{{}6'(0,$)tIt(P), (10)

with the (dimensionless) "effective mass" m'=(m/Tg ) .
At low temperatures t=T/M«1, ep may be ex-

pressed as

A i ———[qt'(0)] ' f dp 6'(0,$) f d{tt' G (ttt, p')qt(ttt'),

(11)

&o=Eo —~o (8)

I

where %(ttt) is an unnormalized "single-well wave func-
tion" '

4'(tII ) =[2V({t't)] '/ exp sgn(gp —P) f dx [Zm' V(x)]'/ ——,
' f dx [2V(x)] '/ [1+0(t)], (12)

and a "Green's function" 6 (t)tt, {{}')is defined by

6(ttt, ttt') = —2m'8(P' —{tt)%(P)tIt(t)tt') f dx tIt '(x),
(13)

8(P) being the step function. The functions qt(p) and
6 (p, p') are defined in the interval 0 & p, t)tt' & t)tt~, where

PM
——Pp (tttM ——oc ) for the periodic (double-well) poten-

tials. In Eqs. (10) and (11), tIt'(tI} ) =d%'(tI} ) /d t)It and
6'(j,y') = aG(y, y )/ay.

We note that tIt(tI}) is approximated by

l

in the potential well and by

'It(P)=[2V(0)] '/'exp( ——,
' t '+ [2m'V(0)]'/i{{t],

$-0 (15)

in the potential barrier. The constant rt appearing in Eq.
(14) has been defined by Eq. (4).

III. SOI.ITON FREE ENERGY

%({{})=({{toe")'/ exp[ ——,(m')' ({tt—Po) ],
0-0o (14)

I

We shall calculate the soliton free energy, limiting our-
selves to the leading order terms in t. We first note that
the derivative of the Green's function can be expressed as

6'(D, ttt)/qt'(0)=(gt) 'e +' '/q( tt))II+2(gt) 'e ' ' f dx 0' (x)

which follows from the definition of 6 [Eq. (13)] and the
relations

P(0)P'(0)=(P) '

%(0)%'(0)f dttt tIt (P)= —, , (18)

where g is the constant defined by Eq. (3). Then Eqs. (10)
and (11)can be rewritten as

2tt(P) —(2n+1) 1/t[( +2(P)—1 —1/tD ]
n =0, 1 (19)

Co= f,
=(2/C)(2/pe"t) '(oft)'/' gt[4V(0)] 'e-

Do ——f de%' (P) f dx%' (x)

= —,
'

gt [in(8vy/t) —(2 —C)J],
C, = f dt)It+ (P) f dx%' (x) f dy%' (y)

=~~(8y~&)-'(p)'"

X [(2/C)ln(2vy/t)+ 2(2 —C)J],

(20)

(21)
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D1 — " %2 X q2 X y%-'y

X J dz% 2(z)

=(2/C) v ~[32((l,V(0)e'i]-'(gr)'"e '" . (23}

J=in(4y/gr)

+2 lim 2V '/ +ln (25)

The constant v takes values v=1, 3, —,
' for the sine-

Gordon, the P, and the double-quadratic models.
Substituting Eq. (19) with Eqs. (20)—(23) into Eq. (9),

we have'

g T 2v
fp

m m.t

' 1/2

e
—1/t

X 1 —C
art

e '"ln- (26)

which gives Eq. (1), the soliton contribution to the free-
energy density.

IV. SOLITON-GAS INTERPRETATION

The soliton free energy, Eq. (1), obtained by the
transfer-integral method can be interpreted based on a
simple soliton-gas picture. We shall first summarize the
ideal-gas theory of solitons by Currie et al. i and then con-
sider the effect of the interaction between solitons.

We consider solitons and phonons as elementary excita-
tions of the system. At low temperatures (T &&M) the
density of solitons are so small that the interaction be-
tween solitons can be neglected in the first approximation.
Within the ideal-gas approximation the free-energy densi-
ty of a soliton gas F,' is given by

+s'= —Tnp

where no is the total density of solitons and antisohtons in
this approximation. The soliton density np is calculated
as

These integrals have been carried out by making use of
the asymptotic forms of %(P) given by Eqs. (14) and (15).
In the above expressions, y=1.7810. . . is the Euler con-
stant, C =2 in the case of a periodic potential and C =1
in the case of a double-well one, v is the model-dependent
numerical constant given by

&

g
—ly~22q

g and rl being defined by Eqs. (3) and (4), and

such as the sine-Gordon system. The color is related to
the constraint on configuration of solitons and antisoli-
tons: A soliton is always followed by an antisoliton (and
vice versa) in the former systems, while there is no restric-
tion on sequence of solitons and antisolitons in the latter
systems.

For the class of nonlinear Klein-Gordon systems,
~(p) is given by

b F(p) =M + —T ln(2v'~ Pni )
2M

(29)

2v
np =Col

7rt
(30)

Equation (27} with the soliton density no given above
yields the leading term of Eq. (1) correctly.

Now we consider the effect of the interaction between
solitons. Strength of the interaction decreases exponen-
tially at large distances

~

r
~

&&m '. The potential ener-

gy U(r) may be evaluated by exainining motion of soli-
tons' or by calculating energy of periodic solutions (soli-
ton lattices and "cnoidal waves" ). Both of them give the
same result:

U(r) =+4vMe (31)

for
~

r
~

&&ni '. The upper sign is for soliton-soliton
and antisoliton-antisoliton interactions, and the lower sign
for a soliton-antisoliton interaction. We note that the
constant v is the same as the one appearing in the entropy
term of Eq. (29), which comes from the soliton-phonon
interaction.

If scatterings of solitons are elastic, they can be
described by the "position shift" A. Trajectories of soli-
tons (antisolitons} in soliton-soliton and soliton-antisoliton
scatterings are scheinatically shown in Fig. 1, where defi-
nition of 5 is given. The quantity b, may be interpreted

spa|:

in the "nonrelativistic" limit (p ~~M), where v is the con-
stant given by Eq. (24). The last term of Eq. (29)
represents the change in phonon free energy due to the in-
teraction with the soliton. Substituting Eq. (29) into Eq.
(28), we have

' 1/2

(28)

where P= 1 /T, and ~(p) is the difference of the free en-
ergy of the system in the presence of a soliton (or an an-
tisoliton) with momentum p and that in the absence of
solitons. The constant C is the "color'*' of solitons;
C =1 for systems with double-well potentials, such as the

model, and C =2 for systems with periodic potentials,

{0) (b)
FIG. 1. Definition of the position shift 5 in (a) soliton-soliton

(S-S) and (b) soliton-antisoliton (S-S) scatterings. Solid lines
are trajectories of solitons (antisolitons).
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as an effective "size" of the soliton in collision, which

differs from the usual definition of the soliton size
(-m ') determined from the waveform of a soliton. In
the low-energy liinit (P «M) 6 is insensitive to details of
the interaction at short distances. Elementary calculation
of the two-body problem with the potential (31) in classi-
cal mechanics gives

b(p,p') =2m 'ln(2v' M/
~ p —P'

~
) (32)

F, = —Tnp(1 Bn p), —

n =np(1 —28np)

(34)

(35)

in the second virial approximation. Substituting Eqs. (30)
and (33) into Eq. (34), one finds that Eq. (34) agrees with
the transfer-integral result (1). It is apparent from the
above analysis that the logarithmic temperature depen-
dence of the second virial coefficient 8 is attributed to the
exponential decay of the interaction potential between sol-
itons at large distances. Therefore this logarithmic
behavior should be quite general whenever the soliton tail
decays exponentially in space.

V. CONCLUDING REMARKS

The following argument may help to understand the
role of the position shift 6 of solitons in thermodynamics

for P,p' «M, where P and P' are asymptotic momenta of
solitons (antisolitons}. This equation is valid for both at-
tractive and repulsive cases.

The position shift b, determines the change in the "den-

sity of states" in the momentum space due to the interac-
tion. " ' The second virial coefficient 8 in the free ener-

gy of a soliton gas is calculated from the position shift 5
as

8= f dP dp'&(P, P')P(P)P(P')

=m 'ln(4vy/t),

where y is the Euler constant, and

P(p) =(2mMT) 'i exp( —p /2M'r)

is the momentum distribution function of solitons in the
ideal-gas approximation. The free-energy density F, and
the total density n of solitons and antisolitons are given

by

of a soliton gas. The pressure P, of the soliton gas is
given by P, = F—, /T, since the chemical potential of soli-
ton is zero. From Eqs. (34) and (35), we get the equation
of state for the soliton gas

Pg(L BN—}=AT, (36)

where L is the size of the system and N =Ln is the total
number of solitons and antisolitons. Comparing Eq. (36)
with the equation of state for an ideal gas, we can inter-
pret the factor L —BN in Eq. (36) as an effective size or a
free volume of the system. This is consistent with the in-
terpretation given in the preceding section that b, is an ef-
fective size of soliton; 8 is interpreted as the "average
size" of solitons as seen from Eq. (33).

To derive Eqs. (34) and (35) we have assumed that soli-
ton scatterings are elastic. However, this is true only for
integrable systems (soliton systems in the mathematical
sense). Only the sine-Gordon system is an integrable sys-
tem in the nonlinear Klein-Gordon family. In general,
solitons lose or gain their energies in the form of "radia-
tion" (phonon) during their collisions (inelastic scatter-
ings) in nonintegrable systems. Sometimes creation and
annihilation of soliton-antisoliton pairs occur. These pro-
cesses are always accompanied by emissions and absorp-
tions of phonons. Therefore it is plausible that the inelas-
tic scattering of solitons and the creation and annihilation
processes contribute to the higher-order terms in t of the
second virial term; the elastic scattering is adequate to ac-
count for the leading order term in t of the second virial
coefficient (presumably, the higher-order virial coeffi-
cients also). If this is the case the higher-order calculation
of the second virial coefficient will reveal the difference
between integrable and nonintegrable systems in statistical
mechanics.
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