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Dislocation motion in quasicrystals and implications for macroscopic properties
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Dislocation mobilities in quasicrystals are calculated from recently developed hydrodynamic equa-
tions. The mobilities are expressed in terms of vacancy diffusion constants for the quasicrystal. Es-
timates of these diffusion constants based on their values in conventional crystals lead to far smaller
dislocation mobilities than in conventional crystals. Plastic flow should therefore be effectively
prohibited; one dramatic consequence is that quasicrystals should be extremely brittle. A detailed
microscopic calculation of vacancy diffusion constants is urged. Implications for icosahedral-order
theories of glasses are discussed.

The recent discovery of quasicrystals' —translationally
ordered yet aperiodic systems whose point symmetry
groups are not crystallographic —raises a number of ex-
tremely interesting questions. One of the most obvious
and important is how the macroscopic material prop-
erties —elasticity, malleability, etc.—wf these exotically or-
dered systems will differ from those of conventional crys-
tals. Considerable progress towards answering these ques-
tions has already been made by formulating the elastic en-

ergies, 3 hydrodynamic equations of motion, and
descriptions of dislocations for quasicrystals. To under-
stand a number of the most important macroscopic prop-
erties (e.g., plastic fiow) we also need a theory of the
motion of dislocations. In this paper we present such a
theory and use it to show that dislocation mobilities (M~ )

in quasicrystals are dramatically smaller than those (M, )

in conventional crystals.
To state our results in detail, some definitions are in or-

der. Consider a single straight-line dislocation with a
Burgers vector of magnitude b in a crystal or quasicrystal
sample of typical linear dimension L subject to a shear
stress o. For fundmnental —i.e., the smallest possible—
dislocations, b is of order the "unit-cell" size (a-S A).
The force per unit length due to the applied stress is
I'D trb, and the——mobility M is defined by

UD ——MID,

where Uz is the velocity with which the dislocation moves
in response to the force. Our main result is that for fun-
damental dislocations in quasicrystals

L Le KM- ~ ln min
a a'a a

while for gliding dislocations in conventional crystals,

where I [see Eq. (17)] is a phason kinetic coefficient (ex-
pected to be of order D„/K, where D„ is a vacancy dif-

fusion constant and E a shear modulus), Ld the mean dis-
tance between dislocations, and ri, a shear viscosity.

Estimating D„, g„and E by their values in convention-
al crystals leads to exceedingly small dislocation mobility
in quasicrystals —from 10 to 10' times smaller than the
mobility for gliding dislocations in conventional crystals.
To use some jargon, there is no glide direction for disloca-
tions in a quasicrystal. Thus, all macroscopic processes
which depend on dislocation motion will be far slower in
quasicrystals than in conventional crystals. For example,
plastic fiow —irreversible distortion by an applied
stress —will be effectively prohibited.

This fact should have striking consequences for experi-
ments. For example, crack propagation, a process nor-
mally impeded by dissipation due to plasticity in the tip
of the crack, will probably be quite easy; as a result,
quasicrystals (even perfect ones) should be extremely
brittle -quite possibly more brittle than any conventional
crystalline material (since dislocations are less mobile in
them than in any conventional crystalline material).
Indeed, this brittleness may be so extreme as to render it
difficult, if not impossible, to fabricate and maintain mac-
roscopic quasicrystals. Samples of quasicrystals that have
been obtained so far are in fact rather brittle, although
this may simply be because they are highly polycrystal-
line.

Equally intriguing is the experimental observation that
quasicrystalline Bragg peaks are rather broad and do not
narro~ upon annealing at a higher temperature, unlike
conventional crystals. In conventional crystals, on the
other hand, such annealing is normally rather effective. If
the translational disordering is due to quenched disloca-
tions, then the failure to anneal can be interpreted as evi-
dence that these dislocations are virtually immobile, in
support of our findings here. That this immobility is not
caused by, e.g. , impurity pinning or some other effect not
related to the unique nature of the quasicrystalline state is
ruled out by the observation that the conventional crystal-
line peaks observed in the same polycrystalline samples
are quite sharp and amenable to annealing. Further ex-
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periments to demonstrate that this failure to anneal is an
intrinsic property of quasicrystals and not a "dirt" effect
would be of great interest.

Our results may also have some bearing on recent
theories of the glass transition. If we imagine, following
Shockley's ideas' for conventional crystals, that a quasi-
crystal could melt via a proliferation of "unbound""
dislocation loops, the viscosity of the resultant liquid crys-
talhne phase (which would have residual icosahedral bond
orientational order") would be related to the dislocation
mobility by'

(4)
ML b

where LD is the average length of unbound dislocation
line per unit volume, and b was defined earlier. Using our
results (2) for the mobilities, we see that the viscosity of
the liquid crystal obtained by saturating a conuentiona!
crystal by fundamental ( b -a) dislocation lines (i.e.,
LDa —1) is comparable to that of the unmelted crystal, '

while that of the phase ("icosahedratic") obtained in the
same manner from a quasicrystal is far larger (g& 10
poise). Thus, this icosahedratic might well be so viscous
as to be considered a glass. The relevance of this to recent
theories of the glass transition, 9 which view glasses as
heavily dislocated and disclinated quasicrystals, needs ela-
boration (since we have not considered the effect of dis-
clinations) but is clearly great.

An important distinction must be made here. %e are
not asserting that the yield stress for dislocations in quasi-
crystals is unusually large. In fact, we do not even ad-
dress the issue of the yield stress. To do so would compel
us to go beyond the continuum elastic theory used here,
and specifically to take detailed account of the spatially
varying potential in which dislocations —in quasicrystals
as in ordinary crystalo=move. We have not attempted
such a treatment; however, we see no reason to expect the
resulting yield stress in quasicrystals to be particularly
larger than in ordinary crystals. Nonetheless, our results

imply that once the yield stress whatever it is—is ex-
ceeded, the velocity with which dislocations move in
response to this stress is lower, by a factor of M~/M„
than it would be in a conventional crystal subjected to a
stress comparably larger than its own yield stress.

It should further be emphasized that our numerical es-
timates are based upon the assumption that the phason
and vacancy diffusion constants Dt and Dv in a quasi-
crystal are comparable to the vacancy diffusion constant
in a conventional, simple periodic crystal. VAile this
seems reasonable, it need not be the case. In particular,
because vacancy diffusion is a thermally activated process—I /K~T
with a large activation energy (i.e., Di ~e ' ), rela-
tively small changes in activation energy E, could lead to
enormous changes in Dz. E, and D~ could quite accu-
rately be estimated for the quasicrystal i(A1-Mn-Si) (Ref.
13) using well-developed ab initio techniques, '4 by calcu-
lating E, for the cubic crystal a(A1-Mn-Si), ' which has
an almost identical local structure. ' Such a calculation
would be of interest in light of our results. We do not,
however, expect D„ to be so large that M~ becomes com-
parable to the glide mobility M, of dislocations in simple

conventional crystals.
Our conclusions are based upon two calculations: First,

we show that the force on a dislocation due to a uniform
externally applied stress is linear in that stress, using the
elastic energy presented in Ref. 3. Then we calculate the
mobility of the dislocation in response to this force, by ap-
plying techniques' ' developed for defect motion in
liquid crystals and hydrodynamic instabilities to the hy-
drodynamic equations of motion for quasicrystals present-
ed in Ref. 6.

Before presenting either of these calculations, however,
we will briefly review the description of quasicrystals and
dislocations therein developed in Refs. 3—6. This point of
view considers an icosahedral quasicrystal Q as a system
with a spatially inhomogeneous mass density:

p«)= X pGe' '= X lpole
GGLg GGL~

where Ltt is the reciprocal lattice for Q and
l po l

and po
are, respectively, the amplitude and phase of the density
wave at G. LR can then be constructed by taking linear
combinations with integer coefficients of the vectors G„
in a minimal set 8 (the basis) containing six elements.
The six phases P„of the complex order parameters po
provide a complete description of the long-wavelength,
low-energy mechanical deformations of Q, as can be seen
for example from Landau theory. '

The six vectors G„, n =1,2, . . . , 6, are conveniently
taken as the vectors pointing to the six vertices in the
upper half space of an icosahedron. The magnitude G of
all six vectors (which are of course equal in length) is of
order a, where a-5 A is the "unit-cell" size. The six
independent phases p„can be parametrized by two three-
component fields u and w according to

P„=G„u+H„w,
where

Hi ———Gi, H2 ——G2, Hi ——G5,

H4=G3, HS=G6& H6 ——G4 .

Gi is chosen to point through the vertical fivefold axis
and Gz-+are arranged counterclockwise around Gi. The
fields u and w transform under different three-
dimensional representations of the symmetry group of the
icosahedron, with u transforming like a vector. u is just
the familiar displacement field and w the phason field.

The transformation properties of u and w under the
icosahedral group, along with constraints of translational
and rotation invariance and the fact that the P„'s are hy-
drodynamic allow us to construct the harmonic elastic
free energy F(u, w) for the quasicrystal. In Fourier space
~e find

F(u, w)= —,
' I q [A;;(q)io;(q)io, ( —q)

+J;,(q)u;(q)u, ( —q)

+C,J (q)u;(q)i' ( —q)],
where A, E, and C are e1asticity tensors which are in-
dependent of the magnitude of the wave vector q and are
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nonzero for all directions q. Their detailed structure,
given in Ref. 5 and the first of Ref. 6, is irrelevant for us

here.
Dislocations in this picture are line defects that occur at

the boundaries of an integer number of semi-infmite

layers inserted into one or more of the six fundamental

density waves. Mathematically, this means

fpVQ dl .=2mn

leads immediately to (11),which can also be verified by an
explicit calculation.

We will now turn to the calculation of the Peach-
Koehler force. Using similar simple power counting ar-
guments, we can show that, as in conventional crystals,
the Peach-Koehler force per unit length I'o on a straight
dislocation line is proportional to the applied stress and
the (six-dimensional) Burgers vector R, i.e.,

where the closed path of integration P surrounds the line
defect and the n~'s are all integers. Using (6) to express
(9) in terms of the fields u and w, Ref. 3 showed that

VX Vu =R +5(r rtt(s, —t)),
where the six-component vector

U

(10)

uD(q) —ioD(q) —b /q',

where b -
~

R
~

. To see this, we note that I' has no soft
directions; i.e., anisotropic though it is, it involves the
same number of gradients for all directions. Thus we ex-
pect that up to factors of order 1, Vu and Vw are both
roughly constant on a circle centered on the dislocation
line. Choosing a circle of radius r as the path P then
gives

(Vu)r-b (Vw)r-

(12)

where we have assumed that the projections of R onto the
u and w subspaces are comparable in magnitude (which is
true for the smallest and hence lowest energy and most
mobile dislocations). Fourier transforming this result

and the set of six-component vectors R ii form a hypercu-
bic lattice with lattice spacing -a (-5 A in real materi-
als) in the six-dimensional space. This hypercubic lattice
has the very important property that none of its vectors
lies in the w=0 subspace. As a result, all dislocations
have some nonzero w field associated with them. We
shall see later that it is because dislocations must "carry"
this w field with them when they move that they are so
immobile, since the w field itself responds very slowly
(diffusively, to be pro:ise, and more importantly with a
very small diffusion constant).

The exact forms of the fields uo(r) and wD(r) sur-
rounding a straight, infinitely long dislocation line depend
only on the two-component projection ri of r perpendicu-
lar to the dislocation line and can be found in the usual
way by minimizing the free energy [Eq. (8)] subject to the
constraint [Eq. (10)].

%e will not explicitly do this calculation here, but rath-
er simply note that elementary power counting arguments
imply that the spatial Fourier transforms (over ri) uD(q)
and wD(q) can be estimated as

where the tensor A depends only on the direction n along
the dislocation line and is dimensionless with entries of
order unity. Only uninteresting details of the form of A
distinguish quasicrystals from conventional crystals in
this respect.

The reason for this similarity is that in both quasicrys-
tals and conventional crystals the elastic energies are
quadratic functions of gradients of the fields (with no
"soft" directions), and furthermore, dislocations are de-
fined in essentially the same way in both [as comparison
of Eq. (10) to the definition of a Burgers vector in conven-
tional crystals should make clear].

Dislocation mobilities, on the other hand, depend on
the dynamics of quasicrystals, which differ fundamentally
from those of conventional crystals. We turn now to the
calculation of these mobilities.

We will do this using the approach developed in Refs.
17 and 18. This essentially involves equating the work
done by the force on the dislocation to the rate of energy
dissipation in the field of the moving dislocation. It can
be verified a posteriori that this energy dissipation is dom-
inated by the direct dissipation of the elastic energy in the
u and w fields. Thus, we have

FD vD= d rHt= d r Q&u+
d, , 5H
dt 5u '

5w

(14)

where the left-hand side is the rate at which work is done

by the Peach-Koehler force Fii, the right-hand side is the
rate at which it is dissipated in the elastic fields, and the
integral is over the two-dimensional plane orthogonal to
the (presumed straight) dislocation line.

Note that here we are only calculating the contribution
to the drag on the dislocation of the fields far from the
dislocation core (where hydrodynamics is valid). This
far-field contribution —which is comparable for climb and
glide —provides a lower bound on the total drag and hence
an upper bound on the mobility since it ignores additional
nonhydrodynarnic processes taking place in the disloca-
tion core. The latter are presumably responsible for the
empirical fact that climb is much more difficult than
glide in crystals. This point of view is supported by the
experimental observation' that, in convective structures,
where no slow process analogous to atomic rearrange-
ments in the core is required for climb, the mobilities for
climb and glide of dislocations are comparable, as a
theory like that presented here predicts. %e believe that
this far-field contribution provides a good estimate for the
total drag on a gliding dislocation since glide does not re-
quire elaborate atomic rearrangements within the core.
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H +a~ sino (15)

The fields of a moving dislocation must be determined
from the lineszized equations of motion which read, ig-
noring inessential complications,

Note that the right-hand side of this equation is propor-
tional to vo, while the left is proportional to vD. Choos-
ing, for simplicity, a direction (call it x) in which FD and
vD are parallel, we can solve for vD in terms of FD, ob-
taining Eq. (1) with

5H

Po

H
Btw= —I ~

(16)

(17)

M '= dq

(25)
coupled with the condition (10), where rtt(t) =vDt, g is the
momentum density, po the equilibrium mass density, I „
and I „are kinetic coefficients whose magnitudes we will
estimate later, and ri the (isotropic) viscosity tensor.

If one considers the case in which the velocity vz of the
dislocation is small (compared to the sound speeds in the
quasicrystal), the inertial (B,g) term in Eq. (15) can be
neglected. We thus arrive at the condition

Consider only the term involving w. Equation (22) tells
us that for length scales smaller than L„=I~K/vD,
where K is a typical shear modulus in F, w~ can be ap-
proximated by its static value which is -a/q~ for an ele-
mentary di»ocation. Thus, apart from dimensionless fac-
tors of order unity, the contribution M„' of w to the dis-
sipation M &s

Po a2
M '= lnW

1 H
po r)V2 5u

Thus, (16}and (17) become

Btu= — I „—1 H
riV2 5u

a,w= —I. H
W

(19)

This is readily shown to dominate completely the contri-
bution of the tt term, which is M„-ri-1 poise, while
estimating I ~ by D„/K —10 cm sec/g we obtain
M~ ' —106 poise. We shall therefore ignore M„', so that
the mobility

w( r, t) =w(r vz t), —

we get

B,u= —(vD V)u= — I'„— (21)

H
a,w= —(v, V)w= —1.

%V
(22)

We can now use these conditions to rewrite (14) entirely
in terms of (vD V)u and (vo V)w,

FD vD ——I d r [(va V)u][I „—(1/gV )]

[(vo V)w] (23)

or, Fourier transforming in space,

2

FDv = Id' "q
IuqI + IwqI (vDq)I+/I gg ~W

(24)

Now if we seek a solution to the coupled sets of Eqs.
(10},(19), and (20) of the form

u(r, t) =u(r vDt)—
and

where in the argument of the logarithm we have used this
mobility to express the dislocation velocity in terms of FD
and hence, ultimately, the applied stress tr.

The infrared cutoff in the wave-vector integral (25)
should clearly be the inverse of the smallest length at
which the w field departs appreciably from its configura-
tion in the presence of a single, isolated stationary disloca-
tion line. We have already pointed out that this length is
bounded above by l.„. Should either the sample dimen-
sion L or the mean distance to the nearest dislocation Ld
be smaller than L„, the static, single dislocation approxi-
mation to w will clearly first break down at the smaller of
those lengths, which would therefore become the infrared
cutoff. Thus, the appropriate infrared cutoff in any given
situation is the smallest of these three lengths; Eq. (2) fol-
lows immediately.

The glide mobility of ordinary crystals is just given by
the u part of Eq. (25) since there is no w field in conven-
tional crystals. (Climb motion, as mentioned before, is
much slower because of complex processes in the core. )
The q integral for this part diverges in the ultraviolet,
cutting it off at q-a ' and recalling that b-a for fun-
damental dislocations leads immediately to our expression
for the glide mobility, Eq. (3).
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