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Using a Monte Carlo renormalization-group (MCRG) method we study tricritical behavior in two

very different two-dimensional spin models: the Blume-Capel ferromagnet and the next-nearest-

neighbor Ising antiferromagnet. The MCRG method is used to locate accurately tricritical points
independent of the convergence of eigenvalue estimates. Despite the different symmetries and the
different renormalization transformations used for the two models, in both cases we find four
relevant tricritical eigenvalues which are essentially identical for both models. For the antifer-

romagnet, there is no indication of any decomposition of the tricritical point as predicted by mean-

field theory, for ratios of intrasublattice to intersublattice coupling as small as —,.

I. INTRODUCTION

Tricritical behavior has been investigated in detail us-

ing mean-field theory, series expansions, renormalization-
group theory, Monte Carlo methods, and transfer-matrix
calculations. The bulk of this work has been carried out
for three-dimensional models and shows that for dimen-
sionality d) 3, the tricritical exponents are mean-field-
like (classical) apart from logarithmic corrections for
d=3. Mean-field theory2 also predicts that for antifer-
romagnets in a field, tricritical points appear on the phase
boundary only if the ratio of the intrasublattice to inter-
sublattice coupling is sufficiently strong. In two dimen-
sions, fluctuations are strong and are expected to modify
the tricritical exponents and possibly even the qualitative
features of the phase boun&nry. We have therefore car-
ried out detailed studies of two different two-dimensional
models on a square lattice in order to detexaaiine the tri-
critical exponents and the general dependence of the tri-
critical behavior on features of the model. The first
model was the spin-1 Blume-Capel ferromagnet with
Hamiltonian

P = —Jgstsj —J g s;sj+5+s;
NN NNN

where J, J'~0, and s;=0,+1. The second mode1 is the
spin- —,

' next-nearest-neighbor (107N) Ising antiferromag-
net with Hamiltonian

pling 4/ is given by R =J'/J. According to mean-field
theory, if the ratio R of intrasublattice coupling to inter-
sublattice coupling is less than a critical value R, = —,, the
tricritical point splits into a critical endpoint and a double
critical point; thus, one of the goals of our study is to
determine whether or not the tricritical point continues to
be present for R & —', . We have studied these two models
using a Monte Carlo renormalization-group (MCRG)
method and preliminary results have been reported else-
where. 3 We describe the method in the next section and
present our results in Sec. III. In Sec. IV we shall com-
pare and contrast our findings with those of other studies.

II. METHOD

The basic technique used in our study was the MCRG
method. We rewrite the Hamiltonian in the general form

~= gee.s. , (3)

where the S are sums of products of spin operators, and
the Ea are the corresponding dimensionless coupling con-
stants with factors of —1/ktt T absorbed. For a particular
renormalization-group (RG) transformation with scale
factor b,

(4)

Near the fixed-point Hamiltonian H'(E'), the linearized
RG transformation takes the form

where J,J'~0, o=+1, and the sums are over nearest-
neighbor (NN) and NNN pairs, respectively. (These
Hamiltonians can conveniently be represented in terms of
dimensionless coupling constants, e.g., K( —— J/kttT, —
I(:z J'/kit T, Xs ————H/ktt T. ) For the square lattice, there
are four NN and four NNN pairs for each site, so the ra-
tio of intrasublattice coupling 4J to intersublattice cou-

where

gI( (n+1)

gI( (n&
P

(6)

and the (tri)critical properties are determined by the eigen-
values of the transformation matrix T" in the usual way.
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The first requirement of the method is that the simula-
tion to determine the tricritical exponents be performed at
a tricritical point. We have determined the location of the
tricritical points by following Wilson's idea5 of comparing
the results of Monte Carlo (MC) simulations on two
different-size lattices. If the ratio of the linear dimensions
of the two systems is chosen to equal the scale factor b of
the RG transformation, one RG iteration of the larger
system will make the two lattices equal in size. Differ-
ences in the correlation functions will then be due only to
differences between the original and renormalized Hamil-
tonlans.

To determine the tricritical parameters, we used an
equation which was also suggested by Wilson. If the
original Hamiltonian were the fixed-point Hamiltonian,
then the original and renormalized systems would be iden-
tical and the differences in the correlation functions
would vanish. For a general initial Hamiltonian in the
neighborhood of the fixed point, we can express the
differences in the correlation functions by

o~ nl e4
IIIInl I+I

( S(n) ) (S(n —() )

Ch Ch

vn

CS Q

cA
V

X

S(n —i) ' SIC(0), (7)az")
P

where (S'"')i. and (S~"')s are the correlation functions
for the large and small lattice, respectively. Since the
derivatives appearing in Eq. (7) can be expressed as

Ch

S(n)
(S(n)S(0) ) (S(n) )(S(0) )M(0)

= . t' — . )'
P

o~
Ch

these equations (in principle) allow the location of the
fixed point to be determined.

As the number of the RG iterations increases, this pro-
cedure becomes increasingly sensitive to relevant perturba-
tions, and increasingly insensitive to irrelevant perturba-
tions. Thus, although it does not provide an accurate
determination of the fixed point itself, it is very effective
in accurately locating critical and tricritical points. We
wish to point out that this procedure provides a prediction
for the location of the tricritical point even if one is not at
the tricritical point or even on the phase boundary. Thus,
different predictions obtained using slightly different
Hamiltonians can be used to estimate the error in the lo-
cation of the tricritical point.

The two models were examined using quite different
RG transforrnations. For the Blume-Capel model
(s =0, +1), we used an a, b =2 block-spin transformation
with a "plurality rule" and ties decided with the random
number generator. For the Ising antiferromagnet
(cr=+1), we used a b=v 5 transformation ' suggested
by van Leeuwen, in which the block spins were made up
of a central spin and its four next-nearest neighbors. The
odd-symmetry couplings for this model are the "staggered
fields" which alternate in sign between the two sublattices.
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TABLE II. MC simulation data for final MCRG calculations. (DI ——0.05664, E~———0.82090).
Data taken for correlation functions every 10 MCS/site.

32
Lattice size (1.)

16 8

10 MCS/site used

10~ MCS/site discarded

MCS/site between data

Relaxation time (MCS/site)

13.6
90
20

2100

18.5

3

20

670

6.1

6

20

190

11.7
90
10

41

III. RESULTS

A. 81ume-Capel model

A =—KDo g (sg —SJ } —D g s(.

l

(9)

This form has the advantage of containing a parameter D,
which is quite small, and eigenvectors tend to be mare
closely parallel to KDG and D directions instead of a pa-
rameter K3, which has a small deviation from the value

2K, . The specific couplings used in the RG analysis are
given in Table III.

For the study of the Blume-Capel model, we followed

two different approaches. First, we applied the extended

MCRG method described in Sec. II, using just a single
iteration on the large lattice and starting with a NN
model (i.e., J'=0}. From this calculation we were able to
determine the deviation of the initial Hamiltonian from

the fixed point in the direction of the largest irrelevant

eigenvector. This procedure allowed us to move along a
line of tricritical points towards the tricritical fixed point
and thus improve convergence. We estimate the optimal
NNN coupling to be K2 —J'/kitTt=—0 2804 . Wit.h Ks
held fixed at this value, we found the tricritical point
to be located at Ki J/kitT, =1——.246+0.005 and K&
= —h, , /kss T, = —2.99+0.01. In terms of the parameters
in the Hamiltonian given in Eq. (1},the tricritical values
were k~Tt /J=0. 8026+0.0032, b,, /J=2. 400 +0.018,
and J'/J=0. 225. The corresponding eigenvalues are
shown in Table I.

The second calculation which we made on the 81ume-
Capel model set the second-neighbor couphng K2 ——0, in
order to make a direct comparison to other theoretical
predictions for the location of the tricritical point. Some-
what to our surprise, the convergence of the tricritical ex-
ponents was very nearly as good for this model as it was
when second-neighbor couplings were included. We made
very long MC simulations using multiple runs to get both
good statistics and reliable error estimates. Table II con-
tains information on the details of the simulations, includ-
ing estimates of the correlation times for comparison with
the run lengths.

We found it convenient to perform the simulation in
the discrete-Gaussian (DG} representation

The tricritical couplings were found to be
KDG ———0.8209+0.0040 and D =0.0566+0.0016. This
~auld correspond ta K~ ——1.642+0.008 and
Ks ———3.227+0.016 or kit T, /J =0.6091+0.0030 and
5, /J = 1.9655+0.0151. Using these values for the tricrit-
ical couplings, we determined the leading tricritical ex-
ponents from the simulations of lattices varying in size
from 4X4 to 32X32. The results are shown in Tables
IV—IX, and they exhibit a remarkably weak size depen-
dence.

The tricritical exponents for q-state Potts models were
conjectured in a series of papers, and the belief that these

TABLE III. Coupling constants for the MCRG analysis of
the tricritical point in the d =2 Blume-Capel model. Operators
are in the discrete Gaussian (DG) form [see Eq. (10)], s; = 21,0.
Numbers in parentheses give the relative positions of interacting
pairs.

Description

Even couplings
$

Nearest-neighbor (10) [i.e., (s; —s, ) ]
Next-nearest-neighbor (11)
Third neighbor (20)
Fourth neighbor (21)
Four-spin coupling around
a NN plaquette, s&s&sks~-s&

Four-spin coupling on a
next-nearest-neighbor plaquette s;s&sks i-s;
NN biquadratic exchange (10),
sf SJ -sgsj2 2

NNN biquadratic exchange (11),
2 2

sg sj -sfsj
Fifth neighbor (22)

Odd couplings
Magnetic field
s;2 times (10) neighbor
$;2 times (11) neighbor
Three spins on a NN plaquette,
(00)-(10)-(11)
Three spins in a row,
(00)-(10)-(20)
Three spins at an angle,
(00)-(10)-(21)
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TABLE IV. Estimated deviations of the final simulated cou-

pling constants (0.05664, —0.8209) from the true tricritical
values d =2 Blume-Capel model. Upper line is the calculated
deviation of delta and the lower for K, for each level of renor-
malization. Statistical error is comparable to the magnitude of
the deviations.

TABLE VI. Critical eigenvalue exponent yT2 (conjectured
value is 0.800) for the d =2 Blume-Capel model as a function of
the number of RG iterations (N„), the number of couphng con-
stants in the RG analysis (N, ), and the linear dimension of the
lattice (I.). 2X2 RG block transformation. Estimates of the
statistical error in the last digits are given in parentheses.

Lattice sizes being compared
32-16 16-8 8-4 32

Lattice size (1.)
16 8

10

10

10

10

—0.0023
—0.006S
—0.0016
—0.0042
—0.0015
—0.0036
—0.0016
—0.0043

—0.0025
—0.0067
—0.0017
—0.0037
—0.0015
—0.0031

—0.0007
—0.0037
—0.0005
—0.0016

2
3

5
6
7
8

9
10

0.65(1)
0.73(1)
0.73(1)
0.72(1)
0,74(1)
0.74{1)
0.75(1)
0.75(1)
0.75(1)

0.65(1)
0.73(1)
0.72(1)
0.72(1)
0.74(1}
0.74{1)
0.74{1)
0.74(1)
0.74(1}

0.65(1)
0.73{1)
0.72{1)
0.70(1)
0.73(1)
0.73(1)
0.73(1)
0.73(1}
0.73(1)

0.678(6)
0.793(5)

N, 32
Lattice size (1.)
16 8

1

2
3
4
5
6
7
8
9
10

1.803(1)
1.804(1)
1.805(1)
1.805(l)
1.805(1)
1.805(1}
1.804(1)
1.804(1}
1.S04(1)
1.804(1)

1.800(13
1.S01{1)
1.802(1)
1.802(1)
1.802{1)
1.803(1)
1.804{1)
1.804(1)
1.804(1)
1.804(1)

1.792(1)
1.793(1)
1.794{1)
1.794(1)
1.795{1)
1.800(1)
1.803(1)
I.802(1)
1.803(1)
1.803(1)

1.776(1)
1.778(1)
1.778(1)

TABLE V. Critical eigenvalue exponent yq& (conjectured
value is 1.800) for the d =2 Blume-Capel model as a function of
the number of RG iterations (N, ), the number of coupling con-
stants in the RG analysis (X,), and the linear dimension of the
lattice (I.). 2)(2 RG block transformation. Estimates of the
statistical error in the last digits are given in parentheses.

2
3

5
6
7
8
9
10

2
3

5

6
7
8

9
10

0.73(1)
0.78(1)
0.78(1)
0.77(1)
0.78(1)
0.78{1)
0.78(1)
0.78(1)
0.78(1)

0.73(2)
0.80(2)
0.80(2)
0.80(2)
0.80(2)
0.80(2)
0.79(2)
0.79(2)
0.78(2)

0.73(1)
0.79{1)
0.78(1)
0.77{1)
0.78(1)
0.78(1)
0.78{1)
0.78(1)
0.77(1)

0.76(1)
0.85(1)

0.74(1)
0.85(1)

1

2
3
4
5
6
7
8
9
10

1

2
3
4
5

7

9
10

1.795(1)
1.795(1)
1.795(1)
1.796(1)
1.796(1)
1.798(1)
1.799(1}
1.799(1)
1.799(1)
1.799(1)

1.784(3)
1.784(3)
1.784(3)
1.784(3)
1.785(4}
1.791{4}
1.793(4)
1.793(4)
1.794{4)
1.794(4)

1.76(1)
1.76(1)
1.76(1)

1.787(1)
1.788{1)
1.788(1)
1.788(1)
1.788(1)
1.794(1)
1.795(1)
1.796(1)
1.796(1)
1.796(1)

1.77(2)
1.77(2)
1.77{2)

1.774{2)
1.775(2)
1.775(2)

0.72(6)
0.83(4)

values were in fact exact was supported by a derivation of
the thermal exponents, subject to certain assumptions, by
Nienhuis. Our results for the leading relevant thermal
eigenvalue are excellent. Both the statistical error and de-
viations from the "exact" values are, at most, 0.3%. As
usual, the errors in the second eigenvalue are somewhat
larger (about 2%), but again, the data are very consistent
and the agreement with the exact value of 0.8 is excellent.
For the leading magnetic eigenvalue, the data lie slightly
(about 0.5%) above the conjectures value of 1.925, but the
trend is towards a slow decrease of the eigenvalue ex-
ponent with further RG iterations. The origin of this ef-
fect is not clear, but in any case, the deviations are very
small. The second magnetic eigenvalue is also in excellent
agreement with the conjectured value of 1.125. The data
indicate that there is a very small (about 1%) finite-size
effect when the renormalized lattice is reduced to the di-



D. P. LANDAU AND R. H. SWENDSEN 33

3
4
5
6
7
8
9
10

—2.09(6)
—0.99(4)
—0.75(4)
—0.65(2)
—0.40(3)
—0.40(3)
—0.40(3)
—0.41(4)

—2.11(4)
—0.92(4)
—0.65{4)
—0.64(2)
—0.50(4)
—0.49(4)
—0.47(4)
—0.40(4)

—2.26(6)
—1.08(7)
—0.52(6)
—0.57(3)
—0.46{3)
—0.45(3)
—0.43(3)
—0.44(4)

3
4
5
6
7
8
9
10

—2.12(7)
—1.01(3)
—0.71(5)
—0.57(3)
—0.38(3)
—0.35(3)
—0,32(3)
—0.33(3)

—2.18(4)
—1.16(7)
—0.61(7)
—0.55(4)
—0.46(4)
—0.39(4)
—0.30(4)
—0.33{7)

3
4
5

6
7
8
9
10

—2,24(8)
—1.31(7)
—0.73(8)
—0.58(3)
—0.39(3)
—0.28(4)
—0.19(4)
—0.17(4)

mensions 4X4, but the second iteration from the 32X32
lattice (which is only reduced to 8XS} shows agreetnent
with the conjecture to within the statistical error of about
0.3%.

8. NNN antiferromagnet

Using the extended MCRG method outlined in the
preceding section, we have studied the tricritical behavior
of the Ising antiferromagnet for —,

' &R &1. For R =—,',
we found a tricritical point for E& ——H, /kit T,
=3.283+0.010 and Ki —— J/ktt T, = —0.828—+0.006.
We wish to emphasize that the quoted errors in the cou-
pling constants are correlated, and thus they cannot
simultaneously assume their extremum values except in a
direction approxirn. ately tangent to the phase boundary.
A total of four relevant eigenvalues were found, and Table
X shows the variations with iteration for three different
lattice sizes. From a comparison of the results for dif-
ferent lattice sizes, we see that effects of finite size are
negligible as long as the final transformed lattice has

TABLE VII. Cnt&cal ejgenvalue exponent yT3 for the d =2
Blume-Capel model as a function of the number of RG itera-

tions (N, ), the nuxaber of coupling constants in the RG analysis

(N, ), and the hnear dimension of the lattice (I.). 2X2 RG
block transformation. Estimates of the statistical error in the

last digits are given in parentheses.

Lattice size {I.)
16

I.&4. For I.=100, we also show the third-largest even

eigenvalue y& because of the role which it plays' in deter-

mining the finite-width behavior of results from transfer-
matrix calculations. locations of tricritical points for
other values of R are shown in Table XI. The variation
of T, with R is linear over the entire range —,

' &R &1.
(As T, moved to lower temperature with decreasing R,
the quality of the data decreased. For this reason, we did

not examine R & —,'. ) In all cases, four relevant eigen-

values were found; as the results in Table XII indicate, the

eigenvalues converge quickly with iteration to essentially

identical values for all R.

I&. DISCUSSION

Due to the high precision of our data, we believe that
the location of the tricritical point as well as the tricritical
exponents for the Blume-Capel ferromagnet are extremely
accurate. The exponent estimates which we obtained for
the NNN antiferromagnet are of slightly lesser accuracy
but are nonetheless consistent with the Blume-Capel
values. It is also worthwhile to compare our results to
those obtained by other means. Our results agree ex-
tremely well with the conjectures and lend support to the
belief that they are in fact exact. In comparison, the most
precise results obtained by other methods were those ob-
tained using variational real-space renormalization-group
methods with a variety of truncating approximations.

Burkhardt" used a position-space renormalization-
group approach with nine interactions to look specifically
at the tricritical point of the Blume-Capel model and
found k&T, /J=0. 580, b, , /j= 1.972, y& ——1.797,
y z =0.798, y &

——1.928, and y z
——1.106. Berker and

mortis' used a three-coupling renormalization-group ap-
proach to study a global parameter space in which the
Blume-Capel model was a special case. Using an adjust-
able parameter (to make the Onsager critical point exact)
they found k&T, /J=0. 578, 5, /J= 1.971, yf= 1.837,
y2 ——0.918, y i = 1.930, and y2 ——0.868. Both studies were
done before any conjectures were made and, in retrospect,
were remarkably good, although uncontrolled.
Burkhardt's exponents agree with ours to better than 1%,
but his estimate for the tricritical temperature is almost
5% too low. Variational RG calculationss for q-state
Potts lattice-gas models gave very good estimates for the
tricritical exponents for q =2 (i.e., the Ising model}. A re-
cent MC study of interface behavior' in the two-
dimensional Blume-Capel model apparently overestimated
the tricritical temperature as did very early MC studies of
the bulk properties. ' We also showed previously that for
a finite lattice a double peaked distribution function could
be observed even on the second-order portion of the phase
boundary just above T, . (The two peaks merged only
slowly as the lattice size was increased. ) Early MC stud-
ies' of the NNN antiferromagnet also overestimated the
tricritical temperature. Therefore, it appears to be quite
difficult to accurately locate tricritical points in two di-
mensions using simple MC techniques; careful finite-size
atudyses for a large range of lattice sizes are essential for
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TABLE VIII. Critical eigenvalue exponent yH~ (conjectured value is 1.925) for the d=2 Blume-
Capel model as a function of the number of RG iterations (N, ), the number of coupling constants in the
RG analysis (N, ), and the linear dimension of the lattice (I.). 2X2 RG block transformation. Esti-
mates of the statistical error in the last digits are given in parentheses.

Lattice size {I.)
32

1.941(0)
1.940(0)
1.94OO)
1.940(0)
1.940(0)
1.940(0}

1.939(D)
1.939{0)
1.940(0)
1.940{0)
1.940(0)
1.940(0)

1.936(0)
1.939(0)
1.939(1)
1.940(1)
1.939(1}
1.940(1)

1.929(0)
1.937(0)
1.938(0)
1.939(0)

1.934(0)
1.936(0)
1.936(0)
1.936{0)
1.936{0)
1.936(0)

1.930(0)
1.935(1)
1.936(1)
1.936(1)
1.936(1)
1.936(1)

1.923(1)
1.934(1)
1.935{1}
1.935(1)

1.926(1)
1.933{1)
1.934(1)
1.934(1)
1.933(1)
1.933{1)

1.921(1)
1.935(1)
1.936{1)
1.936(1)

1.917(2)
1.934(3)
1.936(3)
1.936(3)

TABLE IX. Critical eigenvalue exponent y02 for the d =2 Blume-Capel model as a function of the
number of RG iterations (N, ), the number of coupling constants in the RG analysis (N, ), and the linear
dimension of the lattice (L ). 2X2 RG block transformation. Estimates of the statistical error in the
last digits are given in parentheses.

Lattice size (I. )

32

1.044(3)
1.096(3)
1.098(3)
1.100(3)
1.100(3)

1.031(3)
1.091(5)
1.095{5)
1.095(5}
1.094(4)

1.011{2)
1.082(3)
1.090(3)
1.089(4)
1.088(4)

0.990(4)
1.086{3)
1.096(3)

1.074(3)
1.115(3}
1.122(3)
1.123(3)
1.122(3)

1.050(4}
1.103{3)
1.113(4)
1.112{2)
1.109{2)

1.017{6)
1.101(5)
1.116(6)

1.041(5}
1.092{5)
1.111(4)
1.110(4)
1.106(4)

1.008{7)
1.090(6)
1.113(5)

0.980{6)
1.066(5)
1.100(6}
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TABLE X. Eigenvalue variation with iteration for the NNN antiferromagnet with R = —,. Entries

represent average values obtained from the analyses which used the two or three largest number of cou-
plings.

Antiferromagnet

Iteration
I =evS

y2

1.766 0.785 1.933

yz

1.100 1.763
1.789

y2

0.730
0.863

1.930
1.935

y2

1.064
1.165

9)& 10 MCS/s 9X 104 MCS/s

Antiferromagnet

Iteration
1

2
3

1.766
1.785
1.795

1.=20V 5

0.732 1.930
0.816 1.933
0.854 1.932

4X10» MCS/s

3'2

1.058
1.128
1.152

1.769
1.785
1.793
1.795

yz
0.753
0.820
0.812
0.877

I =100
y3

—0.43
—0.43
—0.41
—0.3

5X 104 MCS

y
1.931
1.932
1.931
1.920

1.076
1.115
1.146
1.208

TABLE XI. Variation of tricritical point parameters with R.

E)R

1

2

1

4
1

8

1.628+0.005
3.283%0.010

6.583%0.024

13.20 %0.08

—0.415+0.003
—0.828%0.006

—1.653a0.015

—3.308%0.033

1.628+0.005
1.642+0.005

1.646+0.006

1.650%0.010

—0.415+0.003
—0.414+0.003

—0.413+0.004

—0.414+0.008

TABLE XII. Eigenvalue variation with iteration for the NNN antiferromagnet with different values of R. Entries represent aver-
age values obtained from the analyses that use the two or three largest number of couplings.

R=—1

8

Iteration

1.763 0.795
1.777 0.818
1.787 0.838

1.929 1.030
1.932 1.114
1.934 1.163

y2

1.766 0.722
1.784 0.772
1.792 0.853

1.931
1.934
1.934

1.056
1.090
1.146

1.766 0.762
1.785 0.819
1.791 0.861

1.929
1.932
1.928

1.079
1.148
1.151
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obtaining an accurate estimate. ' Other approaches to
this problem have been much less accurate. '

Our estimates for the eigenvalues for the NNN antifer-
romagnet are essentially the same (although less precise)
than those for the Blume-Capel model. The largest
thermal eigenvalue, as well as the location of the tricriti-
cal point, have also been determined from finite-strip-
width transfer-matrix calculations the eigenvalue es-
timates agree quite well with ours, although the values of
ys, which can be extracted from the dependence of the
strip width, are of the order —1.0 to —1.5 and are hence
much larger in magnitude than ours. Our result appears
to be consistent with the estimate for y& obtained for the
Blume-Capel model in Table VII. ' Our results for the
NNN antiferromagnet show no decomposition of the tri-
critical point down to a coupling R = —,. Heiraiann, ' on
the other hand, examined this model with a transfer-
matrix finite-strip-scaling method and concluded that no
tricritical point existed for R= ~. As shown in Table
XI, our data follow a linear dependence of T, with R and
predict, therefore, that for 8= ~, kttT, /J=0. 048. In
contrast, Herrmann' located an Ising-like critical point at
kT/J=0. 166. This temperature is so high that we con-
jecture that, due possibly to the small strip width, he has
merely located a point on the second-order line. A com-
bination of MC and MCRG calculations suggests that a
decomposition of the tricritical point does occur in three

dimensions but only for smaller values of R than are
predicted by mean-field theory. We conjecture that the
increased fiuctuations in two dimensions suppress this
behavior completely.

V. CONCLUSIONS

We have demonstrated how the MCRG method can be
used to systematically and accurately locate a tricritical
point in a two-dimensional parameter space. This pro-
cedure is of course readily extended to a higher-
dimensional interaction space. Very long runs have en-
ables us to locate the tricritical point and determine the
tricrical exponents with very high precision for the
Blume-Capel model. We have verified the so-called exact
conjectures. Our results for the NNN antiferromagnet
suggest that the qualitative nature of the variation in tri-
critical behavior with competing couplings is not ihe same
as predicted by mean-field theory, presumably due to fluc-
tuations.
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