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The concentration dependences of the transition temperature and compensation temperature in a
disordered binary ferrimagnetic alloy and its amorphization are investigated by the use of effective-

field theory with correlations. For the amorphization process, a number of interesting phenomena,
such as the possibility of the reentrant ferrimagnetic phase, are obtained which arise from the ran-

dom distribution of exchange bonds in sign. %hile new amorphous ferrimagnetic alloys may reveal

other new phenomena, at the present time the main interest of experimentalists is directed towards
obtaining an amorphous ferrimagnetic alloy which has a compensation point in the vicinity of room
temperature, because of its potential device applications.

I. INTRODUCTION

Over the past few years the theory of phase transitions
in disordered binary magnetic systems has received con-
siderable attention from both a bond and a site perspec-
tive. However, the existing theories are essentially con-
fined to ferroinagnetics and antiferromagnets. In both
cases all the magnetic atoms have equal spins (e.g., their
absolute values); the bond model considers all lattice sites
to be equivalent, but the interaction energy between each
pair of adjacent sites is randomly assigned one of a set of
positive (or negative) values. In the site model, the lattice
sites are randomly occupied by two different species of
magnetic ions with equal absolute spin values, and the in-
teraction between two ions is determined entirely by the
species of those ions. '

On the other hand, amorphous ferrimagnetic rare-earth
(RE)—transition-metal (TM) alloys are currently of
considerable interest because of their potential device ap-
plications. The alloys provide an excellent system for in-

vestigating basic magnetic phenomena in amorphous mag-
netic materials. The magnetic properties of the alloys are
sensitive to slight compositional changes. The available
experimental data confirm their untypical magnetic
behavior. Of special interest are two physical parameters,
the Curie temperature T„and the compensation tempera-
ture T~ u, at which the macroscopic magnetizations of
both components are identical and cancel each other. In
particular, amorphous ferrimagnetic Gd-Co films have
compensation points which vary with composition from
approximately 40 to 500 K. The compositions of amor-
phous RE-TM alloys which lead to compensation points
in the vicinity of room temperature have been investigated
by many authors, following the suggestion of Chaudhari
et al. that thermomagnetic writing and erasing can be
carried out at T=T

u
in these films.

Theoretically, in order to analyze the magnetic proper-
ties of disordered ferrimagnetic alloys and their tempera-
ture and concentration dependences, mean-field theory
has been extensively applied in the recent past. The

theory can be in fact relied on for an appropriate descrip-
tion of the major aspects of the phenomena being studied.
However, it is well known that the mean-field approxima-
tion (MFA) has some deficiencies, due to the neglect of
correlations, when compared with experiments. More-
over, it is not so clear whether the simple MFA theory
can be correctly applied to amorphous ferrimagnetic sys-
tems.

For discussing amorphous magnetic systems, there exist
a great number of sophisticated techniques. Because of
the difficulties inherent in the theoretical description of
such complicated magnetic systems, it is sometimes neces-
sary to make some simplifications. For studying such
systems, therefore, the lattice model has often been ap-
plied, in which the structural disorder is replaced by a
random distribution of the exchange integral. In a series
of works we have investigated the amorphization of pure
and diluted crystalline Ising ferromagnets by using both
the effective-field theory (EEi') with correlations intro-
duced by Kaneyoshi and co-workers and the lattice
model of amorphous magnets. Due to amorphization,
some interesting effects on the relevant thermodynamic
quantities appeared in the thermal behavior. The EFT
which substantially improves on the standard MFA has
been successfully applied to a variety of other physical
problems, such as pure systems, dilute ferromagnets,
and systems with competing interactions, ' as well as sur-
face systems. "

In this paper, we investigate the transition temperatures
and the compensation temperatures for two (disordered
and ainorphous) ferrimagnetic, binary, Ising alloys within
the frameworks of EFT and the lattice model of amor-
phous magnets. As far as we know, those quantities have
not been analyzed theoretically over the standard MFA as
functions of both concentration and fluctuation of ex-
change interaction which normally appear in amorphous
magnetic materials, except in one incomplete work. ' The
purpose of this work is thus to gain some qualitative in-
sights on the above noted problems, whether the standard
MFA can be applied successfully to disordered and amor-
phous ferrimagnetic binary alloys, and the effects of con-
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centration and exchange fluctuation on these quantities.
The outline of this paper is as follows. In Sec. II we

present the formulation of disordered and amorphous fer-
rimagnetic binary Ising alloys in the EVl. In Sec. III the
theory is applied to a disordered ferrimagnetic, binary,
square lattice, in order to discuss the effect of concentra-
tion and bond mixture on the transition temperatures and
the compensation temperatures, and to compare the re-
sults of EFt with those of standard MFA. In Sec. IV the
effects of amorphization on those quantities are investi-

gated. We find that for the amorphization these quanti-
ties in particular exhibit some interesting behavior, such
as the reentrant phenomena for ferrimagnetic phase.

II. FORMULATION

We consider a binary alloy of the type A&8[ B random-

ly occupied by two different species of magnetic ions, A

and B. Let the A and 8 atoms have different spins
(sA ———, and sB = 1), respectively. The interaction between

spins is of the Ising form with the exchange interaction
different for different pairs of spins. The Hamiltonian of
the systems is then

$ [JAA5iA5jA +JBB5iB5jB

+(JAB5iA5jB+JBA5iB5j A )]sisgikj

where the J~'s are the exchange interaction between type-i
and type-j ions and the sum is over all nearest-neighbor
pairs. g; is a random variable which takes the value of
unity or zero, depending on whether the site i is occupied
by a magnetic atom or not. Performing the random con-
figurational average denoted by ( . )„ the averaged
value of g; has a restriction

(2)

where the angular brackets denote the usual thermal aver-
ages.

The main problem is now the evaluation of the incan
values, (sA ) and (sB ). As has been discussed in a series
of works, ' the starting point for the evaluation of (s A )
with sz ——+ —,

' is the exact Callen identity'

( z )
1 ki=AP i=A

with

Hi=A = g(JAA5jA+ JAB5jBCjsj'
J

where p= 1/kBT. On the other hand, the mean value of
(s B ) with sB ——+1 and 0 is also given by the exact rela-
tion

2 sinh(gi Bp8; B)
2 sh(cio; sPc, s)+() '

with

ei=B = g (JBB5jB+JBA5jA Cjsj'
J

At this stage, in order to write identities (5) and (6) in a
form which is particularly amenable to approximation, we
have introduced the differential operator technique as
follows:

where D=[}/Bx is a differential operator. The functions

f(x } and g(x ) are defined by
r

where (g; A )„=p is the concentration of A atoms. Foi
the amorphization of the system, moreover, it is necessary
to take account of the fiuctuation of exchange integral;
the nearest-neighbor exchange interactions are given by
independent random variables as

f(x)= —,
' tanh —x

2

2 sinh(Px )

2 cosh(Px )+ 1
(10}

I'(JAA) =
z [5(JAA J~)+5(JAA J+—~)]-

j'(JAB) =~(JBA )

= —,
' [5(JAB aJ M')+ 5(JA—B —a—J+M')],

P(JBB) = —,
' [5(JBB bJ j(hJ" ) +5(J—BB —bJ+ j(hJ")], —

exp(ys„') = cosh
2

+2sz sinh
2

Using the relation P;=g; (n=integer) and the identi-

( Si ) ki = A (Siz= A ) +gi B (Si =B ) (4)

where parameters a and b are constants. The total mag-
netization per site of a binary alloy is then defined by

exp(ysB) =(SB} cosh(y)+sB sinh(y)+1 —(SB )

the expectation values appearing in Eqs. (7) and (8) are
generally rewritten as

D(g,. e,. ) Da~(e '= '=' ) = g 'g'j5jA cosh +2''sinh
J

+i)h)s[(s))'cosh(D', s)+sic(oh(D's)+1 —(s)')'] ),
s

(12)
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mg (14}

&g; g(z;=a»,
(;=a&,

(15}

Here, it is clear that if we try to treat exactly all the spin-
spin correlations appearing in the sublattice magnetiza-

where a=A or 8 and the parameters D' z and D~a are
defined by

D'a=De; Q a and D'g D——g;

For a disordered system with random bonds and ran-
dom occupation of magnetic atoms, we must perform the
random-configurational average for Eqs. (4}, (7},and (S);
the averaged total magnetization per site is given by

m=((s )), pm~+(1 —p)ma,

where mz and ma are defined by

tions through the expansion of Eq. (12} and to perform
properly the random configurational average, the problem
becomes mathematically untractable. Therefore, in the
previous papers, within the Ej. I, the decoupling approxi-
mation, or

«x,xk(x, }'
&(, ) ),&( k) &, (&(x/)'», ((x.&), , (16)

with j&k+1+ +n and xj =g~sj', has been used. In
fact, the approximation corresponds essentially to the Zer-
nike approximation in the nonrandom problem, ' as dis-
cussed in Refs. 6 and 13. The approximation has been
successfully applied to a great number of disordered mag-
netic systems.

Taking account of the facts that the exchange inter-
actions and the random occupation of magnetic atom sites
are given by independent random variables, the sublattice
magnetizations m~ and ma for the EI' i' reduce to, upon
performing the random average,

and

mz ——[p[(cosh( ,
' DJ~ ) )„—+2m&( sinh(-,' DJ~ ) ),]

+(1—p}[qa(cosh(DJq~))„+ma(sinh(Dna))r+1 —qs]] f(x}~.=o

ma ——jp[(cosh( ,' DJjiz ) )„+—2m&(sinh( ,'DJaz ) )„]—
+(1—p)[ qa(c soh( Dna)), +m a(si nh( Dna))„+1 qa]j'g(x—) ~,

(17)

(1S)

where z is the number of nearest neighbors. The parameter qa is defined by

&g, ,&(s,', )') &,

(g;=a),
In order to obtain the sublattice magnetizations, therefore, it is necessary to calculate the parameter qa. As is understood
from the discussions of Ref. 15, we can easily get, in the same way as the evaluation of ma,

qa = tp[(cosh( —,
'

DJa& ) ),+2m& (sinh( —,'DJa„) ),]
+(1—

p)[ gq( csoh(DJ a)a)„+m(a ishn( DJ aa)), +1 qa] j'h(x)
~ ~ —o, (20)

with

2 cosh(Px )

2 cosh(Px )+1 (21)

In this section we have discussed the effective-field
theory with correlations in a binary Ising alloy with ran-
dom bonds. %'e are in a position to examine the transi-
tion temperatures and the compensation temperatures of a
disordered crystalline ferrimagnetic, binary, Ising alloy
and its amorphization. In the following sections, within
this framework, we shall study the physical quantities. At
this point, it is worth commenting that for particular
came the above equations reduce to those already dis-
cussed in previous work; for the case with

Jqg ——Jz~ ——J~q ——0, m~ ——0, and Mz is nothing but the

equation discussed in Ref. 13 for the amorphization of di-
luted crystalline Ising ferromagnet. In the case of p=0,
Eqs. (1S) and (20) also reduce to those with zero uniaxial
constant in Ref. 15 for the pure (nonrandom bond) prob-
lem.

III. DISORDERED FERRIMAGNET
IN SQUARE LA i i ICE

In this section we investigate a disordered binary ferri-
magnet on a square lattice; the term "disordered" means
that the distribution of all atoms is assumed to be com-
pletely random, but the interaction between two ions is
determined entirely by the species of those ions. There-
fore, it is not necessary to take account of the effect of the
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random distributions of bonds [namely, Eq. (3)] in Eqs.
{17),(18), and (20).

We are now interested in studying the transition tem-
peratures and the compensation temperatures of the disor-
dered ferrimagnet. In order to determine the transition
temperature, the usual argument that the sublattice mag-
netizations tend to zero as the temperature approaches a
critical temperature allows us to consider only terms
linear in the sublattice magnetizations for Eqs. (17) and

( A i
—1)my +Bima ——0,

Azmg + (B2—1)ma ——0,
(22)

with

(18). For the ferrimagnetic square lattice (z =4) with neg-
ative values of J„a——Jaz, the sublattice magnetizations
then reduce to

Ai Sp K——i+24p (1 p)[K—3qa+K7{1 qa—)]+24p (1—p) [Kioqa+2K»qa(1 —qa)+Ki2(l —qa) ]

+SP(1 P) [K20qa+3K22{1 qa)qa+3K24(1 qB) qB+K25(1 qa) ] ~

B,=4p'(1 p)K5+—12p (1 p) [K—sqa+K9(1 qa)]+—12p(1 p) [K—,6qa +2K&s(1 —qa)qa+K»(1 —qa) ]

+4( P) IK26qB+3K2s(1 'qB)'qB+3K30(1 qB) qa+K3i{1 qa) ] i

A2 —Sp Li—+24p (1—p)[L3qa+L7(1 —qa)]+24p (1—p) [Lioqa+2L33qa(1 qa)+L—,2(1 —qa) ]

+SP(l P) [Lio—qa+3L22(1 qa)qa+3L24(1 qa) q—a+L25(1 qa) ]-
B,=4p'(1 p)L, +—12p'(1 —p) [Lsqa+L, (l —qa)]+12p(1 —p)'[L „qa+2L „(1 qa)qa+—L,9(1 qa) ]-

+4(1 p)'[L2—6'qa+3L2s(1 qa)qa—+3L30(1 qa) 'qa+L3i(1 —qa)'] .

The critical surface characterizing the ferrimagnetic phase stability limit is determined by

(Ai —1)(B2—1)=A2Bi .

(24)

(25)

(26)

(27)

Looking at Eqs. (23)—(26), the parameter qa is included in them. In order to obtain the critical temperature T, from Eq.
(27), it is at first necessary to evaluate the parameter qa at T=T„which is given by, from Eq. (20),

qa ——p Mi+4p (1 p)[M4qa—+Ms(1 —qa)]+6p (1—p) [Mioqa+Miz{1 —qa) +2M, 3qa(l qa)]-
+4P{1—p) [M20qa+3M22{1 —qa)qB+3M24{1 qB} qB—+M25{1 qB) ]-
+{1 P ) [M30qa+4(1 qa)qBM33+—6M35(1 qB) qB+4{1 'qa) 'qBM37+M3s(1 qa ) ] (28)

The coefficients K;, L~, and Mk in Eqs. (23)—(26) and
(28) are given in Appendix A.

In ferrimagnetic materials, on the other hand, the sub-
lattice magnetizations do not have the same sign, and
there may be a compensation temperature T„9at which
the total magnetization m =0, even though mq&0 and
ma~0. The situation arises when, from Eq. (13),

pm„= —(1 p)rna . — (29)

2= 1 —C)
C

(30)

2= 1 —Di
Ply= (31)

Even for the case of a square lattice (z =4), the sublat-
tice magnetizations have complicated forms, when Eqs.
(17) and (18) are expanded. Using the relation (29), how-
ever, the sublattice magnetizations at T=T~ ~ can be
written in compact forms as follows:

The factors Ci, C2, D„and D2 in Eqs. (30) and (31) are
given in Appendix B. In the factors, the paraineter qa is
also included, which is given, on using Eq. (20) for z=4
and relation (29), by

ea =F-i+E2m~+E3~~2 (32)

where coefficients Ei, E2, and E3 are given in Appendix
B. By using Eqs. (29)—(32), consequently, we can obtain a
closed-form, although complicated, expression for deter-
mining the compensation temperature. If a compensation
temperature exists, it can be obtained by numerically scan-
ning the temperature range between 0 K apd the Curie
temperature.

We are now able to evaluate the Curie temperatures and
the compensation temperatures by the use of the above de-
rived equations. Before discussing the numerical results,
we first review the MFA theory of a binary ferrimagnet.
In subsection A the results of the MFA are given. The
numerical results of the present formulation are given in
Sec. III 8 and compared with those of the MFA.



7692 T. KANEYOSHI

A. MFA results

In the MFA the sublattice magnetizations in a disor-
dered binary ferrimagnet are

1 1
mg ———, tanh [zpJ~gmg+z(1 —p)gama]

B
'(33)

1
ma ——Bi [zpJaqmg+z(1 p)—Jaama]

B

where Bi[x] is the Brillouin function for s =1. Near the
Curie temperature, Eqs. (33) may be expanded and simpli-
fied as, for a square lattice with z =4,

1
ma —— [pJmm„+(1 p)J—sama],kgT

8
ma —— [pJaz mq + (1 p)Jaama —],

I.O

Q
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CL
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from which the Curie temperature is given by

kBT, 8 2

J 2
=-, (p+ 3 (1—p»)b+ I [p —

3 (1—p)b] 0.5 I.O

p(1 p)u2I 1/2)

where we have defined the exchange interactions as

J~B=JB~=~
JBB——bJ .

(34)

(35)

FIG 1 Reduced plots of T and T p as a function of p of
atoms mth s =

2 for some selected pairs of values (a,b =0.1):
(a) ( —0.01,0.1), (b) ( —0. 1,0. 1 }, (c) ( —0.5,0.1), and (d)
( —1.0,0.1). The solid lines are the MFA results, and the
dashed lines are the results of the EFT.

In the ferrimagnetic material with a ~0, on the other
hand, the compensation temperature is determined by
solving Eqs. (29) and (33) numerically in the range of tem-
perature between 0 K and the Curie temperature. In Figs.
1 and 3, some numerical results of Curie temperature and
compensation temperature in a ferrimagnetic square lat-
tice are depicted, in order to compare the MFA results
with those of the EFT.

8. Numerical results of the EFr

I.O

CL

Q.
E0
OI-

- I.O

CL

E
O

I-

CL

OI-
For some selected pairs of values (a, b), the behavior of

T, and T„~ versus concentration in a binary ferrimag-
netic square lattice are depicted in Figs. 1—3. In Fig. 1, in
order to compare the MFA results with those of the Et 1',

some results of the quantities are shown for some pairs of
values (a,b) with a fixed value of b=0. 1. The figure
clearly expresses that the MFA results for both quantities
deviate somewhat from those of the Et I', although they
show the qualitative description of the major aspects of
the phenomena being studied; because of its simphcity,
the MFA theory has been used by a great number of ex-
perimentalists for analyzing their experimental data of
ferrimagnetic alloys. The results of Fig. 1, however, im-

ply that the MFA theory must be applied with caution for
analyzing the experimenta1 data.

In Figs. 2 and 3 the concentration dependences of T,
and T„& obtained from the EFI' are depicted for some
selected pairs of values (a,b). In Fig. 3 the MFA results
of T, are also shown for comparison. In the figure, the

0.5

1.0

FIG. 2. Plots of T, and T p vs p for selected pairs of
values {a,b =0.1): (a) {—0.01,0. 1}, (b) ( —0.1,0. 1), {c)
( —0.25,0. 1}, (d) ( —0.5,0. 1), (e) ( —0.75,0. 1), and (f)
( —1.0,0.1). The solid lines are the concentration variation of
T, and the dashed lines are the concentration variation of
Tcoglp ~
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FIG. 3, Plots of T and T, and T ~ vs p for selected pairs of
values (a = —0.135, b): (a) ( —0.135,0.014), (1) {—0.135,0.1),
(c) ( —0.135,0.3), and (d) ( —0. 135,0.5). The solid lines are the
concentration variation of T and th d hed l'co

' ' ', e as ines are those of
~. The dot-dashed lines are the MFA results.

FIG. 4. Concentration dependences of T, for selected pairs
of values (a, b = 1.0): (a) (0.0, 1.0), (b) ( —0.2, 1.0), (c)
( —0.4, 1.0), (1) ( —0.6, 1.0), (e) ( —0.8 1 0), (f) (—
(——1.2, 1.0), (h) ( —1.4, 1.0), (i) ( —1.6, 1.0), (j) ( —1.8 1

transition temperature of the Et'1 for =1 '
or p= is given by

=0.7724, which is nothing but the result obtained
from the Zern'e Zernike approximation, "althou h the MFAl3 11

leadstok T J= —. '
m

1—
, / =1.0 for p=l. As is seen from F'Q1 1gs.

~mp are ound in—3, on the other hand, the values of T f
a narrow range of p, when the value of a (or b) un

e o (or a) increases. The concentration at
n y p = —,, srnceatwhich „~=0in the figures is give b

=0, mz ——0.5 and mz ———1, and the concentration for
m =0 is determined from —,'p —(l —p)=0. In curve a o

as a = —0. 135 and b=0.014, since these values ma be
consistent with
alloys. '

wi experimental data for amorphous Gd-C 0

InFi s. 4an'g . d 5 the concentration dependences of T,
for a given value of a (or b) obtained from the present

a . A particularly interesting result appears in the fig-
ures; for a =0 (or b=0 ) the ferromagnetic (or ferrimag-
netic phase cannot be obtained in a range of p, which just
corresponds to the dilution problem of exch bo d .

a e avior cannot be obtained from the MFA
theory, for instance, as shown in Fig. 5.

T v
n this section, we have studied th beh r"

„~versus the change of p in a disordered binary ferri-

als on
magnetic square lattice. In amorphous magnet'agne ic materi-
a s, on the other hand, it has been discussed tha h fi
tuatlons lns in the exchange interactions are the underlyin
causes for the chan esg Of pllysical qllalltltles, ill Coiilpal'-

I.O

0.5

I

0.5 I.O

FIG. 5. oncentration dependences of T fo0 o d pais
.5,0.0), (b) ( —1.5,0.1), and (c)a= —. , ): (a){—1.

3). The dot-dashed line is the MFA
(a).

e result for curve
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ison with those of crystalline magnetic alloy. 7 "'s In the
next section the effects of exchange fluctuations on T,
and T ~ will be investigated.

IU. AMORPHIZATION
OF FERRIMAGNETIC SQUARE LATTICE

To describe the structural disorder in a simple way, the
lattice model has bam often used in amorphous magnets;
the nearest-neighbor exchange interactions are given by
independent random variables (3). The random-bond
averages in Eqs. (17) and (18) are then given by

CL

CL

E
O

I-

lO

Q

O

05

J J M
cosh D „=cosh Dc—osh — D

2 ' 2 2 J
J hJ

sinh D,= sinh —D cosh — D
2 ' 2 2 2

(cosh(DJq~ ) )„=cosh(alD ) cosh — DJ 2M'
2 J

0.5 I.O

(sinh(DJ„) ),= sinh(aTD) cosh — DJ 2bJ'
2 J

(cosh(DJiiii) ),= cosh(bJD) cosh — DJ 2/hJ"

2 J

(36)
FIG. 6. Concentration variations of T, and T p for select-

ed pairs of values (a,b =0.1): (a) ( —0.01,0.1), (b) ( —0.25,0. 1),
(c) ( —0.5,0.1), and (d) ( —0. 1,0.1). The solid lines are for the
weak amorphization (5=0.2). The dashed lines are for the
disordered crystalline alloys with 5=0. 1 in Fig. 2.

(sinh(DJiiii) ),= sinh(bJD) cosh — DJ 2M"
2 J

Here, it is extremely tedious to treat in general the
amorphization of the disordered ferrimagnetic square lat-
tice discussed in Sec. III, so that let us take

0.7

P

b,J 2 bJ'' 2 M"
J J J =5, (37)

where 5 is a dimensionless parameter which measures the
amount of fluctuatio of exchange interactions. The pa-
rameter 5 is often called the structural fluctuation. The
transition temperatures and compensation temperatures of
the amorphization in the disordered ferrimagnetic square
lattice can be evaluated from Eqs. (27) and (28) for T, and
from Eqs. (29)—(32) for T~ ~, except for the fact that in
the coefficients, K~, I.J, and Mk, a power of the extra fac-
tor eoshL(J/2)5D] must be included, and the power de-
pends on how many of the functions of sinh and cosh are
included in the coefficients given in Appendix A.

Let us now discuss the numerical results for the
amorphization of the disordered ferrimagnetic square lat-
tice. In Figs. 6 and 7, the effects of the amorphization on
the T, and T „are shown. As is seen from the figures,
the effect of amorphization on T, and T, ~ is for them
to fall below the values of T, and T~m~ in the disordered
ferrimagnetic crystalline alloy. Such a phenomenon is
generally found in amorphous RE-TM ferrimagnetic al-
Ioys.

At this point some interesting phenomena of amorphi-
zation are observed in the figures. For the weak amorphi-
zation (5=0.2) of the curve (a) with a= —0.01 and
b =0.1 shown in Fig. 6, the value of T, disappears in the

0.5-
r I

0 0.2 04 0 6
S

I.O

CL

E
O

0

0
V

~a 0

05%

A

CL

0.5

0.5 l.O

FIG. 7. Concentration variations of T, and T„p for the
three values of 5: {a) 5=0.0, (1) 5=0.2, and (c) 5=0.5, when
the pair of values (a = —0.135, b) are chosen as ( —0. 135,0. 1)
solid line, ( —0.135,0.3) dashed line, and ( —0.135,0.5) dot-
dashed line. The insert is the variation of p* for the system
with ( —0.135,0.3), when 5 is changed.
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region of p given by 0.175 &p & 0.390 and also a value of
T p cannot be obtained; the exchange interaction Jzz
then can take positive and negative values randomly be-
cause of the fact that a = —0.01 and 5=0.2. The effect
of so called "frustration" appears in the region of p in
which the phase may be spin-glass-like. For the curve (a)
of Fig. 3 with a = —0.135 and b =0.014, similar behavior
can be also obtained for weak amorphization (5=0.2).
For instance, the solid curve (c) with a= —0.135 and
b =0.1 in Fig. 7 does not have a value of T, in the range
of p (0&@&0.505) and the value of T„~ cannot be ob-
tained (Fig. 7) for the amorphization of 5=0.5, since J~g
and J~~ then can take positive and negative values ran-
domly. On the other hand, nontypical behavior is also ob-
tained in the concentration dependence of T„~ for the
amorphization, the solid curve (b) with a = —0. 135 and
b =0.1 in Fig. 7. As is seen from Figs. 6 and 7, for weak
amorphization (5=0.2) the concentration for T„~=0 is
also given by p'= —,'. Increasing the structural fluctua-
tion, however, the concentration of T ~=0 decreases
rapidly from p'= —', at a value of 5, such as the inset of
Fig. 7 obtained for the case with a = —0. 135 and b =0.3.
The value of 5 at which the value of p' rapidly decreases
from p'= —,

'
depends on the values of a and b. The

change of p' is due to the decreases from mz ———,
'

and

m~ ———1 of sublattice magnetizations at T=O K in the
sense that it becomes impossible for some spins to take
any preferable direction because of the random distribu-
tion of J~J in sign, although in this case the ferrimagnetic
order is not destroyed completely, as is seen from Fig. 7.
Thus, if the difference of the values of p' exists between a
disordered ferrimagnetic crystalline alloy and its corre-
sponding amorphous ferrimagnetic alloy with the same
composition, it may indicate that the exchange interac-
tions are in sign distributed randomly in the amorphous
alloy.

Now, it is here worth commenting on some relations
between the results obtained within the present formula-
tion (z=4) and those in real amorphous RE-TM ferri-
magnetic alloys which may be assumed to be z =12. In
real systems J~, J», and J~~ correspond to TM-TM,
RE-TM, and RE-RE interactions, respectively. The mag-
nitudes of exchange interactions are usually taken as
J~~ g —J» ~J~. In order to analyze the experimental
data of amorphous RE-TM ferrimagnetic alloys, all ex-
perimentalists have taken a model discussed in Sec. III;
RE and TM ions are randomly distributed on a lattice
with z = 12 and the exchange interaction between two ions
is determined entirely by the species of those ions. Except
for the authors of Ref. 12, the sublattice magnetizations
mz and mz are then assumed to follow Brillouin func-
tions (or the MFA theory) for the spin values sRE and
srM (srM&sRE), like Eq. (33). In order to explain the
concentration dependence of T, in amorphous binary fer-
rimagnets, in some works the spin value of TM is not a
constant value, but the variation of the TM moment in
terms of a charge transfer model with the addition of a
moment induced by the RE is taken into account within
the framework of the MFA. ' M the other hand, Za-
gorski and Nazarewicz' have tried to extend the MFA
theory of the model to a better approximate theory, al-

though their work seems to be incomplete in comparison
with the discussions of Sec. III. The exchange interac-
tions are then taken as J~ ——J, J» ———0.135J, and
J&& ——0.014J, which values may be consistent with the ex-
perimental data for amorphous Gd-Co alloys. They ob-
tained the concentration dependence of T, and T„~ for
the fcc lattice structure (z= 12) with constant spin values
(s„=—,

' and sz ——1); their results are similar to those of
curve (a) in Fig. 3 of Sec. III for z =4. The results are not
in contradiction with the experimental data, although a
close comparison is not possible.

To our knowledge, however, the effects of the structural
fluctuation 5 on these quantities in amorphous ferrimag-
nets have not been discussed in the previous works.
Theoretically, when we use the MFA theory, it is known
that the effect of the structural fluctuation on T, cancels
out and does not appear, and its effect on T„~ is very
small. However, the results are characteristic of the
MFA. As discussed in this section, when we use an ap-
proximation better than the MFA, a number of interesting
effects of 5 come up in the behavior of T, and T„~.
The results imply that the MFA theory not including the
structural fluctuation may give incorrect analyses of the
experimental data for T, and T„~. Experimentally, in
amorphous TM-metalloid alloys, the fluctuation of ex-
change interaction J~ is considered as an important in-

gredient for the appearance of characteristic behavior,
such as the depression of reduced magnetization curves,
reentrant phenomena, and spin-glass phase. In amor-
phous Gd nable-metal ferromagnetic alloys, on the other
hand, reentrant phenomena and spin-glass phase are also
found; the exchange interaction J~~ is considered to be
fluctuating around a mean value. Thus, in amorphous
RE-TM ferrimagnetic alloys, it may be reasonable to take
account of the structural fluctuation, like Eqs. (3) and
(37), although it is not certain whether the exchange in-
teraction J„z fiuctuates around a mean value.

In previous work on the amorphization of a crystalline
Ising ferromagnet on a square lattice with s= —,', '3 we

have discussed that reentrant phenomena can be obtained
for large structural fiuctuation in the range of
5(0.5 &5&0.565) and for 5&0.565 the system may be in
the spin-glass phase (the definition of 5 in the work corre-
sponds to 5=25 in the present formulation). The results
can also be obtained from Eq. (17), when we put p = 1 and
z =4 into it and use the distribution function (3) and (36).
Therefore, in Figs. 8 and 9, the effects of large fluctua-
tions 5 on r, are depicted for three selected pairs of
values (a,b) in Figs. 4 and 5. In Fig. 8 the exchange in-
teractions are taken as J~=—J„~=J~~=J (or a= —1

and b = 1). Increasing the structural fluctuation, as men-
tioned above, the transition temperature at p = 1 decreases
monotonically until the va1ue of 5=1 and in the range
1.0&5 & 1.13 the reentrant ferromagnetic phase is ob-
tained and for 5 & 1.13 the system becomes spin-glass-like.
Even for the amorphization, the concentration variation
of T, changes almost linearly (except the region near

p = 1) until the value of 5= 1 [or curve (c)]. For the curve
(d) with 5= 1.2, the possibility of a reentrant ferrimagnet-
ic phase is seen in the region 0.86 ~p ~ 0.96, since the sys-
tem for p = 1 is already spin-glass-like. For a little larger
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value of 5 [or curve (e)], however, the reentrant ferrimag-
netic phase is found only in a very narrow region of p.
On the other hand, in Fig. 9 the exchange interaction J„~
is fixed at a = —1.5 and two values of J~z (or b =0.0 and
b =0.3) are chosen. For large amorphization, a reentrant
ferrimagnetic phase is also observed in the figure: for the
solid curve (c) with 5=1.0, in the region 0.382 &p &0.4
because of randomly distributed positive and negative
values of Jza, and for the solid curve (d) with 5=1.2, in
two regions, 0.46~p~0. 485 and 0.885&pg0. 97, be-
cause of the frustration coming from J~ and Jqz. As
shown in Figs. 6—9, in this way a number of interesting
phenomena coming from the random distribution of ex-
change bonds may be expected in amorphous ferrimagnet-
ic alloys, although at the present time we do not have any
experimental result.

U. CONCLUSION

0,5 I.O

I.Q

0.5

FIG. 8. Concentration dependences of T, in the system with
a = —1.0 and b =1.0 for the amorphization: (a) 5=0.0, (b)
5=0.5, (c) 5=1.0, (d) 5=1.2, and (e) 5=1.5.

We have studied the concentration dependence of tran-
sition and compensation temperatures in a disordered
binary ferrimagnetic square lattice and its amorphization
using effective-field theory with correlations. As dis-
cussed in Sec. IV, the MFA theory especially must be ap-
plied with caution to amorphous binary ferrimagnetic al-
loys because of the serious effects of structural fluctuation
on T, and T~ ~, even though all experimentalists have
neglected these effects in analyzing their experimental
data. At the present time, the main interest of experimen-
talists is directed towards obtaining an amorphous ferri-
magnetic alloy which has a compensation point in the vi-
cinity of room temperature and a wide region with a large
and stable coercive field near the point because of its po-
tential device applications, such as thermomagnetic
recording. ' As shown in Sec. IV, on the other hand, a
number of interesting phenomena coming from the ran-
dom distribution of exchange bonds may be also expected
in amorphous ferrimagnetic alloys, although they may not
be of technical, but only of academic importance.

Finally, it may be worth commenting on the following
facts; in order to discuss the concentration change of the
compensation point, we have used the Ising model. In ac-
tual materials, however, there exist transverse components
in the spin Hamiltonian which may be important for the
compensation effect, although they are not effective for
discussing the transition temperature, since only the
counting of the statistical weights of the system is effec-
tive near T, . The concentration dependence of compensa-
tion, therefore, may need more detailed study than that of
the present work. The problem is left as future work.

I, O

FIG. 9. The concentration dependences of T, in the two sys-
tems with solid line (a = —1.5, b =0.3) and dashed line

(a = —1.5, b =0.0) for the amorphization: {a) 5=0.0, (b)
5=0.5, (c) 5=1.0, and {d)5=1.2.

The coefficients E;, LJ, and Mk in Eqs. (23)—(26),
(28), and (Al) —(A7) are given as follows:

Ei ——cosh ( —,
' J~D) sinh( ,

' J~D)f(x )
~

„—
E2 ——cosh( —,

' J~D) sinh ( —,
' J~D)f(x)

~ ~ Q,

E3——cosh ( —,
' J~D) sinh( ,

' J~D) cosh(J&IiD)f(x—)
~ ~ —Q,

E4 sinh3( —,
' J~D) cosh(JqjiD)f——(x)

~ „Q,
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K, = c~h'(-,' J~D) sinh(I»D) f(x }I.=p,

K,= cosh( ,
' J—~D)sinh'( , J—~D)sinh(JgaD)f(x)

I x=o,

K7= cosh ( —,
' J~D) sinh( —,'I~D)f(x)

I ~=p,

K, = cosh2( ,
' J~—D)cosh(J„aD) sinh(JqaD)f(x ) I, p,

K9= coshi( —,
' J~D) sinh3(JgaD)f(x) I, o,

Kio c——osh( —,
' J~D) sinh( —,

' J~D) cosh3(JqaD)f(x) I,
K» ——cosh( —,

' J~D ) sinh( —,
'
J~D ) sinh (JqaD )f(x ) I,

Ki3 ——cosh( —,
' J~D ) sinh( ,' J~D—)f(x )

I „
Ki3 ——cosh( —,

' J~D) sinh( —,
' J~D) cosh(J&aD)f(x)

I ~

Ki4 ——sinh ( —,'I~D) cosh(JqaD) sinh(JqaD)f(x) I,
K&s = si» ( z JmD)»nh(IaaD)f(x }

I x =o

K&z
——cosh( —,

' J~D) cosh (JqaD) sinh(J&aD)f(x) I,
Ki7 —cosh( ,

'
J~D ) sin—h'(IgaD )f(x )

I z —p

K,s
—cosh( ,' J~D) co—sh(J&aD)sinh(J&aD)f(x)

I „
K» ——cosh( —,

' J~D ) sinh( JzaD )f(x )
I „

K2p = sinh( ,
'
J~D ) co—sh (JqaD )f(x )

I „
Kii = sinh( 2 J~D) cosh( JgaD) sinh (IgaD)f(x )

I z p,

K23 ——sinh( —,
' J~D) cosh (JzaD)f(x) I,

K23 ——sinh( —,
' J~D ) sinh (Jza D )f(x ) I,

K24 ——sinh( —,
' J~D) cosh'(JqaD)f(x) I,

K23 ——sinh( ,' JmD}f(x)
I

x=—o

K26 —cosh (JzaD) sinh(J&aD) f(x ) I,
K/7 —cosh( JqaD ) sinh (JgaD )f(x )

I p

K2s ——cosh (JzaD) sinh(JqaD)f(x) I, p»,

K29 ——sinh (J~aD)f(x) I»

K3o ——cosh( J„aD)sinh(I&aD }f(x)
I „

K3i ——sinh(J„aD)f(x) I, p,

K32 ——sinh ( —,
' J~D)f(x) I„o .

The coefficients II (j= 1—32) can be obtained by doing
the following replacements in K; (i = 1—32):
Jzz l2~ J~a l2, Jza ~Jaa, and f(x )~g (x ). We have

Mi ——cosh ( ,' JzaD }h(x ) I—
Mz ——cosh ( —,

' JzaD}sinh ( ,
' J„aD)h(x) I, —

M3 ——sinh ( —,
' J~aD)h(x)

I „
M4 ——cosh ( , JgaD) cosh(JaaD)h—(x)

I „p,
M5 ——cosh( ,' JgaD) sinh ( —,

' JgaD) cosh(J—aaD)h(x)
I „p,

M6 = cosh ( ,
' J„aD) sinh( —,

' J„aD—)»»(JaaD)h (x )
I „o,

M7 —sinh ( ,
'
J—„SD) sinh( JaaD )h (x )

Ms ——cosh ( ,' J—„aD)h(x)
I „

M9 ——cosh( , Jg—aD) sinh ( ,
' Jg—aD)h(x)

I „o,
Mip = cosll ( i JgaD) cosh (JaaD)h(x )

I x

M» —cosh ( —,
' J„aD)sinh (JaaD)h(x )

I „
M„=cosh'( —,

' J~aD)h(x) I „p,
Mi3 cosh ( i JAaD ) cosh(IaaD }"(x }

I ~ =o ~

Mi4 ——cosh( —,
' J„aD)sinh( —,

' IgaD)

xcosh(IaaD)sinh(JaaD)h(x) Ix=o ~

M is ——cosh( —,
' J„aD)si»( —,

' JgaD) sinh( JaaD )h (x )
I x =o ~

Mi& ——sinh2( ,'I~aD)—cosh (JaaD)h(x) I,
Mi7 ——sinh ( —,

'
IzaD) si» (JaaD )h (x }

I ~ =o

Mis= sinh ( —,'IzaD)h(x) Ix=o ~

M» ——sinh ( —,
' JzaD) cosh(JaaD)h(x) I,

M2p = cosh( —,
'
JzaD) cosh (JaaD )h(x )

I » =o ~

Mzi ——cosh( ,JzaD) co—sh(JaaD)sinh (JaaD)h(x ) I,
M32 ——cosh( ,

' JqaD}c—osh(JaaD)h(x)
I x=o ~

M23 = cosh(
& JgaD) slilh (JaaD)h(x )

I z p,

M&4 cosh(T——JzaD) cosh(JaaD)h(x ) I,
Mqs ——cosh( ,'IzaD)h(—x)

I ~ =o ~

Mqq ——si»( —,
' J~aD) cosh (JaaD) sinh (JaaD)h(x) I,

M37 ——sinh( 2 JzaD) sinh'(JaaD)h(x)
I i=o

Mqs ——sinh( —,
' JzaD) cosh (JaaD) sinh(JaaD)h(x ) I, p,

M29 ——»»( —,'IgaD)»nh(IaaD)h(x)
I «=0,

M,p ——cosh'(JaaD)h(x)
I „o,

M3 i ——cosh (JaaD ) sinh (JaaD )h (x )
I x =o

M32 —sinh (JaaD )h (x )

M33 ——cosh (JaaD)h(x)
I „

M34 cosh(JaaD) —sinh (JaaD)h(x)
I

M3& ——cosh3(JaaD)h(x)
I „

M36 ——sinh (JaaD)h(x) I, o,
M37 —cosh( JaaD )h (x )

I x —p

M3s =h(0) .

The coefficients K;, LJ, and Mk can easily be calculated
by applying a mathematical relation, e f(x ) =f(x+a).

APPENDIX B

The factors Ci, C2, Di, Dz, E, , Ez, and E3 in Eqs.
(39), (31),and (32) are defined as follows:
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C, =Sp K, +4p ( 1 —p ) 6Ksqa—
1 —p

Ks+ 6K7(1—qa )

+ 12p (1—p) 2K&oqa+2Ku(1 qa—) +4Kisqa(1 q—a } E—s
2 2 2 2 p

qB —K9 p
1 —p 1 —p

( 1 —qa )

+4p(1 p} 2Ksoqa+6K22(1 qa)qa+6K24(1 qa} qa

+2K ps ( 1 —qa ) —3K is
1 —p 2 p p

qB —6K )8 qB —3K
p 1 —p 1 —p

( 1 —qa )

+4( 1 —p ) Kgs qa +3Kgs
1 —p 1 —p

( 1 q. }q.-+3KM
2 p

1 —p
(1 qa)'—qa+Ksi ( qa }'—

1 —p

I

Cs ——32Ksp +16p (1—p) 2K4qa+2K»(l —qa) —3Ks4 3 1 —p
p

+24p '( 1 —p )' K»
1 —p

' 2

—2K]4
p

qB —2K i 5
p (1—qa )

1 —p 1 —p
3

qB +6K23
p (1-qa

1 —p
~ 3

( 1 —qa )—4(1—p) Ks7
p

qB +K29
p

1 —p 1 —p

+4p ( 1 —p ) 6K& &

3 p }—K)7 p
1 —p 1 —p

3

(82}

T

1 —p 1 —p 1 —pD )
———SI.)p +4p (1—p) Ls —6Ls qB —6L7 (1—qa )

p p p

+ 12p (1—p) Lsqa+L9(1 —qa) —~)o 1 —p 2
qB —2L ~2

p

1 —p qa(1 —qa }
p

1 —p 2(1—qa ) 4L)s-
p

+4p ( 1 —p )' 3L jsqa +6L i s ( 1 —qa )qa +3L 19( 1 —qa )'—2L 20 qB —6L 22
p

1 —p 2(1—qa }qa
p

—6L24
1 —p (1—qa }3

p

1 —p 2
qa ( 1 qa } —2L zs-

p

+4( 1 —p )'[Lzsqa +3Lss ( 1 —qa )qa +3L ~o ( 1 —qa )'qa +L» ( 1 —qa }'] (83)

' 3 ' 2 ' 3

4 1 —p 3 1 —p 1 —p
D2 ———32L2p + 16p (1—p) 3Ls —2L 4 qB —2L 32

p p p

I 3
1 —p (1—qa }

+24p ( 1 —p ) 2L (g qa +2L )s
2 2 1 —p

p

' 2
1 —p (1—qa }—L»

p

1 —p
p

+4p(1 —p) Li7 —6L~i
1 —p 4

( 1 —qa ) +4( 1 —p ) [Lz7qa +L z9 ( 1 —qa }] (84)

E, =p M, +4p (1 p)[M4qa+Ms(1 ——qa)]+6p (1 p} [Mioqa+M»(1——qa } +»qa
+4p(1 —p)'[M„q,'+ 3M»(1 —q, )q,'+3M&&(1 —qa )'qa +Mrs(1 —qa }']

+ ( 1 —p ) [Msoqa +4Mss ( 1 —qa )qa +6Mss ( 1 —qa ) qa +4Msvqa ( 1 —qa ) + Mss ( 1 —qa } ] ~
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E2 ——24p M2+12p (1—p) 5Msqs —2Ms +4M9(1 —qs)
1 —p

J

2

+6p (1—p) Ml)
1 —p

—SM )4.
P

va —8~is P (1—qs )
1 —p 1 —p

+4Mtsqs+4M )s(1 —qs ) +8M ls(1 —qg }qg

+4p(1 —p ) 3M2|3 P qg+ 3M23
P

1 —p 1 —p
I

(1—qs ) —6M2s P
9'a

1 —p

—12Mpg
P qg(1 —qg ) —6M2s P

1 —p 1 —p
(1—qg )

+6(1—p) M3|4 p 2qg+2M34 P
1 —p 1 —p

(1—qg }qg+M3s P
1 —p

(1—q~ )

'4

E3 ——16p Ms —32p (1 p)M7—
1 —p

+24p (1—p) Mi7
1 —p

I~

—Sp(1 —p) Ms7
3 p

1 —p
+(1—p) M3~

1 —p

(87)
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