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Electronic densities of states of semi-infinite disordered chains:
Comparisons of exact and analytic calculations
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Results of exact and analytic calculations of the electronic densities of states (DOS's) associated
with semi-infinite substitutionally disordered chains are presented using the exact position-space
renormalization-group (PSRG) method, the augmented-space (AS) formalism, and the embedded-

cluster method (ECM). In addition to total DOS's, the PSRG method allows the calculation of ex-

act partial DOS's associated with local atomic configurations in a disordered material. Comparisons
with the exact results indicate that as in the case of infinite materials the ECM provides a reliable

method for the calculation of single-particle properties, such as the DOS, of semi-infinite systems.
Furthermore, the ECM is found to be much more accurate than the AS formalism, especially in the
case of concentrated substitutionally disordered alloys.

I. INTRODUCTION

The theoretical understanding af the properties of
cleaved, ordered or substitutionally disordered, materials
is of great scientific and technological importance. Con-
sequently, a large number' " of approaches have been
developed (of which we cite only a small representative
sample) for the study of surface properties within various
and diverse physical models and formalisms for or-
dered' as well as disordered " materials. Most of
these approaches are concerned primarily with obtaining
analytic expressions for the single-particle surface Green
function from which all single-particle properties, in par-
ticular the density of states (DOS), can be obtained. In
this paper we examine the applicability to disordered sur-
faces af various techniques which have been used previ-
ously to calculate the DOS's of bulk substitutionally
disordered systems.

The development of analytic theories in general, and in
connection with the study of surfaces in particular, can be
aided and guided by direct comparison with experimental
results, e.g., photoemission studies, where such results are
available. It is in this regard that computer simulations
on simple, one-dimensional disordered materials have
played a significant role in sorting out variaus formal
methods on the basis of analytic behavior and the accura-
cy of calculated quantities such as the DOS. Correspond-
ing comparisons for the case of semi-infinite solids have
not been reported thus far, creating an uncertainty as to
the reliability of various models for the study of surfacing

of disordered materials. In this paper we present the first
exact computer-simulated DOS s for semi-infinite substi-
tutionally disordered linear chains, and compare them
with the corresponding results obtained within two dif-
ferent analytic methods which have been used' ' in the
study of the bulk properties af substitutionally disordered
alloys. We hope that our exact numerical results will pro-
vide a convenient testing arena for judging the validity
and reliability of other formal methods for the study of
surfaces.

A coinmonly used technique for obtaining the exact
spectral distribution af disordered systems describable by
a tight-binding (TB) H~iltonian is that based on the
negative-eigenvalue counting theorem as developed by
Dean. 's This technique, although convenient for applica-
tions to many bulk systems, especially one-dimensional
systems, is inapphcable to materials characterized by the
presence of surfaces. On the other hand, a position-space
renormalization-group (PSRG} approach (also called the
decimation method), which has been used'9 zo in connec-
tion with one-dimensional mass-disordered allays, can be
modified in a straightforward way and applied to the cal-
culation of the exact DOS s of semi-infinite substitution-
ally disordered chains. Por semi-infinite linear chains this
technique yields accurate spectral distributions with anly
a moderate computational effort.

The analytically calculated DOS which we are compar-
ing with the exact results were obtained within the gen-
erahzation to the treatment of surfaces of two real-space
methods originally developed for the study of bulk substi-
tutionally disordered systems: One generalization is based
on the augmented-space (AS) formalism, 'z 's and the
other on the embedded-cluster method's'7 (ECM). A
brief review of some relevant computatianal aspects of
both of these methods is given in the body of the paper.

The results presented in this paper correspond to a
semi-infinite, single-band binary-alloy chain, Acti
described by the usual TB model Hamiltonian,

H= pe;c;c;+ g W&c;cj . (1.1)
l j+J

Here, F; can take the values cz or ez with corresponding
probability C and 1 —C, depending on whether site i is
occupied by an atom of type A or 8, respectively. The
hopping terms W;~ are restricted to nearest neighbors and
are taken as independent of the configuration (occupation)
of sites i and j. Although the Hamiltonian of Eq. (1.1}is
far from being physically realistic, it can serve as a proper
testing case for differentiating between different methods
for the treatment of disordered surfaces. We seek expres-
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sions for the Green functions Gm and GJJ for the surface
atom (0} and for the jth atom away from the surface,
respectively, associated with the substitutionally disor-
dered Hamiltonian of Eq. (1.1). The corresponding densi-
ties of states are obtained by means of the familiar expres-
sion

nj(E) = — Im—GJJ(E) .
l (1.2)

The term "surface" in our work is to be understood in
the conventional terms, namely, as the atoms on the
planes to the left (or the right) of a cleavage plane cutting
through an infinite material. We assume further that the
potentials and concentrations of atoms on the surface are
identical to those of the bulk. This is certainly an approx-
imation, but it is sufficiently broad to serve our purposes
and can be removed in more realistic calculations without
excessive effort. We are interested in obtaining the DOS's
as a function of the distance from the surface averaged
over an "infinite" number of disordered chains.

The remainder of the paper is arranged as follows. In
Sec. II we present a brief formal discussion of the exact
(numerical) and the analytic methods used in our calcula-
tions. The results of these calculations are given in Sec.
III. Section IV contains a general discussion and some
conclusions which can be drawn from this work.

II. METHODS AND FORM%I.ISMS

A. The position-space renormahxation-group method

The position-space renormalization-group (PSRG)
method for calculating the DOS's of a disordered (or or-
dered) system consists of an iterative procedure for ob-
taining the local Green function of a given Hamiltonian.
It is a particularly simple approach for the study of TB
systems with nearest-neighbor hopping in one dimension.
In the first paper of this approach, Goncalves da Silva
and Koiller' (GK) used this method to calculate the spec-
tral distribution of mass-disordered infinite chains by as-
serting that the rescaling process commutes with the con-
figuration average. Different generalizations of the GK
scheme have been developed to investigate the problems
associated with disordered systems. In our approach, we
carried the rescaling process to convergence for each indi-
vidual configuration and then performed the configura-
tional averages. The exact limit is in principle reached
when the number of configurations goes to infinity. It
turns out that the application of this method to infinite or
semi-infinite chains is computationally very easy, allowing
the use of a large number (10 —10 ) of configurations.
The method allows us to pursue the iterative process until
a specific local Green function has become stable or, in
the language of renormalization-group theory, a fixed
point has been reached. The local density of states is then
obtained as the imaginary part of the local Green function
(in all our calculations the energy is assigned a positive in-
finitesimal imaginary part, E~E+ig} Formally. , this
method can be applied to systems with extended hopping
in any dimension, but the difficulty of its numerical im-
plementation increases drastically with dimensionality.

The essence of the PSRG method can be understood along
the following lines.

For a one-dimensional TB Hamiltonian, with only
nearest-neighbor hopping, Eq. (1.1) takes the form

H —g s cii ci + g ( Vi i—ci « —i+ Vi+ i&i ci+ i } i
l

(2.1)

where s; and V; are the site energy and hopping integral,
respectively. The equation for the Green-function opera-
tor,

(E —H)G =1, Q.2)

involving a given site, say the zeroth site, can be written in
the form

An iterative procedure can be used to solve for 600 by
renumbering the sites and eliminating the equations can-
taining odd sites at each iteration step. After each step
the resulting simultaneous equations have a structure
similar to that of Eq. (2.3) but with renormalized values
of e„and V„. The new equations can be interpreted as
corresponding to a one-dimensional system with a lattice
constant which is an integral multiple of that of the origi-
nal lattice. After each iteration, we arrive at an equation
of the form of Eq. (2.3) the renormalized coefficients of
which are given by the recursion relations,

2 2
Vz. -i V2n

(2.4)
2n —1 ~2n+1

Vren 2n 2n +1V V
(2.5)

where the site indices on the left-hand side refer to the
new lattice. Upon repeating the decimation process, the
values e and V„reach their limiting values, i.e.,
s„~s„'* and V„-+0. The above procedure is repeated
for a large number of configurations, and an average is
performed in order to obtain final results. This process is
applicable to infinite one-dimensional materials, as well as
to surfaces, and is ideally suited for probing local physical
quantities.

The PSRG method is as efficient as the negative-
eigenvalue theorem' for the calculation of bulk proper-
ties. However, it is also applicable to cases not amenable
to treatment by that theorem. For example, the PSRG
method can be used to obtain partial DOS's associated
with local configurations of atoms in bulk materials or on
the surface of pure materials or alloys. The results of
such calculations are presented in Sec. III.

8. The augmented-space formalism

The augmented-space (AS) Green function

G(E)=(EI—H ) (2.6)

« —&n)Gno=~no+ Vn-iGn-i. o+ Vn+iGn+i, o

n = —oo, . . . , m . (2 3)
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is described in terms of a nonrandom Hamiltonian H act-
ing on the "augmented space" which is obtained as the
direct. product of the Hilbert space spanned by H, the
given TB Hamiltonian of Eq. (1.1), with the "disorder
space" comprising all possible configurations of the al-
loy. ' ' Through a substitution principles, ' each matrix

element H;J can be replaced by an operator H,z acting in
the augmented space.

The matrix elements of the averaged Green function are
now obtained by means of a scalar product in the aug-
mented space,

G,«)= & Aro I
G(E)

I P, ro& (2.7)

where the f; are the states entering the defimtion
( f; ~

H
~ P& &

=H;1, and

yo ——vo{3&vo(3) . {3vo
1 2 . . . N

is composed as the direct product of the two-dimensional
basis vectors, Uo ——(o).

Calculations within the augmented-space method can
be carried out by a variety of techniques appropriate for
treating an ordered Hamiltonian. The most commonly
used are the graphical procedure' and the recursion
method of Haydock et al. ' For our purposes, the graph-
ical approach appears to be too cumbersome and not well
suited to computer applications. We therefore applied the
recursion method which basically consists in the transfor-
mation of an arbitrary tight-binding Hamiltonian H to a
tridiagonal form. This is accomplished through the con-
struction of an orthonormal basis set

~

m & such that

H
~

m &=a
~

m &+b~+i
~
m+1&+b [ m —1&, (28)

where

a =(m ~H ~m&,

b~+i ——(m
~

H
~

m &
—a~ b~, for m &—0, (2.9b)

(2.9a)

and

ao ——(O~H ~0&,

bo ——normalization of DOS,

bi=(0~H ~0& —ao, for m =0.
(2.9c)

1= ——hn
b2

(2.10)

Although we used Eq. (2.10) in our calculations, we did
not directly apply the method of Haydock et al. for the
calculation of the coefficients a and b, because of the
large storage space this would require even for our very

The coefficients a and b are the diagonal and off-
diagonal elements of the tridiagonal matrix which appear
in the continued fraction expansion of the density of
states,

n (E)= ——ImGoo(E)
1

simple linear chain example. Due to the peculiar con-
struction of the augmented-space Hamiltonian, the vec-
tors

~
m & have (m+1)X2 +' components, and for

reasonably accurate results the maximum value of m

should be of order 10. Instead, we calculated the mo-
ments of the DOS,

P.= &Po7'o I
H"

I fo7'o& (2.11)

by considering all closed paths of order n,
A.

Hoc, Hi, i,
'' Hi„o.

Now, the coefficients a~, b can be calculated ' by
means of well-known expressions involving appropriately
defined determinants of the moments p„. In order to
avoid the numerical problems of this procedure as much
as possible, we calculated the coefficients in a different
way by a linear expansion of the states

~

m & in terms of
powers of H acting on

~
0&.

In order to yield continuous densities of states the
continued-fraction expansion, Eq. (2.10) has to be ter-
minated in some appropriate manner. This was done by
application of the self-consistent procedure of Beer and
Pettifor which only needs the calculated pairs [a,b~]
to estimate the asymptotic values a„,b„. It should be
noted that the simple square-root terminator of Ref. 21 is
appropriate for our case because the augmented-space
DOS's have no gaps.

C. The embedded-cluster method

In the ECM (Refs. 16, 17, 23) one calculates exactly the
Green function for a cluster of atoms embedded in an ef-
fective medium which is determined in some optimal way.
In substitutionally disordered alloys numerical investiga-
tions have indicated that the best embedding medium, in
the majority of cases and especially for random alloys, is
that determined within the coherent-potential approxima-
tion (CPA). Then the single-band TB Green func-
tion for a cluster C of atoms embedded in the medium is
written in the form

Gcc=(z Hc lt c)—— (2.12)

[Gcc]~)=l(z —Hc —~c) '],
and also

(2.13)

[Gcc]~t ——G,J —— I G(k)e "d k,
Q~z BZ

(2.14)

where Hc is the intracluster Hamiltonian for the effective
medium, G(k) is the effective-medium Green function in
the k representation, R;J is the vector from site i to site j

where all quantities are n Xn matrices for n-site clusters.
Here, Hc is the intracluster part of the disordered Hamil-
tonian, and z is proportional to the n Xn unit matrix.
The cluster-renormalized interactor lc describes the in-
teraction of the cluster with the surrounding medium and
in the absence of off-diagonal disorder is independent of
the particular atomic configuration represented by Hc.
Thus, b,c can be found easily by noting that Gcc, the
cluster-diagonal Green function for the effective medium
can be evaluated in two different forms,
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ac =z —Hc —(Gcc)
—I

so that

Gcc=[~c—~c+(Gcc) ']

(2.15)

(2.16)

The ECM can be used to calculate surface-cluster
Green functions within a TB formalism in a straightfor-
ward way. For the case of one-dimensional systems one
chooses a cluster large enough such that the surface atom
has no direct interaction with the effective medium. Then
for an (n + 1)-site cluster the renormalized interactor dLc

for the surface cluster is equal to the corresponding quan-
tity for a (2n +1)-site cluster embedded in the bulk ma-
terial. This is due to the fact that the "left" and "right"
sides of the cluster interact only with that part of the
medium with which they are in immediate contact. Simi-
lar considerations apply to higher-dimensional systems
but with a certain increase in formal and computational
labor, as will be discussed in a forthcoming publication.
In any case, once Gcc has been determined, the corre-
sponding local DOS s associated with any site in the clus-
ter and for any cluster configuration is obtained in the
usual way,

1
n;(E) = ——Im[Gcc(E)]" . (2.17)

Averaged results can be obtained by performing an en-
semble average over all cluster configurations.

III. NUMERICAL RESULTS

It should be noted that E, the energy, in all the figures
is given in arbitrary units. The DOS, n (E), is always nor-
malized to 1. Figure 1 shows the local DOS correspond-
ing to sites at and below the surface and also for the bulk
for a pure linear chain with parameters e; =0, %= 1. The
transition from the surface DOS (leftmost panel) to the
bulk DOS (rightmost panel) is indicated by the DOS at

and Qiiz is the volume of the Brillouin zone (BZ) of the
reciprocal lattice. From Eqs. (2.17) and (2.18) we obtain

the 16th site below the surface, ni6(E) (middle panel).
The origin of the "oscillation" in ni6(E) can be under-
stood upon examining the continued-fraction (CF) expan-
sion of the Green function, Eq. (2.10).

Note that for the pure semi-infinite chain with nearest-
neighbor hopping the CF method is exact and so is the
ECM. In this case all three methods are computationally
very similar and give identical results. Figure 2 depicts
results analogous to those of Fig. 1, but for an ordered
binary semi-infinite chain. Here, atoms of types A and 8
(sz ——2.0 and es ———2.0) alternate along the chain, thus
producing a superstructure of diatomic unit cells. Again
the middle panel, corresponding to the 4th atom below the
surface, indicates the transition from the surface to the
bulk DOS's.

The remaining figures depict DOS's for binary random
ly disordered semi-infinite chains &c8i c. Figures
3(a)—3(c) show the DOS of the surface site obtained by
the AS method for 5, 8, and 10 pairs of coefficients
a,b [cf. Eq. (2.10)], respectively, compared with an ex-
act histogram of the DOS calculated in the PSRG ap-
proach for a 50 at. % alloy. The PSRG method converges
quite rapidly and allows the inclusion of a large number
( —10 ) configurations in the evaluation of the ensemble
average of the Green function. As is seen in these figures
the AS approach yields a very smooth and rather poor
representation of the richly structured surface DOS, as is
also found in applications of this method to bulk systems.
The structure of the surface DOS is produced primarily
by local fluctuations in the environment of a site which
cannot be taken properly into account by the AS method
because of the averaged nature of the Hamiltonian H.
These results should be contrasted with those obtained in
the ECM using 1, 5, and 13 sites, and continuing the
chain with an effective potential obtained in the
coherent-potential approximation for the infinite system
[Figs. 4(a), 4(b), and 4(c)]. As is seen in Fig. 4 the DOS's
corresponding to a 13-site cluster are practically indistin-
guishable from their exact PSRG counterparts in that
they resolve all peaks and correctly reproduce all gaps and
the weights of the various peaks. The results shown in
Figs. 3 and 4 should also be compared with those of re-
cent calculations which apply a simplified traveling-
cluster approximation. The surface DOS presented in

2.0—

(a) (c)

OO
OO 2g)

E

OO 2A) -2g)
E

O.O

E

-2.0 0.0 2 0
E

0,0 2.0 —2.0 0.0 2.0
E

FIG. 1. Local DOS of a pure chain (c=0, 8'= 1.0), (a) at the
surface, (b) at the 16th site below the surface, and (c) for the
bulk. All the energies are in arbitrary units.

FIG. 2. Local DOS for an ordered binary chain of atoms
(c,& ———cz ——2.0 and %=1.0) (a) at the surface, (b) at the 4th
site below the surface, and {e)for the bulk {right panel).



33 ELECTRONIC DENSITIES OF STATES OF SEMI-INFINITE. . . 769

——(b)

g 0.2

OC
4Q-4.0 44-4A) 0.0 4.0

O.l -{C)

QJ 02

FIG. 5. Local DOS for the surface site of the disordered
semi-infinite chain A~8] ~ with C=0.25 and the parameters
c& ———eq ——2.0, 8'=1.0. {a}The AS calculated DOS with 10
pairs of continued-fraction coefficients; (b} exact (PSRG) DOS;
(c) ECM results for a 13-atom cluster.

0.0
2A)

E

4.0

FIG. 3. Local DOS for a disordered binary chain (parameters
of Fig. 2 and C=0.5) at the surface site as obtained by the AS
approach with 5, 8, and 10 pairs of continued-fraction coeffi-
cients [(a), (b}, and (c), respectively] compared to (d) the result of
the PSRG calculation.

Ref. 28 seems to lack the detailed structure of the exact
curves while being obtained on the basis of a conceptually
more complicated method.

Figures 5 and 6 show results analogous to those of Figs.
3 and 4 but for alloys with C=0.25 and C=0.05, respec-
tively. Since the DOS's are na longer symmetric in energy
about Z=O.O, the DOS is shown for the whole width of
the band. The AS surface DOS (left panels) correspond-

0.4- (Cg)

lJJ

C
0.2—

0.0

ing to ten pairs of CF coefficients and the analogous
ECM results for 13-site clusters (right panels) are com-
pared to the exact total DOS (center panels). For C=0.05
it is seen in Fig. 6 that the AS method reproduces accu-
rately the position of the impurity peak, althaugh it
smoothes out much of the structure in the host DOS
which by cantrast is faithfully reproduced by the ECM.
The accuracy of the AS method in the dilute limit in-
creases because in this limit the AS Hamiltonian ap-
proaches the Hamiltonian of a pure system, and for a
semi-infinite chain with nearest-neighbor hopping the re-
cursion method becomes exact. Note, incidently, that a
straightforward application of the CF expansion is not
applicable to our study of a semi-infinite chain with diag-
onal disorder and constant nearest-neighbor hopping since
the coefficients a~ in such an expansion are exactly the
random e. and do not converge as m ~ oo.

As was done for pure semi-infinite chains, we also stud-
ied the rate of approach to the DOS's of infinite (bulk)
disordered chains as a function of the distance from the
surface. Using the ECM, we found that the local DOS's
at the 13th site below the surface are almost indistinguish-
able from the bulk DOS's. This is in contrast to the rath-
er large distances needed for corresponding similarity in
the case af pure chains and attests to the fact that the
DOS s in substitutionally disordered materials are pri-
marily (but not totally} influenced by short-range local en-

0.4- (c)

QJ

C
0.2-

0.4

C 0.2

2.0
E

40

0.0—4.0
i

OP 4.0-4.0
E

O.O 40-4.0
E

0.0
E

4.0

FIG. 4. Local DOS for the surface site analogous to Fig. 3 as
obtained by the ECM using clusters of 1, 5, and 13 atoms [{a},
(b}, and (c), respectiveiy] compared to (d) the result of the PSRG
calculation.

FIG. 6. Local DOS for the surface site analogous to Fig. 5
but with C=0.05.
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0..!
l

(b)

c
0,2—

0.0 2.0
E

4.0 OA) 20
E

40 0.0 2.0
E

2.0
E

4.0 0.0 2.0
E

4.0 0.0 2.0
E

40

FIG. 7. Local DOS for an A atom on top of the disordered
chain with C=0.5. Order of (a), (b), and {c)is as in Fig. 5,

FIG. 9. Local DOS for an A atom followed by a B atom on
the surface of a disordered {C=0.5) chain. Order of (a), (b), and
{c)is as in Fig. 5,

IV. CQNCI. USIONS

We have compared exact surface DOS's for TB semi-
infinite chains obtained by means of rigorous configura-
tional averages with corresponding DOS's obtained by
means of two analytic theories, the AS formalism and the
ECM. All three methods, PSRG, AS, and ECM, yield
identical results in the case of a semi-infinite ordered
chain. For disordered materials, on the other hand, the

Ot2

OXI 20
E

1.0 Q.O 2.0
E

1.0 0.0 2.0
E

4.0

FIG. 8. Local DOS for an A atom followed by an A atom on
the surface of a disordered {C=0.5) chain. Order of (a), (b), and
(c) is as in Fig. 5.

vironment fiuctuations. Alternatively, this is due to the
rapid decrease of the electronic mean free path with in-
crea81ng d18order.

Figures 7, 8, and 9 show, respectively, partial (species-
resolved) surface DOS's for an A atom, a pair of A atoms,
and an A atom followed by a 8 atom, for the case of the
binary chain with C=0.5. The exact results shown in the
center panel are to our knowledge the first exact partial
DOS to be reported for substitutionally disordered materi-
als. The ability to yield such decompositions is a great
advantage held by the PSRG method over the negative-
eigenvalue technique, worth the somewhat longer comput-
ing time. Once again, the ECM yields quite accurate re-
sults in contrast to the nearly featureless DOS's obtained
in the AS method.

two analytic methods, AS and ECM, were shown to yield
vastly different results with the ECM providing a much
more accurate, nearly exact, representation of the exact
DOS's than the AS formalism.

Any analytic method applied to the study of surfaces
must rely heavily on a real-space approach. This is espe-
cially true in the case of unidirectional semi-infinite sys-
tems, such as disordered linear chains. Both the AS
method and the ECM are based on a real-space treatment
of disorder, and both have been applied to disordered ma-
terials of infinite extent (no surfaces). A simple compar-
ison shows that the ECM is much better suited for the
treatment of local environment effects. Such treatment
seems to be beyond the computational capabilities of any
of the AS methods, which are based on an averaged Ham-
iltonian rather than treating exactly the Hamiltonian, or a
part of the Hamiltonian, of a disordered material as is
done within the ECM.

The ECM has been used recently in an attempt to
mimic the bandstructure of the surface of realistic three-
dimensional ternary alloys by means of a one-dimensional
model. The reliability of such procedures can be greatly
enhanced on the basis of comparisons with exact results
such as those presented in this paper. Our results allow us
to identify the ECM as a viable technique for calculating
local DOS's on the surface of real substitutionally disor-
dered alloys as it has proved to be for such alloys in the
bulk. These comparisons suggest rather strongly that for
surface as well as for bulk disordered materials the correct
treatment of local environment statistical fluctuations is a
necessary prerequisite to obtaining accurate local DOS's.
In our calculations using the ECM, we assumed that suf-
ficiently far away from the surface the material can be
described by means of an effective potential obtained in
the CPA for the corresponding bulk alloy (infinite chain).
That this assumption is indeed reasonable is substantiated
by realistic slab calculation for pure materials. In these
calculations, it is found that the charge density and hence
the potentials at the center layer of a 7- or even 5-layer
film is quite similar to that of the corresponding bulk ma-
terial. The convergence with respect to distance from the
surface of a disordered alloy is expected to be even faster
due to impurity scattering, as is indeed verified by our
one-dimensional calculations.
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